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Abstract

Wi-Fi, which enables convenient wireless 
access to Internet services, has become inte-
gral to our modern lives. With widely-deployed 
Wi-Fi infrastructure, modern people can enjoy a 
variety of online services such as web browsing, 
online shopping, social interaction, and e-com-
merce almost at any time and any place. Tradi-
tionally, the most significant functionality of Wi-Fi 
is to enable high-throughput data communication 
between terminal devices and the Internet. How-
ever, beyond that, we observe that a novel type 
of system based on commodity Wi-Fi is increas-
ingly attracting intense academic interest. With-
out hardware modification and redeployment, 
researchers are exploiting channel state informa-
tion output by commodity Wi-Fi and transform-
ing existing Wi-Fi systems into radar-like ones that 
can recognize human behavior along with data 
communication. This fancy functionality is tremen-
dously expanding the boundaries of Wi-Fi to a 
new realm and triggering revolutionary applica-
tions in the context of the Internet of Things. In 
this article, we provide a guide to and introduce 
the impressive landscape of this new realm.

Introduction
Nowadays, Wi-Fi is widely used in our daily lives 
whether in private residential houses or public 
places such as libraries and offices. It provides 
users with convenient wireless access to online 
services such as information retrieval, social net-
working, and electronic commerce. Compared to 
other communication technologies, Wi-Fi holds 
the advantages of providing online services with 
higher data rates, greater mobility, and broad-
er coverage. It is these positive properties that 
make Wi-Fi an attractive option with the explo-
sive growth of mobile data traffic, and it is widely 
deployed in urban cities.

Technically, Wi-Fi refers to a wireless RF com-
munication technology based on a family of stan-
dard protocols (e.g., IEEE 802.11 a/b/g/n/ac). It 
enables wireless data transfer between end devic-
es and Internet infrastructure with high data rates. 
With the prosperity of the Internet of Things (IoT), 
connections between humans, objects, and the 
Internet are increasing more than ever before. 
A variety of IoT services have sprung up and 
brought about a sharp increase of data traffic. For 
example, location-based services (LBS), includ-
ing mobile advertising, service recommendation, 

and weather alert, are appealing in most shop-
ping malls, smart cities, and other scenarios. All of 
these indicate that Wi-Fi shall play a crucial role in 
the era of IoT. 

However, this is far from the whole story of 
Wi-Fi and IoT. The advances in Wi-Fi physical 
(PHY) layer technologies have enabled users to 
get access to low-level information that portrays 
detailed characteristics of signal propagation 
through multipath, without hardware modifica-
tions or redeployment. A superior example of 
Wi-Fi PHY information is channel state informa-
tion (CSI), which describes channel fading with 
amplitude and phase responses in fine granular-
ity. The ever-increasing pervasiveness of Wi-Fi 
signals and growing fine-grained accessible PHY 
information not only open up new possibilities 
with Wi-Fi but also motivate researchers to pio-
neer a new realm beyond communication. In this 
article, we introduce such a pioneering area in 
which commodity Wi-Fi devices are transformed 
into radar-like systems that can sense and recog-
nize human behavior by analyzing their motion 
states or gesture/activity types. Informally, this 
kind of sensing system via Wi-Fi signals that 
achieves similar functions as radars is referred 
to as Wi-Fi radar in this article. The significance 
of human behavior is two-fold. On one hand, 
it enables researchers to obtain better under-
standing of human behavioral patterns. On the 
other hand, recognizing human behavior has a 
wide range of applications in our lives, such as 
user authentication, healthcare for the elderly, 
location-based services, and human-device inter-
action, as shown in Fig. 1.

