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Abstract—Strength training is becoming increasingly popular
among all age groups, as it helps the participants increase mus-
cle strength, improve body flexibility, reduce health risks, and
reshape physical forms. However, strength training imposes strict
regulations on gestures and requires professional instruction in
real time for the sake of body-building efficiency and safety. For
this purpose, in this article, we propose a novel low-cost system
named iCoach, to provide real-time monitoring and coaching
service for strength training participants. Specifically, we design
and implement a smart fitness glove, which can be seamlessly
equipped with a pervasive inertial unit. With this customized
but low-cost device, we can recognize various training programs,
detect nonstandard behaviors while exercising, and assess exer-
cising qualities of a user. Our primary experimental results show
that iCoach can recognize 15 sets of training programs, detect
three common nonstandard behaviors, and assess the quality of
training with high accuracy and reliability.

Index Terms—Inertial measurement unit (IMU), strength
training, training exercise assessment.

I. INTRODUCTION

NOWADAYS, individuals pay more attention to physical
health and body shape. Besides nutrition, strength train-

ing appeals a mushrooming number of people across all age
groups, especially the youngsters. The underlying reason is
that strength training can bring about multiple benefits all at
once, such as increasing muscle strength, improving body flex-
ibility, reducing health risks, and reshaping physical form [1].
However, differing from other fitness activities like aerobic
workouts, strength training puts stricter requirements on pos-
tures and demands more professional instruction, in order to
achieve better fit-keeping effect and avoid muscle injuries.
Compared with those activities, posture, speed, training load,
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and sets play critical roles in guaranteeing training effect and
avoiding body injuries. Without timely feedback, even minute
nonstandard behaviors in strength training activities may cause
injuries in an instant or lead to the deformation of the body
shape in the long run.
Consequently, in order to achieve a better workout effect,

present fitness participants tend to employ professional fitness
coaches or turn to fitness APPs [2], [3] as a compromise.
Nevertheless, hiring such a personal coach is rather expensive
and unbearable for general bodybuilders. Moreover, existing
APPs only provide fitness tutorials and post-recording service
through the user’s typing. They do not monitor the training
process of the participants in real time, and hence correct-
ing the nonstandard behaviors to avoid muscle injuries is not
supported as well.
Although there are already many works in analyzing aerobic

exercise and general activities [4]–[8], they cannot be applied
to strength training activities owing to their uniqueness. Some
researchers propose to use an RFID system to monitor free-
weight exercise [9], [10]. However, it requires instrumented
fitness equipment (dumbbells, barbells, and machines) with
numerous tags and readers in order to cover a gym entirely.
From the point of hardware cost, this is not a favorable man-
ner since even a commercial RFID reader costs hundred times
more compared to the pervasive sensors. Even worse, complex
layout, human movements, and RF interference in the gym
can easily interfere with the propagation of wireless signals
and degrade the performance of tracking exercise. The most
similar works that use inertial sensors (e.g., accelerometer
and/or gyroscope) to monitor free-weight exercise appeared
in [11] and [12]. However, both of these merely focus on
detection, recognition, and counting of repetitive activities,
which can only provide coarse information about activities.
Furthermore, these works do not detect nonstandard compo-
nents and hence do not provide a comprehensive assessment
of exercise activities.
In contrast, we design and implement iCoach, a novel intel-

ligent fitness glove as shown in Fig. 1, which is designed
for monitoring, coaching, and assessing strength training exer-
cises in a more comprehensive manner. More specifically,
iCoach is a smart fitness glove with a commercial inertial
measurement unit (IMU), including an accelerometer, a gyro-
scope, and a magnetometer embedded in its wrist band. In
our design, iCoach works by utilizing IMU data to recognize
exercise activities, detect nonstandard behaviors, and assess
workout quality. Different from the previous systems, iCoach
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Fig. 1. Left: The present prototype of iCoach. Right: Experimental scenarios.
iCoach is a smart device and application that monitors exercise activities and
provides feedback in real time. It can be seamlessly embedded with fitness
glove and thus is nearly unobtrusively. We conduct experiments in a university
gym to evaluate its performance.

is a more comprehensive monitoring, coaching, and interactive
system, with which users can not only obtain some basic
information but can further acquire more critical details, such
as nonstandard behaviors and assessment of their exercising
process. Moreover, iCoach can act as a real-time interactive
interface for trainers. If any abnormal behaviors during the
course of exercise are detected, corresponding instructions are
sent to the users for correcting errors and avoiding injuries
instantaneously. Our experimental results show that iCoach
can identify training activities with a high accuracy (precision:
94.7% and recall: 95.0%). The iCoach can also detect more
fine-grained nonstandard behaviors with reasonable accuracy
(precision: 90.7% and recall: 90.3%). Finally, we also demon-
strate the reliability of assessing the quality of doing exercise
via iCoach.
To summarize, we highlight our main contributions in this

article as follows. First, we demonstrate the feasibility and
reliability of monitoring, assessing, and coaching strength
training exercise using low-cost sensors in an unobtrusive man-
ner. We do not require instrumenting the environment with any
additional sensors, and can easily embed sensors in fitness
gloves. Second, we design and implement a real-time system,
iCoach, and conduct experiments in practical settings to evalu-
ate its performance. The results show that iCoach achieves an
accuracy higher than 95% and has a less than 90-ms response
latency. Compared with professional coach, iCoach achieves
satisfactory assessment quality.

II. RELATED WORK

The iCoach is closely related to the human activity recog-
nition concept in terms of the following two categories.

A. Wearable Sensor-Based Activity Recognition

Wearable sensors have been used to recognize vari-
ous human activities in previous works [11], [13]–[22].
Researchers make use of wrist-mounted inertial sensors to
monitor the arm-based activities [11], [13]–[15], [17] or
track the arm motions [16]. Among these, the works in [15]
and [17] leverage accelerometer on the wrist to detect and

recognize smoking and eating activities, respectively, while
ArmTrak [16] tracks one’s precise arm movement with the
help of inertial sensors in a smartwatch. LookUp [22] uses
the shoe-mounted inertial sensors for classifying physical loca-
tions based on surface gradient profile and step patterns.
MyBehavior [23] makes use of the multimodal input on the
smartphone, such as activity, food intake, exercise, etc., to
learn a user’s physical activity and dietary behavior. The
system in [24] uses a single body-worn accelerometer to
estimate caloric expenditure. Although all the above works
are relevant to activity recognition with inertial sensors, they
do not focus on monitoring and assessing strength training
exercise, which is a more specific area requiring different
data processing techniques. Most similar to this article, the
works [13] and [14] focus on recognizing strength train-
ing activities with inertial sensors. However, the differences
between this article and them lie in two aspects. For one thing,
the categories of activities in our work is more than that in
other works, but the recognition accuracy remains high. For
another thing, we not only design and implement a real-time
strength training activities recognition system but also conduct
a comprehensive assessment of activities.

B. Radio-Frequency-Based Activity Recognition

Another category of activity recognition works exploit
radio-frequency signals (e.g., WiFi signals and RFID signals)
to sense human activities [10], [25]–[29]. WiSee [26] exploits
the Doppler shift effect of WiFi signals to recognize the human
gestures. E-eyes [25] utilizes the channel state information
(CSI) of WiFi signals to monitor the daily indoor activities.
Similarly, Smokey [27] leverages CSI to detect one’s smoking
activity. Differently, the work in [28] proposes a quantitative
model to estimate the walking speed of a person from CSI
values. FEMO [10] provides a free-weight exercise monitor-
ing scheme by attaching RFID tags on the dumbbells and then
leveraging the Doppler shift profile of the reflected backscatter
signals for activity recognition. The work [29] designs a CSI-
based strength training monitoring system with commercial
WiFi devices. The difference between our work and these
works can be recognized in three aspects. First, except the
works [10] and [29], till now, there is almost no research
work on strength training. Second, wireless signals are easy
to be interfered with by external environmental factors such
as movements of other people.

III. TESTED TRAINING ACTIVITIES

Strength training is specialized in terms of resistance to
induce muscle contraction and covers rather diverse categories
of activities. In this article, we focus on 15 sets of training pro-
grams as shown in Fig. 2. We select these training programs
since they train different parts of upper body muscles cover-
ing a person’s major muscle groups. Moreover, these training
programs are among the top popular activities according to the
fitness training guidebooks [1], [30] and questionnaire inves-
tigation. Specifically, the selected activities aim at training
brachialis, pectoralis, abdominal muscle, dorsal muscle, and
deltoid. In fitness training, a “repetition” is the basic unit of
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Fig. 2. Tested training programs in order to evaluate the performance of
iCoach. We test 15 sets of most common programs, which involve free-weight
training exercise and machine workouts. It is noted that iCoach cannot only
be applicable for the aforementioned 15 activities. Rather, it can be extended
for more upper-body activities.

doing exercise, while a “set” usually contains a certain number
of repetitions.
Various nonstandard behaviors may happen during a training

process [31]–[33]. As for this, we select three common ones
as described in the following.
1) Case 1 (The Overall Speed of a Repetition Is Too Fast or

Too Slow): The overall speed of a repetition plays a sig-
nificant role in strength training. A faster movement may
lead to stretching and warping muscle in a fierce man-
ner. A slower movement may lead to ineffective muscle
training due to the lack of effective resistance.

2) Case 2 (The Speeds of Outward and Backward Processes
Are Not Balanced): The balance of outward–backward
processes is another critical metric of the strength
training. The tension of muscle and sufficient control
should be kept constant all the time to stimulate mus-
cle for obtaining the benefit of an effective workout.
Balanced centripetal contraction (outward) and centrifu-
gal contraction (backward) benefit to enhancing the same
powerful bidirectional muscle contraction strength and
avoid disequilibrium. In particular, muscle injuries most
likely to appear when the centrifugal contraction is too
fast.

3) Case 3 (The Repetitions Are Not Stable With Noticeable
Shakes): Those repetitions with obvious shakes but can
be recognized correctly are another kind of nonstandard
behavior. On account of the shake of arms, the mus-
cle cannot maintain certain tension that is required for
exercise.

IV. SYSTEM DESIGN

In this section, we give a detailed introduction to the spe-
cific design of iCoach. Fig. 3 shows the overall workflow
diagram of the iCoach system. Its key components include
preprocessing, segmentation, activity recognition, and analysis

and assessment methods. In the following parts, we provide
more details of the system composition.

A. Preprocessing

In the preprocessing stage, we apply calibration to IMU
sensors and denoising operation on raw signals. Specifically,
we apply an improved nine-position static calibration method
to calculate the bias and scale factor of the IMU sensors in
each axis [34]. Later, an exponentially weighted moving aver-
age (EWMA) filter, which can be described by (1), is operated
on the calibrated data in each axis to remove random noise
caused by irrelevant motions

al
i = al

i−1 + λ ×
(

ai − al
i−1

)
, i > 0, al

0 = a0 (1)

where ai is the ith calibrated data and al
i is the value after pass-

ing through the smoothing filter. We set the smoothing factor λ

to 0.1 through the empirical optimization on the collected data.

B. Segmentation

To achieve high recognition accuracy and better exercise
assessment, it is significant to precisely segment a data stream,
i.e., detecting the start point (SP) and end point (EP), to
align the data with the actual exercise process. Besides the
precision requirement, we also need to take the user diversity
into account. That is, different users have different exer-
cise patterns, such as speed and stability, which makes firm
threshold-based segmenting utilized in most previous works
fail to work well.
To deal with the above challenges, we make use of an

observation that there exists a short pause between consecutive
exercise repetitions, and propose a double adaptive thresholds-
based method to detect the exact SP and EP of each repetition.
Although the IMU contains 9-axis data, we only make use
of accelerometer and gyroscope measurements since magnetic
measurements are easily affected by the surroundings. As for
the gyroscope measurements, we calculate the average abso-
lute value of each axis in a window of length w as three
indicators, namely, Igx, Igy, and Igz. Then, the 3-axis thresholds
of gyroscope data, namely, γgx, γgy, and γgz are calculated by

γ = β · σ (2)

where σ = [(
∑n

i=1 |ai|)/n], which represents the average
absolute value of noise signals.
To estimate the value of σ , we collect data for about 1 s

once the Bluetooth connection succeeds. During this period,
the users are requested to keep their hands still naturally
such that the collected data reflect the personalized stability
of their arms. This indicates that different users have var-
ied σ values. Thus, each time a user begins doing exercise,
σ is adjusted adaptively based on the current stability value
of that individual. As for the accelerometer, since the data
are affected by gravitational acceleration, to make the activ-
ity detection method work for different fitness programs, we
use the square magnitude of acceleration (SMA) to estimate
the total acceleration. The SMA can be derived using the
following equation:

SMA(i) = (axi)
2 + (ayi)

2 + (azi)
2 (3)
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Fig. 3. Work flow of iCoach. The iCoach mainly consists of four main parts, that are for data preprocessing, data segmentation, activity recognition, and
analysis and assessment of training activities. Different from the previous works, iCoach stands out principally for its ability to detect nonstandard behaviors
with acceptable performance and assessing the quality of training exercise comprehensively.

where axi, ayi, and azi are the acceleration of the ith sample
on the x-, y-, and z-axes, respectively. Similarly, we calculate
the variance of the resultant SMA signal in the same win-
dow as the acceleration indicator, namely, Ia. Then, the SMA
threshold τ is calculated by