As is well known, radar is a kind of RF system 
that utilizes radio waves to sense, monitor, and 
track moving objects. With sophisticated hard-
ware and high precision, radar is usually applied 
in certain specialized areas such as meteorology, 
the military, and traffic engineering. Similarly, Wi-Fi 
radar can also monitor targets’ motions, and rec-
ognize human gestures and activities, but with 
lower precision and coarser granularity. Thus, a 
question naturally arises: since radars have exceed-
ing performance, what is the motivation behind 
designing Wi-Fi radar? The reasons are mainly two-
fold. For one thing, the requirements of sensing 
precision, granularity, and range for most IoT ser-
vices are not as harsh as for radars. Take indoor 
location-based services (LBS) as an example. The 
acceptable precision of human motion monitor-
ing is about meter level in typical indoor environ-
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ments such as shopping malls, office spaces, and 
residential houses. For another thing, radar sys-
tems consist of costly and specialized hardware 
components, which makes them not as pervasive 
as Wi-Fi. The radar infrastructure and hardware 
components are rarely deployed in daily environ-
ments or embedded in commercial devices. In 
contrast, Wi-Fi infrastructure is widely deployed 
as aforementioned, and Wi-Fi Soc is pervasive-
ly embedded in various devices such as smart-
phones, tablets, smart TVs, and the like. Without 
hardware modification and redeployment, it is 
rather appealing to perform “secondary develop-
ment” with commodity Wi-Fi and provide addi-
tional services along with communication.

Motivated by the inspiring prospect, research-
ers have made successive attempts to design 
Wi-Fi radar with CSI to recognize human behav-
ior. In the remainder of this article, we first give 
an introduction to the knowledge background 
of Wi-Fi radar. Following that, an overview of the 
general design approaches and framework of 
Wi-Fi radar is presented. After this, a comprehen-
sive survey of the state-of-the-art works in this field 
is conducted. At last, we put forward our remarks 
and conclusion.

Background Knowledge
As aforementioned, Wi-Fi radar is built on CSI. 
Before introducing Wi-Fi radar systems, it is bet-
ter to give introduction to background knowl-
edge closely related to CSI. In this section, we 
explain orthogonal frequency-division multiplex-
ing (OFDM), based on which CSI is introduced in 
the following. 

OFDM
OFDM represents a communication technology 
that transmits signals across orthogonal subcar-
riers at different frequencies. In OFDM, a wide 
frequency band is divided into multiple mutual-
ly orthogonal narrow subcarriers with different 
central frequencies. For data transmission, a high-
rate bitstream in OFDM is first split into multiple 
relatively low-rate bitstreams, and then each of 
them is transmitted over a certain subcarrier inde-

pendently. It is noted that, due to the orthogo-
nality of subcarriers, bitstreams transmitted over 
multiple subcarriers simultaneously will not cause 
interference to each other. As a result, the spac-
ing of subcarriers across the frequency band can 
be highly tight, which increases the spectrum effi-
ciency to a great extent. In addition, multipath 
channel is usually frequency-selective, which 
means signals transmitted over subcarriers expe-
rience different levels of fading. Consequently, 
OFDM possesses better robustness to multipath 
interference (reflection, scattering, and absorp-
tion) than other transmission schemes, and thus 
is widely used in many wireless systems such as 
Wi-Fi and LTE.

Concept of CSI
In a Wi-Fi system with IEEE 802.11 a/g/n proto-
col, signals are transmitted in an OFDM scheme 
with K = 48 subcarriers. Due to the multipath 
effect, signals arriving at the receiver are not 
exactly the same as the original version from 
the transmitter. The differences are reflected in 
amplitude attenuation and phase shift. To accu-
rately quantify such a channel fading effect, CSI 
is brought in originally for the sake of adapting 
transmission rate and optimizing throughput. 
Mathematically, for a system with M transmitting 
and N receiving antennas, each CSI sample at 
an instant is a collection of M  N complex vec-
tor H = [H(f1), H(f2), ..., H(fk)], which describes 
the channel response at each subcarrier. Corre-
spondingly, each element H(fk) in H represents 
the amplitude and phase response of the kth 
OFDM subcarrier that correlates the transmit-
ted signal X(fk) and received signal Y(fk) in the 
frequency domain by Y(fk) = H(fk)X(fk). From the 
definition, it is obvious that due to OFDM, CSI 
can portray the propagation channel with a sub-
carrier-level granularity in the frequency domain 
and convey richer information compared to the 
summation of them (i.e., received signal strength 
indicator, RSSI). Figuratively speaking, CSI is to 
RSSI what a rainbow is to a sunbeam, where 
components of different frequencies are separat-
ed as shown in Fig. 2.