τ = α · δ (4)

where δ = ([
∑n

i=1(SMAi − μ)]/n) and μ =
[(

∑n
i=1 SMAi)/n]. δ represents the variance of the same

noise signals and is adjusted adaptively based on the stability
value of each individual. β and α are constant parameters
empirically set to 1.5 and 2, respectively, in the iCoach.
Based on the above, we put forward the criterion of deter-

mining whether a sliding window is active or inactive. A
potential starting window of a repetition is detected if in
the current window, any two of the gyroscope indicators
Igx, Igy, and Igz exceed γgx, γgy, and γgz defined in (2), or
the acceleration indicator Ia exceeds τ defined in (4); other-
wise, the corresponding sliding window is detected as an end
one. Consequently, the signal segment between starting and
ending windows can be extracted as a repetition candidate.
However, due to irrelevant motion interference, there exist
fakes in the candidates. Thus, if the length of a candidate
exceeds a constant threshold 	, representing the minimum fit-
ness motion length, we consider it to be a true repetition. By
this means, the interference of irrelevant movement can be
removed. The entire process of activity segmentation is sum-
marized in Algorithm 1. In iCoach, since the sampling rate is
40 Hz, the window length w and the step length p are set to
20 and 5 samples, respectively.
Although there are extensive works in activity recognition

with IMU, their methods cannot be applied in our work. As
for activity segmenting, we implement two common methods,
namely, the peak finding algorithm in [13] and the KL diver-
gence algorithm in [10], and compare them with our approach.
The peak finding algorithm segments activities by identifying
peaks in data streams. According to [13], it can only extract
a repetition when there are no time gaps between consecutive
repetitions. The KL divergence algorithm utilizes the probabil-
ity density distribution to identify active and static windows.
However, the window size should be carefully selected for
each user, as a small window size tends to segment a repetition

Algorithm 1: Motion Signal Detection Algorithm
Input: Timeseries,Xn; WindowSize; lapstep;
Output: A start point of an activity,tstart; The

corresponding end point,tend;
1 Initialize:state = static;
2 if in a window Wt=< xt−WindowSize+1, . . . , xt >

(state==static) and
(((Igx > γgx)+(Igy > γgy)+(Igz > γgz))>1) or Ia > τ ) then

3 tstart =t-lapstep;
4 state=active;
5 while not (state==active and Igx <= γgx and

Igy <= γgy and Igz <= γgz and Ia <= τ ) do
6 window slide forward to Wt′ with lapstep;
7 end
8 tend = t′ − lapstep;
9 state=static;

10 return tstart, tend

11 end
12 else
13 window slide forward with lapstep;
14 goto 2;
15 end

into massive fragments, while a large window size leads to
a higher time delay. In addition, the computational cost of
identifying the resting intervals (i.e., static periods) is twice
compared to our method with the same window size. Different
from the existing complex segmenting schemes, we segment
data streams in a simple but effective way based on kine-
matic interpretation of IMU data. Fig. 4 shows examples of
the smoothed measurements (i.e., 3-axis gyroscope) and seg-
mentation result of six randomly selected activities. As we can
see, the KL divergence algorithm can detect segments with an
acceptable detected accuracy when a larger window length is
applied. However, it cannot locate the SPs and EPs of a seg-
ment precisely. Moreover, as shown in Fig. 4(a) and (c), a
larger window length also makes it easy to merge multiple
activities into a single one while the rest intervals between
activities are too short. As for the peak finding algorithm,
after finding the peaks of a data stream, we have to purify the
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(a) (b) (c)

(f)(e)(d)

Fig. 4. Examples of filtered 3-axis gyroscope value and segmentation result of activity A2, A4, A6, A9, A11, and A15 (three repetitions in each subfigure). In
each subfigure, the top, middle, and bottom figures show segmentation results of the same signal using different segmentation methods. More specifically, the
top figure shows the segmentation result using the KL divergence algorithm in [10], the middle figure shows the result using the peak finding algorithm in [13],
and the bottom figure shows the activity segmentation result and outward–backward segmentation result using the algorithms described in Sections IV-B and
IV-C, respectively. In the top and bottom figures, the first black vertical solid line and the following black vertical dotted line represent the SP and EP of
a detected segment. In addition, the red vertical solid line in the bottom figure represents the transition point (TP) of the detected segment. In the middle
figures, the signal between two consecutive black vertical solid lines represents a detected segment.

probable peaks by means of the fake peak removal algorithm
in [13]. Since a short rest interval is required between con-
secutive repetitions, the peak finding algorithm tends to find
peaks in the intervals with massive fake peaks. Furthermore,
the varying durations of exercise repetitions and rest intervals
make it more difficult to segment activities correctly. In addi-
tion, the detected segments in [13] consist of both rest intervals
and genuine motion signals, which is unbeneficial for the fol-
lowing fine-grained quality assessment. Finally, as shown in
Fig. 4, our method can effectively detect SP and EP of each
activity and hence the measurements are distinguishable. Due
to the limited space, we only display part of sensor measure-
ments (i.e., gx, gy, and gz) of several strength training activities
in Fig. 4 for the sake of clear description.

C. Outward–Backward Segmentation and Recognition

After segmentation, we obtain the accelerometer and gyro-
scope segments of each activity. To recognize activities, we
match data segments of an unrecognized activity with labeled
standard templates obtained from the coach. Here, we refer
data segments of each training activity prestored in the system
as “templates.” Likewise, we refer to a set that contains one
template for each tested activity as “a templates set.” There
are different metrics of measuring the matching degree (i.e.,
similarity) between two data series, such as the Euclidean dis-
tance, cosine similarity, dynamic time warping (DTW), and
the like. In our application, we adopt the DTW metric to
measure the similarity between two data segments. DTW is
a widely used technique for pattern recognition, especially

speech recognition. Compared with other metrics, DTW is
able to take the elastic shift operation in the time domain into
account and match sequences that are similar but out of phase.
As a result, it is a powerful tool in measuring the similarity
between two sequences which may vary in length. The smaller
the DTW value between two sequences, the more similar they
are. Consequently, to recognize an unknown activity, we match
its data segments, namely, accelerometer and gyroscope read-
ing segments, with corresponding templates of each activity
and choose the activity that outputs the minimum DTW value
as the recognized result. However, in spite of excellent recog-
nition accuracy, this method has poor computational efficiency
which affects the real-time performance.
Consequently, we started to use the FastDTW technique [35]

to substitute the DTW technique. The FastDTW algorithm is
a linear and accurate approximation of the DTW technique
while the time complexity of the DTW technique is quadratic.
Based on the DTW technique, the FastDTW algorithm uses
a multilevel approach that recursively projects a warp path
from a coarser resolution to the current resolution and refines
it. Nevertheless, although we apply the FastDTW algorithm in
practice, it has worse performance in terms of both recognition
accuracy and computational efficiency.
In order to achieve high recognition accuracy and low

computational delay, we devise a novel activity recognition
algorithm based on the DTW technique, namely, Half-DTW.
The intuition behind the approach is based on two key obser-
vations. First, a fitness motion segment (that represents a rep-
etition) can be further divided into two parts. For convenience,
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Fig. 5. Sample illustration of the relationship among {SP, TP, EP}, outward–
backward parts, and the arm movements in a repetition (smoothed 3-axis
acceleration and 3-axis gyroscope of activity A1 captured by the smart glove
are shown in the above and below subfigures, respectively).

we call these two parts as outward part (A ← B) and backward
part (B ← A), and stage changing point (A) as the TP. Second,
on the account of approximate symmetry property, the veloc-
ity of the stage TP is zero which can be reflected evidently
in the gyroscope channels. In order to recognize an activity,
the Half-DTW in iCoach requires two steps. First, the Half-
DTW applies an outward–backward segmentation operation
to divide a repetition into outward part and backward part
through the localization of TP. Second, based on the DTW
algorithm, the Half-DTW technique applies the corresponding
matching operation and provides a comprehensive output as
the identified activity type.

Outward–Backward Segmentation: According to the prop-
erty of approximate symmetry, this can easily be done by
splitting a segment into two equal parts. However, in reality,
the split segment cannot be ideally symmetric, and there-
fore causes a larger matching error according to the extension
principle of DTW in the following matching phase. As a con-
sequence, we propose to segment the outward and backward
parts by finding the TP in gyroscope readings. As a result, the
SP, TP, and EP in a repetition can be pointed in a data seg-
ment, which can further be utilized in detecting nonstandard
behaviors and quality assessment. A sample illustration of the
relationship among {SP, TP, EP}, outward–backward parts,
and the arm movements in a repetition are shown in Fig. 5.
The outward–backward segmentation is also implemented by
a sliding window of size p (the same with the step length in
activity segmentation) for the purpose of segmenting a whole
activity, outward and backward parts simultaneously.
The iCoach has three steps for outward–backward segmen-

tation. First, we perform data selection. Specifically, we only
pick single-dimensional data (from gyroscope) dynamically
among all the measurements for the localization of TP. The
key insight is that gyroscope is superior in reflecting actual
moving state (more precisely, rotary movement) compared to
the accelerometer and the gyroscope velocity at the TP is zero.

However, different training activities weigh differently in the
three axes. Intuitively, it is better to choose a dimension that
possesses the most noticeable measurements so that it is much
easier to detect the TP. As for this, we compare the fluctua-
tion range of the 3-axis gyroscope and select the data from the
axis which possesses the maximum fluctuation range for the
following localization. Second, we detect the maximum peak
velocity on the selected 1-axis and then TP must be situated
between the Outward maximum peak velocity and Backward
maximum peak velocity. Third, the minimum energy window
between the maximum peak velocity is identified as the TP
window because the samples near TP have very low speed.
The energy can be represented by root mean square (RMS).
Let f denote a window consisting of n samples and let si

denote the ith sample value of the selected 1-axis signal, then
the RMS of the window f is

rms(f ) =
√∑n

i=1 si
2

n
. (5)

Once the TP in a segment is found, all the measurements can
be split into outward and backward parts. By the aforemen-
tioned method, the TP corresponding to the movements can
be detected as shown in Fig. 4. As we can see, the measure-
ments’ profiles in accordance with the kinematic interpretation
and our method can effectively detect the TPs of each activity.

Activity Recognition: As mentioned previously, we match
the data segments with the corresponding templates of each
activity and choose the one that outputs the minimum DTW
value as the recognized result. According to the principle of
the DTW algorithm, DTW costs O(mn) to compare two time
series of lengths m and n. However, with outward–backward
segmentation, we can apply the Half-DTW matching tech-
nique in activity recognition and reduce the practical running
time cost to be half of that with the DTW, even though the
theoretical time complexity remains O(mn). The whole pro-
cess of recognizing activities with Half-DTW is shown in
Algorithm 2.

D. Analysis and Assessment

In order to recognize training activities, only coarse-level
analysis is required. However, we step further to conduct more
fine-grained analysis which mainly includes the detection of
the nonstandard behaviors and the estimation of their quality.

1) Detection of Nonstandard Behaviors: In order to detect
the nonstandard behaviors as listed in Section III, we first
enlarge a segment (that represents a repetition) which has been
divided into two parts. To detect cases 1–3, we make statis-
tics of several parameters for each activity segment based on
standard templates. These parameters include overall duration
of a repetition (T(SP,EP)), first half duration (T(SP,TP)),
and second half duration (T(TP,EP)), standard deviations
in windows that cover (SP→TP) (std(SP→TP)), (TP→EP)
(std(TP→EP)), and (SP→EP) (std(SP→EP)). The iCoach pre-
stores T(SP, EP) of each kind of fitness motion performed by
coach, when t(SP, EP) of a repetition performed by a vol-
unteer exceeds the range [κ1 × T(SP,EP), κ2 × T(SP,EP)],
case 1 is detected. T(SP, EP) depends on exercise type and
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Algorithm 2: Activity Recognition Algorithm
Input: Motion templates:

{Ti
k,total=〈Ti

k,l, Ti
k,r〉,i=1,. . . ,M, k=1,. . . ,K,

Ti
k,l=〈Si

k,l,1, Si
k,l,2, . . . , Si

k,l,D〉,
Ti

k,r=〈Si
k,r,1, Si

k,r,2, . . . , Si
k,r,D〉};

//K, M and D represents the number of exercise
type, templates set and data dimension,
respectively. Unkonwn Motion:
{SL,total=〈SL,total,1, SL,total,2, . . . , SL,total,D〉,length=N};

Output: Identified motion index:L ∈ {1,. . . ,K};
1 Choose i with max(max(SL,total,i)-min(SL,total,i)) as AxisI
for each i in {gx,gy,gz};

2 for i=1:lapstep:N do
3 row=SL,total,AxisI(i : i + lapstep − 1);
4 AvgV=mean(row); RmsV=rms(row);
5 end
6 Select index corresponding to maximum and minimal
AvgV, the smaller index as MinI,the bigger index as
MaxI;

7 Select index corresponding to minimal in
RmsV(MinI:MaxI) as TranIndex;

8 TP=(TranIndex+MinI-1)*lapstep;
SL,l=SL,total(1 : TP); SL,r=SL,total(TP + 1 : N);

9 for each motion j=1 to K do
10 TotalD(j)=0;
11 for each motion set i=1 to M do
12 for each axis c in {accelerometer, gyroscope} do
13 TotalD(j)=DTW(SL,l,c, Si

j,l,c)+DTW(SL,r,c, Si
j,r,c);

14 end
15 end
16 end
17 Select index corresponding to minimal TotalD as L;

it has been preset in our system according to the stan-
dard statistics of coaches. Similarly, when max(t(SP, TP),
t(TP, EP))/min(t(SP, TP), t(TP, EP)) exceeds the corresponding
range, case 2 is asserted to be detected. When std(SP→TP),
std(TP→EP) or std(SP→EP) exceed the corresponding range,
case 3 is asserted to be detected. iCoach reports the results
to the user immediately after each repetition is finished for
real-time guidance.