Figure 1. The visualization of Wi-Fi signals and application scenarios of Wi-Fi radar in IoT.
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Properties of CSI
As aforementioned, CSI contains amplitude and 
phase response of the signal propagation channel 
at each subcarrier. In what follows, we shall drill 
down further and analyze the properties of CSI 
from the amplitude and phase perspectives. We 
expect that the analysis will shed light on princi-
ples of Wi-Fi radar.

Amplitude: By definition, the amplitude of CSI 
can easily be obtained by calculating the modu-
lus of its every element (e.g., 	||H(fk)|| for H(fk)). 
The physical meaning of CSI amplitude is that 
it quantifies signal power attenuation after mul-
tipath fading. In this sense, it is similar to another 
signal indicator, RSSI. However, CSI amplitude 
has shown several favorable merits compared to 
other indicators:
•Frequency diversity. As mentioned above, CSI 

depicts channel response in each narrow sub-
carrier. Due to frequency-selective fading, sig-
nal streams on different subcarriers go through 
diverse multipath fading, which results in 
uncorrelated CSI values across subcarriers.

•Temporal stability. Since CSI amplitude is 
essentially a set of attenuation coefficients of 
a channel, it is rather robust to interference 
coming from transeceivers such as power 
adaptation, as long as there are no changes 
to the channel itself.

•Fine-grained granularity. Instead of measuring 
a channel with a composite value like RSSI, 
CSI decomposes a whole channel measure-
ment into subcarriers and estimates the fre-
quency response of each subcarrier, which 
obtains a finer-grained description of the 
channel in the frequency domain.
Phase: Phase is the information contained in 

CSI that is the counterpart to amplitude. Similarly, 
in order to extract phase information from CSI, we 
only need to calculate the angle of each complex 
element H(fk). Theoretically, the phase of CSI has 
similar properties to amplitude. Nevertheless, the 
case is more complex for phase in practice. From 
another perspective, phase ̂f extracted from CSI is 
composed of four different parts, that is, f for gen-
uine channel response phase, 2ffDt for phase shift 
caused by clock offset, b for phase shift induced 
by carrier frequency offset, and Zf for measure-
ment noise. Since it is difficult to measure accurate 
clock and carrier frequency offsets on commodity 
devices, the phase extracted from raw CSI data is 
reported to be randomly distributed. Due to the 
randomness, the physical meaning of CSI phase 
is blurred, which means phase has rarely been uti-
lized in previous work. Recently, some methods 
have been proposed to calibrate raw phase and 
treat calibrated phase as a new feature, but are still 
not accurate enough for modeling. 

An Overview of a Wi-Fi Radar System
Wi-Fi radar has been informally defined in the 
introduction. However, the fundamental principles 
and general architecture of Wi-Fi radar remain 
unclear. In this section, we give more detail about 
the above aspects.

Human Behavior Recognition

Human behavior refers to the array of every 
physical action and observable emotion associ-
ated with individuals, and covers a wide range 

of specific contents. In the context of Wi-Fi sens-
ing, present work toward behavior recognition 
can be classified mainly into three categories, 
namely, gesture recognition, activity monitor-
ing, and motion tracking. Although it is difficult 
to give a precise definition to each category, 
there are notable differences among them from 
the perspectives of granularity and continuity. 
Intuitively, gestures only involve a certain part 
of the human body, such as finger, hand, arm, 
and even lip, and are of relatively short dura-
tion. In contrast, activities cover more body parts 
and consist of a sequence of physical actions. 
Human motion describes continuous physical 
movement of a whole body or just a certain part. 
And most of the time, motion tracking outputs 
human position and direction with high precision 
in real time.

In fact, there are already some methods 
for behavior recognition, mainly including sen-
sor-based and camera-based ones. Then what are 
the benefits of Wi-Fi radar that make it worthy of 
intense attention from researchers? Obviously, 
due to the pervasiveness of Wi-Fi infrastructure 
and devices, Wi-Fi radar has lower hardware cost 
than these two approaches since they both need 
additional devices. In addition, compared to a 
sensor-based approach, Wi-Fi radar works in a 
device-free way without requiring users to wear 
any sensors. This is more comfortable and conve-
nient, especially in certain circumstances such as 
showering. In comparison with the camera-based 
approach, Wi-Fi radar is not dependent on line of 
sight (LOS) and light conditions.