2) Assessment of the Exercise Quality: Due to the fact that
exercise is usually taken in groups where each group con-
tains a set of repetitive activities (group repetitions) in the
strength training, we take both the single repetition and group
repetitions into account for a more comprehensive assessment.

a) Assessment of single repetition: The assessment of
single repetition aims to evaluate how well each repetition is
performed and provides a more intuitive form to understand
the performance of their exercise of that repetition. We utilize
two metrics named standard degree and execution duration
to monitor the quality of a repetition in real time. These two
metrics are defined as follows.
1) Standard Degree (SD): For the quantitative quality

assessment of training exercise performed by volunteers,

we adopt the DTW value as a metric to evaluate the over-
all quality of a certain repetition. Intuitively, the DTW
value indicates the similarity measure between an activ-
ity and the corresponding templates. When an activity
performed by a volunteer is more similar to the cor-
responding templates, it shows that the quality of this
performed activity is higher. We further propose SD to
quantify the DTW value in the [0, 10] range for provid-
ing users a more explicit response. The more standard
the activity, the higher the SD. SD is defined as

Standard Degree =
(
1 − DV

DV∗
)

× 10 (6)

where DV is the calculated DTW value of a repeti-
tion. DV indicates the similarity between the performed
repetition of a given exercise and its corresponding tem-
plate. DV∗ is the average DTW value calculated with
the remaining templates in the same recognition process.
The remaining templates can be regarded as completely
mismatched, and so DV∗ can be used as the current max-
imum dissimilarity measure. In iCoach, the Half-DTW
value computed in the recognition process is a substitute
for the DTW value.

2) Execution Duration (ED): It measures how long a repeti-
tion is performed by the body builder. Asmentioned above
in Section III, nonstandard behaviors such as too-long or
too-short ED of an exercise repetition should be avoided
for buildingmuscles effectively and preventing injuries. In
addition, the closer ED to the standard duration indicates
more standard activity. For an exercise type i, let Ti be
the ED and Ts be the corresponding standard duration. Ti

can be easily obtained from the segmentation result and
Ts can be obtained from the coaches or the fitness guide
book. Then, iCoach computes the difference Ti–Ts and
report to bodybuilders for speed adjustment. The more
similar Ti–Ts in a set of repetitions also indicates more
regular movements and controls.

b) Assessment of group repetitions: The assessment of
group repetitions aims to evaluate how well each group of
repetitions are performed. Consistency plays a significant role
in strength training [36]. We utilize two metrics, namely,
smoothness and continuity as used in [10]. These two metrics
are defined as follows.
1) Smoothness: Smoothness describes the consistency

between repetitions in an activity group. More specif-
ically, strength training strongly requires the exercisers
to maintain accurate posture and control muscle care-
fully. The indicator can depict the similarity measure
among the activities in a group. The greater the similar-
ity measure is, the better the exercisers perform due to
favorable muscle control. In the discrete signal series, let
the probability distribution function of a repetition Rep1
is PDF(Rep1) = {pi}m

i=1, where pi represents the proba-
bility value of the ith bin. In our measurements, we find
that the value of SMA fluctuates in the range between
80 and 115. Therefore, for simplicity, the number of
bins m is empirically set to 8 in order to obtain prac-
tical strength training experience. In order to attain the
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Fig. 6. User interface of iCoach. (a) Moments module. (b) and (c) Training monitoring module. (d)–(f) Training assessment module.

similarity between activities, we adopt a metric, namely,
Earth mover’s distance (EMD) [37]. The EMD mea-
sures the minimal cost required to transform from one
PDF to another one. As smaller EMD indicates a more
similar data distribution of repetitions, therefore a better
consistency of repetitions that the user performs.

2) Continuity: It describes the consistency between the rest
intervals of an activity group. For more effective train-
ing, the bodybuilders have better retain the pace in an
activity group. A more regular stretching and warping
pace indicates a more powerful muscle control. The best
scenario is that the interval of two motions stays the
same within a group of activities. To quantify the con-
sistency between the rest intervals of an activity group,
we consider that the rest interval is a standard nor-
mal random variable. In order to assess the continuity
of an activity group, we adopt the kurtosis as a met-
ric. In statistics, the coefficient of kurtosis measures the
sharpness of the peak in a variable distribution. More
specifically, let R = {ri}n

i=1 be the vector of the rest
intervals within an activity group. The kurtosis can be
calculated as follows:

β =
∑n

i=1(ri − μ)4(∑n
i=1(ri − μ)2

)2 − 3 = μ4

θ4
− 3 (7)

where μ and θ are the mean value and standard devi-
ation of the rest interval vector. A larger kurtosis
value indicates a more concentrated distribution of the
data which indicates a better consistency of the rest
intervals for a user. In iCoach, the obtained acceler-
ation data are dependent on posture due to the effect
of gravity. Consequently, we only compute the kurtosis
value of 3-axis gyroscope data to evaluate the training
performance of the user.

V. IMPLEMENTATION AND EXPERIMENTS

A. System Implementation

In this section, we describe both the hardware and software
of iCoach.

Hardware: We implement a prototype of iCoach using
commercial hardware. As for the IMU, we adopt a widely

used type, namely, MPU9250, a 9-DOF module that can out-
put 3-axis accelerations, rotation speeds, and magnetometer.
This unit is connected to a microcontroller for data collection
and processing. The microcontroller is a low-cost board that
supports connections of various sensors and enables C pro-
gramming to control data collection and processing. Besides
IMU, the microController is also connected to a Bluetooth
4.0 module for the purpose of data transmission to a mobile
device.

Software: The APP is implemented on a Huawei P8 with
an Android 6.0 operating system responsible for the main
data-processing algorithms, as the computing capacity of a
smartphone is more powerful than that of a microcontroller.
The whole application is programmed with both Java and C
codes. The Java codes are responsible for high-level logic
and user interface design, while the C codes are utilized for
speeding up low-level signal processing. The detection of non-
standard behaviors and quality assessment results are displayed
on the user interface. These results can also be reported to the
users in the form of a voice reminder.