Why Is CSI Feasible and Better?
As demonstrated above, CSI has several intrinsic 
advantages for communication purposes. But it 
is still unrevealed to readers why CSI is capable 
of capturing human behavior and better to uti-
lize for designing Wi-Fi radar. As we all know, sig-
nals sent by a transmitter travel through multiple 
propagation paths and experience reflection and 
scattering before arriving at a receiver. Human 
behavior (e.g., gestures and activities) is bound 
to cause significant changes to the propagation 
channel of signals by altering the multipath. Since 
CSI quantifies the channel fading effect in ampli-
tude attenuation and phase shift, it is sensitive to 

Figure 2. Illustration of the relationship between CSI and RSSI.



IEEE Communications Magazine • October 2017108

any changes of channel state, and thus is capable 
of capturing human behavior. Moreover, com-
pared to other Wi-Fi indicators such as RSSI, a 
favorable point of CSI is that it depicts channel 
state with finer-grained frequency resolution and 
equivalently higher time resolution to distinguish 
multipath components as demonstrated by previ-
ous research [1]. In other words, it indicates that 
CSI possesses higher sensitivity to human behav-
ior and is more powerful in uncovering behavior. 
The comparison between CSI and RSSI can be 
seen in Table 1.

General Approaches and Framework

In general, Wi-Fi radar systems in present works 
can be divided into two main streams accord-
ing to their design approaches. One of them is 
the data-driven approach, which highly relies on 
collecting a large amount of data and adopts 
a training-learning scheme in a supervised or 
unsupervised way. The rationale lies in the fact 
that behavior causes changes to multipath and 
thus results in distinguishable patterns in CSI. By 
mining the patterns with machine learning tech-
niques, it is possible to recognize behavior. How-
ever, without deterministic one-to-one mapping 
between CSI data and behavior, this approach 
can only recognize a set of predefined behav-
ior in a certain system and is limited to appli-
cation in gesture and activity recognition. The 
other one is the model-based approach. In this 
approach, deterministic models are built based 
on physical principles and correlate CSI with 
behavior with one-to-one mapping. Different 
from the data-driven approach, it can monitor 
human behavior continuously with little system 
training effort. However, due to the great chal-
lenge in modeling, there are only a few works 
that conduct such attempts. Based on the above, 
we can give a general framework of Wi-Fi radar, 

as shown in Fig. 3, which mainly consists of three 
layers: the hardware/infrastructure layer, the 
data processing layer, and the application layer. 
In the following, we give details about the above 
two main approaches.

How Is This Field Evolving?
To the best of our knowledge, [2] is the first work 
that makes use of CSI to replace RSSI for more 
accurate rate adaptation and higher throughput 
in data transmission. In this work, measurements 
have been conducted to verify the merits of 
CSI in temporal stability and frequency diversity. 
Inspired by the reported advantages, research-
ers have started to explore applying CSI in other 
areas beyond communication. Wu et al. [3] 
explicitly came up with CSI-based fine-grained 
indoor localization with commodity devices for 
the first time. The insights are two-fold, high spa-
tial discrimination and resilience to transmission 
variation, brought about by CSI. Later, Han et 
al. [4] introduced CSI into the area of human 
behavior recognition by designing a fall detec-
tion system with CSI. The rationale of CSI-based 
behavior recognition is that CSI is a fine-grained 
feature sensitive to body movements. Within this 
area, Wang et al. [5] first proposed a model to 
estimate human walking speed and further utilize 
the model to recognize activities. Recently, Wang 
et al. [6] brought in a Fresnel model, a well-known 
physical model, to shed light on fundamental prin-
ciples and push the limit of high-precision activity 
recognition with CSI.

A Survey of the State of the Art
As a novel and promising technology, Wi-Fi radar 
exhibits its attractiveness in various interesting 
applications. It is these applications that tremen-
dously expand the boundaries of Wi-Fi function-
alities and reshape our conventional knowledge 
of Wi-Fi. In order to demonstrate this clearly, we 
conduct a thorough survey of the state-of-the-art 
Wi-Fi radar systems and categorize them into two 
main streams according to their design approach-
es: data-driven and model-based.