User Interface: The iCoach user interface currently pro-
vides three major modules for an exercise trainer, including
moments module, training monitoring module, and training
assessment module. Fig. 6 shows the screenshots of iCoach’s
user interface. The moments’ module provides the mech-
anism to share training and daily moments with friends.
The training monitoring module aims to provide the user
with real-time guidance which includes basic statistics and
assessment of individual repetition and repetition groups.
Raw training statistics hold the raw data stream of exercise
repetitions for the purpose of visualization. Moreover, the
usage mechanism of this module is simple. Before strength
training, the user only needs to put on the smart glove
and press the start button to connect with the smart glove.
Upon startup, this module starts the monitoring process
and the user can put his cell phone aside while exercis-
ing. The training assessment module offers the quantitative
daily training summary, including training intensity estima-
tion, and assessment results of single and group repetitions
of the ongoing activities. Intensity estimation is the com-
pletion indication of the training goal. The users can check
their daily training intensity and assessment results anytime
they want.
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Fig. 7. Average RUR and RIR of different activities of iCoach.

B. Experiments Setup

We conduct experiments in a university gym to evaluate
iCoach, and the corresponding experiment scenario is shown
in Fig. 1. We recruit a total number of eight volunteers from
our university who are with different levels of fitness knowl-
edge and experience. Among them, three volunteers go to the
gym regularly and the rest rarely go to the gym. As for the
participants who have no idea about fitness activities, we let
them turn to the fitness guide before experiments in order to
make sure that they can totally understand how experiments
should be conducted. We make a schedule of the 15 training
activities and ask the volunteers to perform each activity for
20 sets, with ten repetitions in each set. As a result, we can
obtain a total of 24 000 [8 (participants) × 15 (activities) ×
20 (sets) × 10 (repetitions)] test repetitions. Each sensor col-
lects measurements with a sampling rate of 40 Hz. Besides,
we recruit one physically strong coach with years of training
experience to follow the same schedule under the same set-
tings in order to provide standard templates. During the course
of experiments, we take videos of entire processes as validat-
ing materials in the evaluation part. As the evaluation baseline,
we also collect the volunteers’ own standard templates under
the guide of the coach.

VI. PERFORMANCE EVALUATION

We mainly evaluate the performance of iCoach from five
different aspects, including segmenting activities, recognizing
activities, detecting nonstandard behaviors, assessing exercise
quality, and user-study experience.

A. Evaluation on Activity Segmentation

We evaluate the performance of detecting activities with two
main metrics of repetition undetection rate (RUR) and repeti-
tion insertion rate (RIR). The definition of these two metrics
is explained in detail as follows.
1) RUR: If an activity is executed for N times and it is

correctly detected for n times, the Rep Undetection Rate
is defined as (N − n/N).

2) Repetition Detection Rate (RDR): It is equal to 1-RUR.
3) RIR: If an activity is executed for N times and iCoach

detects that within the rest interval for n times, the Rep
Insertion Rate is defined as (n/N).

Fig. 7 shows RUR and RIR across 15 tested programs. As we
can see, the average RUR is 2.41% while the average RIR is

0.55%. In order to evaluate iCoach in a comprehensive man-
ner, we show that the average RDR reaches 97.59% according
to the average RUR. The highest RUR occurs at A10, but RDR
still remains around 91% as shown in Fig. 7. This is mainly
caused by the relatively small range of motion movement. The
results indicate that iCoach can detect repetitions accurately,
and such high RDR makes subsequent fine-grained statistical
feedback possible and reliable.

B. Evaluation on Activity Recognition

For an automated gym system, the ability to identify
activities with higher recognition accuracy and higher time
efficiency is pretty important. We utilize the recognition accu-
racy and time delay as the major evaluation metrics. These
two metrics are explained in detail as follows.
1) Accuracy: If an activity is executed for N times and

it is correctly recognized for n times, the recognition
accuracy is defined as (n/N).

2) Computational Delay: The duration of time required to
sense an activity while it is being executed.

1) Comparison of Activity Recognition With DTW, Fast-
DTW, and Half-DTW: We first evaluate the performance of
three recognition algorithms based on DTW, Fast-DTW, and
Half-DTW techniques. Fig. 8(a) shows the average recogni-
tion accuracy of each exercise type using three recognition
algorithms and the same set of templates from the coach.
Similarly, Fig. 8(b) shows the average recognition time delay.
Specifically, the average accuracy of the aforementioned 15
exercise types based on the DTW, Fast-DTW, and Half-DTW
techniques are 97.37%, 95.18%, and 96.07%, respectively.
Moreover, the average time delays using different algorithms
are 174.66, 185.30, and 103.76 ms, respectively. As we can
see, the DTW technique achieves the highest accuracy and the
Fast-DTW technique incurs the lowest one. This is because
the Fast-DTW algorithm has a certain extent of precision
loss because of the search space optimization. Therefore, the
Fast-DTW technique suffers a significant decline in accu-
racy. Nevertheless, we also observe that the Fast-DTW does
not achieve the time optimization as we expected in gen-
eral. This is because the time series of strength training
activities are usually short, which makes the cost of pro-
jecting and refining a warping path recursively exceed the
cost of calculating DTW directly. Our experiments prove
that the time cost of the Fast-DTW is slightly better com-
pared to the DTW when the exercise motion is very slow.
As a result, obviously, the Fast-DTW is not suitable for our
problem. We also find that the average accuracy achieved
by the Half-DTW is slightly lower compared with that by
the DTW, but is still up to 96.07%. However, in terms of
time efficiency, we can notice that the Half-DTW incurs
remarkably smaller time delay in all situations which is
nearly half of that by DTW. Taking both accuracy and time
efficiency into consideration, we finally employ the Half-
DTW as our recognition algorithm. Overall, these results
demonstrate that iCoach can recognize 15 types of activi-
ties with high accuracy and low time delay. What is more,
our system achieves better recognition accuracy and time effi-
ciency performance comparing with several similar existing
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(a) (b)

Fig. 8. Recognizing performance comparison among the DTW, Fast-DTW, and Half-DTW techniques. (a) Recognition accuracy comparison. (b) Recognition
time delay comparison.

Fig. 9. Results of activity recognition when matching templates are from a
coach and users themselves.

systems, such as 90% accuracy achieved by FEMO [10] for
ten fitness types, 87% accuracy by Xie et al. [14] for ten
fitness types, and 95% accuracy by Guo et al. [13] for 12
fitness types.

2) Sensitivity to the Source of Templates: Next, we evalu-
ate the influence of template sources on the accuracy. Fig. 9
shows the corresponding outcome when the prestored tem-
plates come from the coach or exerciser themselves using
only one set of templates. We can see that the average accu-
racy of the aforementioned 15 exercise types using only one
set of templates from the coach and the exerciser them-
selves are 96.07% and 96.31%, respectively. Despite lower
accuracy compared to the other one, in reality, the usage
of coach templates is acceptable as the accuracy is still up
to 96.07%. Moreover, for the bodybuilders who achieve dif-
ferent stages of fitness certificate (i.e., novice exercisers and
experienced exercisers), it is required to replace the templates
individually in order to obtain higher accuracy and reasonable
fitness assessment. Therefore, the usage of templates from a
coach is more suitable for effective fitness assessment in our
system.

3) Sensitivity to the Number of Template Sets: We further
investigate the impact of the number of template sets. We eval-
uate the overall recognition accuracy and average time delay

Fig. 10. Impact of the number of templates on recognition accuracy and
computational delay.

of recognizing 15 exercise when the number of template sets
varies from 1 to 4 as shown in Fig. 10. As the number of
templates increases, the accuracy increases and reaches a sta-
ble value of 98.3% when two or more templates are utilized.
Nevertheless, the average time delay also grows linearly with
the number of templates, from less than 100 ms to almost
500 ms. We notice the fact that even when one set of tem-
plate is used, the recognition accuracy still reaches 96.1%,
while the time delay is only about 90 ms, nearly half of
that with two sets. The real-time performance is almost the
same with FEMO [10] which is implemented on a Lenovo
PC. Considering the tradeoff between time delay and recog-
nition accuracy, we only make use of one set of templates in
our system.

4) Matching Rate Among Multiple Activities: Finally, we
investigate the confusion matrix achieved by the Half-DTW
technique using only one set of coach templates in Fig. 11.
We observe that there are mismatches in some activities, such
as A5 and A12, A1 and A15. This may be caused by the sim-
ilarity movement trails of the corresponding two activities
themselves. We can consider the utilization of a hierarchical
recognition framework in the future for further performance
enhancement. Fortunately, with the current setup, we can still
achieve a higher recognition accuracy overall.
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Fig. 11. Confusion matrix achieved by the Half-DTW technique with one
set of coach templates.

TABLE I
PERFORMANCE IN DETECTING NONSTANDARD BEHAVIORS

C. Detection of Nonstandard Behaviors

It is possible that the abnormality detection system can
miss, confuse, or falsely detect activities. Consequently, two
metrics, namely, precision and recall are employed to eval-
uate the performance of detecting abnormal behaviors. The
definition of two metrics is explained in detail as follows.
1) Precision: In activity recognition, precision is defined

as (TP/TP + FP), in which TP and FP represent true
positive and false positive, respectively.

2) Recall: It is defined as (TP/TP + FN), in which
TP and FN represent true positive and false negative,
respectively.

However, as it is difficult to label nonstandard behaviors
during the course of exercise, we request the coaches to care-
fully watch recorded videos to aid in obtaining ground truth.
Table I presents the performance of detecting each nonstandard
behavior. The average precision of detecting these behaviors
is 90.7% and the corresponding recall rate is up to 90.3%. In a
nutshell, iCoach can detect the aforementioned three types of
nonstandard behaviors during the course of strength training
with acceptable accuracy.

D. Assessment of Exercise Quality

For evaluating the reliability of assessing process, we
have conducted comprehensive experiments under three main
aspects which are described as follows.

1) Validity Evaluation of Standard Degree Metric:
Experienced volunteers were asked to perform each exer-
cise type 20 times in two different forms: strictly following

the standard fitness specification (Rs for short), with obvious
interference factors such as shake but trajectory profiles of
activities still coincide with the standard fitness specification
(Rn for short). On account of the shake of arms, the mus-
cles cannot maintain certain required tension. Therefore, we
consider the second exercise form as nonstandard. We present
the corresponding results in Fig. 12(a) in terms of this metric.
As we can see, the Standard Degree metric of nonstandard
activities is obviously lower compared to the standard activ-
ities in general, but there are still some similar SD for some
exercise type, such as A4 and A13. This may be caused by
the fact that these exercise types are performed with corbel of
gym equipment and it is hard for volunteers to shake. Overall,
the Standard Degree metric in iCoach can reflect the fitness
quality of a repetition effectively.

2) Validity Evaluation of Group Repetitions Assessment
Metrics: We evaluate the rationality and validity of group
repetitions assessment metrics, namely, smoothness and
continuity. In this section, expert volunteers were asked to per-
form activities in the aforementioned two forms (Rs and Rn).
For the sake of convenience, we define ten repetitions as a
group and volunteers were asked to perform two groups one
after another. Ten repetitions in the former group (i.e., group1)
were performed in the {Rs, Rs, Rs, Rs, Rs, Rs, Rs, Rs, Rs, Rs}
form. Meanwhile, volunteers were asked to remain stable dur-
ing the rest intervals. The latter group (namely, group2) were
performed in the {Rs, Rs, Rs, Rs, Rn, Rs, Rn, Rn, Rn, Rn}
form. At the same time, the volunteers were asked to remain
stable and shake in turns during the rest intervals. The vol-
unteers were asked to perform each group 20 times. As an
outcome of these experiments, the corresponding smoothness
results of the groups are shown in Fig. 13. In the result, the
EMD values between the adjacent repetitions in group1 are
all lower. As smaller EMD value indicates a similar proba-
bility distribution, it indicates a more regular arm movement
for the people in group1. However, as for group2, that the
EMD values are obviously larger in Rs and Rn forms alter-
natively indicates different probability distribution between Rs

and Rn, and therefore it indicates a less regular arm movement
in alternations of group2. Meanwhile, despite the EMD values
of the consecutive Rs and Rn forms in the former and latter
part, respectively, are also small, we can get a comprehensive
group repetitions assessment by combining the smoothness
metric with the Standard Degree metric. The corresponding
continuity results are shown in Table II. The kurtosis of group1
is obviously larger than that of group 2. As larger kurtosis indi-
cates a more concentrated distribution, it indicates more stable
rest intervals of the people in group1. Thus, the smoothness
and continuity results of the experiments coincide with the
theoretical analysis.

3) Feedback Comparison Between Real Coach and iCoach:
Finally, we compare the feedback provided by the real coaches
with that by iCoach. We record the average value of Standard
Degree of each participant across all activities. Meanwhile,
we request the coaches to watch videos of each volunteer and
grade the quality of each set of activities in the [1, 10] range.
When all sets of activities for all volunteers are graded, we
average each volunteer’s grades as his final score. We compare
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(a) (b)

Fig. 12. Sample illustration of assessing exercise quality. (a) Comparison of SD given by iCoach between the standard and nonstandard forms. (b) Score
comparison between coaches and iCoach.

(a) (b)

Fig. 13. Sample illustration of smoothness result. (a) Group1. (b) Group2.

TABLE II
SAMPLE CONTINUITY ASSESSMENT RESULTS OF GROUP1 AND GROUP2

the average score of each volunteer provided by iCoach and
that by the real coach in Fig. 12(b). Although the specific quan-
titative scores are different, the ranks provided by iCoach and
the real coach is rather similar. This indicates the feasibility
and reliability of assessing training exercise using iCoach.

E. Run-Time Performance

1) Evaluation on the Feedback Provided by iCoach: In
order to evaluate the quality of user experience, we conduct
a survey on eight volunteers in order to obtain feedback on
the practicability and usage capability based on their real-time
experience. We ask the participants to answer four questions.
For each question, a volunteer is required to provide a score
between 1 (lowest) and 10 (highest). Once the survey is
done, we utilize these scores to reflect the satisfaction of the
volunteers.
Table III shows the overall feedback outcome on iCoach.

The volunteers suggest that iCoach could accelerate the train-
ing objective with an average score of 8.57 and 0.97 stan-
dard deviation. Comparing with traditional coaches, iCoach

TABLE III
FEEDBACK ON ICOACH

achieves an enhanced score of 8 on average with 1.53 standard
deviation. Moreover, the participants are encouraged to con-
tinue training while receiving the quantitative feedback from
iCoach. Last but not least, the participants also benefit signifi-
cantly from the detected nonstandard activities with an average
score of 8.57 and 0.78 standard deviation. Overall, the scores
from volunteers verify that iCoach can assist in efficient train-
ing activities and maintain a regular training habit over the
long term.

2) CPU Occupation: We also evaluate the occupancy of
CPU resources occupation when the smartphone merely runs
iCoach. In the evaluation process, we shut down all the other
applications and monitor CPU consumption in the USB debug-
ging mode. Meanwhile, we request a user wearing the glove
to perform fitness exercise continuously to test the maximum
CPU consumption required for iCoach. The whole testing pro-
cess lasts for 5 min. Fig. 14 shows the proportion of CPU time
consumed during the course of recognizing activities. Even
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Fig. 14. CPU overhead during the course of recognizing activities.

Fig. 15. Energy consumption when iCoach is in the running state.

though the CPU occupation percentage varies from 4.25%
to 24.15%, the average value is only 8.26% with a standard
deviation of 2.55% which is acceptable for an application.

3) Energy Consumption: We also conduct experiments to
evaluate the energy consumption of iCoach application in the
smartphone end. We fully charge the Huawei P8 smartphone,
kill all the other programs, and run the iCoach application
continuously. During testing periods, the screen is turned off
after making necessary settings. Similar to experiments in
the above, a user wearing the smart glove connected with
the smartphone performs fitness exercises, such as seated
dumbbell curl, hammer curl, and dumbbell fly for a period
of 30 min. The real-time power level of the smartphone is
obtained through the Android API and shown in Fig. 15. As
we can see, the power level decreases from 100% to 95% after
30 min, which implies that about 0.84% power is consumed
every 5 min. This power consumption has a negligible impact
on the daily use of the smartphone.

VII. DISCUSSION AND FUTURE WORK

There are several points to be discussed as follows.
Question 1: Why Not Use Deep Learning Models? Deep

learning (DL) models are increasingly used in various kinds of
activity recognition and achieve satisfactory performance [38].
Thus, a straightforward idea to design such a system is to
adopt DL models, such as CNN, RNN, or LSTM as done
in previous works [39], [40]. However, we do not follow
this approach based on the following considerations. First,
DL models usually require a huge amount of training sam-
ples in order to avoid overfitting, which brings about an

intensive labor overhead of collecting the training data. This
decreases the system’s practicability in the real world. In
contrast, our work follows a totally training-free approach.
Once we collect several standard templates from a coach
and store them on a smartphone, other users can directly
use the system without training the system. It is noted that
although we can train a general DL model with samples col-
lected from certain persons and apply it to others, in which
way the system is training free for them, it usually requires
more complex techniques, such as transfer learning [41], [42],
generative adversarial network [43], [44], and deep active
learning [45], [46], and thus still needs collecting massive data
for initial model training. What is worse, for the sake of high
performance, this general model shall cause rather heavy com-
putational overhead and energy burden consumption which is
beyond the power of a mobile device. By utilizing several
samples as templates from the same coach, our approach can
achieve a high accuracy of 96% and less than 90-ms real-time
performance. Considering the tradeoff between accuracy and
resources requirement, we think that our approach is a more
favorable choice.

Question 2: Can This System Be Extended to Recognize
More Activities? In the current version of iCoach, we consider
15 kinds of strength training activities that only involve upper
body parts. Although these activities cover most upper body
exercises, there are more different categories of activities espe-
cially those involving the lower body, such as seated leg curl
and lying leg curls. It is to be admitted that only utilizing the
IMU sensors worn in the upper body, it is impossible to rec-
ognize those lower body strength training exercises. This is a
limitation of our system. However, we envision that by equip-
ping a user with the same sensors in shoes, the data processing
techniques can be extended to recognize lower body training
activities. The underlying reason is that similar to upper body
activities, the lower body ones have similar cyclic patterns
which can be reflected in the IMU measurements. What is
more, with the increasing popularity of wearable devices such
as smart shoes, we believe that this does not induce much addi-
tional hardware costs. We leave the extension of our system
as one of the future work.

Question 3: Can This System Be Improved to Monitor More
Fine-Grained Information of Activities? Someone may wonder
why we design a smart glove system instead of utilizing other
wrist-worn smart devices such as a smartwatch to achieve the
same goals. Actually, there are two main considerations behind
this choice. For one thing, using a smart glove system is more
practical than a smartwatch. This is because a glove is a neces-
sity for weight training exercise to prevent hand injuries. It is a
more practical choice to add removable and low-cost hardware
plug-ins to transform it to a smart device and enrich its func-
tions, compared with utilizing a smartwatch. For another thing,
based on the glove, a more comprehensive assessment scheme
of doing weight training exercise can be further explored. For
example, by integrating commercial pressure and physiologi-
cal sensors such as heart rate meter, EMG electrode with the
current version of iCoach, multimodal data of the human body
during the course of weight training exercise can be obtained
and utilized for more thorough analysis. By this means, besides
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knowing about the type, quantity, and quality of doing exer-
cise, richer information such as calorie consumption can be
acquired. We admit that the current version of the smart glove
is limited to monitor relatively coarse-level information of
strength training exercise.

VIII. CONCLUSION

In this article, we propose a novel low-cost system, iCoach,
for strength training enthusiasts, which can act as a profes-
sional fitness instructor and provide real-time monitoring and
coaching service for them. The iCoach is built on a standard
accessory, i.e., fitness glove, with pervasive inertial sensors
embedded in an unobtrusive manner. Apart from recognizing
types of activities, the iCoach zooms in each subprocess in a
repetitive manner to detect nonstandard behaviors and provides
timely feedback for the users if abnormal events are detected.
Moreover, based on obtained motion data, the iCoach assesses
qualities of users’ exercise. Experiments in a university gym
demonstrate that iCoach recognizes 15 categories of activities,
detects nonstandard behaviors, and assesses exercising quality
with favorable performance.
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