The Data-Driven Approach

The underlying principle of the data-driven 
approach has been introduced earlier with a 
high-level idea about this approach. In this sec-
tion, we shall introduce in detail the general archi-
tecture and state-of-the-art applications of Wi-Fi 
radar built on this approach.

Figure 3. The general framework of a Wi-Fi radar system.

AP

  

CSI extraction

Wi-Fi radar design

Gesture
recognition

Activity
recognition

Data-driven
approach

OFDM
demodulator

Channel
estimation

PHY layer
signal processing

Model-based
approach

WiFi radar
applications

Wi-Fi radar output

Motion tracking

Elderly healthcare

Human-device
interaction

Location-based
service

User
authentication

Human
behavior

WiFi
device

Table 1. The comparison between RSSI and CSI in human behavior recognition.

Category Layer Resolution
Frequency 
diversity

Behavior 
sensitivity

Hardware 
accessibility

RSSI MAC
Time domain: packet level
Frequency domain: N/A

No Low Handy access

CSI Physical

Time domain: multipath 
cluster
Frequency domain: 
subcarrier level

Yes High Wi-Fi NIC



IEEE Communications Magazine • October 2017 109

System Architecture: Even though the 
data-driven approach enables diverse Wi-Fi radar 
for specific purposes, a general architecture can 
be abstracted from these systems, as shown in 
Fig. 4. In general, the system architecture of a 
data-driven Wi-Fi radar consists of three stages, 
including data preprocessing, feature extraction 
and selection, and model training and testing, 
after CSI data is extracted from commodity Wi-Fi 
devices. The data flow in the architecture of Wi-Fi 
radar goes through nearly the same routine in 
other machine learning applications. However, 
considering the underlying physical meaning of 
CSI, there are some unique insights to be uti-
lized in the system design, which are introduced 
in the following. To clean data in the first stage, 
researchers usually start by analyzing the proper-
ties of signals of interest in the time and frequen-
cy domains. Based on the results of signal analysis, 
they are able to design an appropriate denoising 
method to remove unwanted components as 
much as possible. Although the denoising tech-
niques are customized case by case, there are 
some widely used methods such as Butterworth 
filtering and wavelet denoising due to their favor-
able properties [7]. Another important step in the 
preprocessing stage is behavior detection, which 
extracts signal segments corresponding to behav-
ior events and discards the useless signals in a CSI 
sequence. This is essentially a signal detection 
problem in which energy-based hypothesis test-
ing is frequently used to detect the start and end 
points of an event. Following data preprocessing, 
feature extraction and selection are performed 
on obtained segments. Although features are cus-
tomized for different systems, they can roughly 
be classified into time domain, frequency domain, 
and time-frequency domain. Due to the lack of 
domain knowledge of the problem, it is common 
that researchers tend to extract features blindly in 
a preliminary attempt. Directly utilizing these fea-
tures to train a machine learning model results in 
unsatisfactory performance and incurs heavy train-
ing overhead in most cases, since some features 
are noisy and redundant. As a result, a feature 
selection process is introduced to filter out those 
features and choose an optimal feature set that 
can achieve favorable performance and decrease 
training overhead. The common feature selection 
methods include correlation-based filtering, PCA, 
sequential search, and the like. In the last stage, 
selected features are fed into a certain machine 
learning model to construct predictive models 
in the training stage that are used for behavior 
recognition in the later learning process. The sup-
port vector machine (SVM), random forests, and 
hidden Markov model (HMM) are the common 
machine learning models in present data-driven 
Wi-Fi radar.

Applications: As aforementioned, data-driven 
Wi-Fi radar is mainly applied for human gesture 
and activity recognition. Within this scope, a num-
ber of systems have been developed to recognize 
a variety of gestures or activities with various gran-
ularities. According to our survey, WiFall [4] and 
E-eyes [8] are the first works that bring CSI in the 
area of human activities recognition. Neverthe-
less, they have different focuses. WiFall concen-
trates on detecting whole-body activities such as 
falling, walking, and sitting of the elderly in case 

of emergency. By identifying the unique chang-
es of CSI, the system is able to differentiate three 
activities with high accuracy. On the other hand, 
E-eyes focuses on recognizing human daily activi-
ties in residential houses such as cooking, brushing, 
bathing, and watching TV. Compared to WiFall, 
activities in E-eyes possess higher diversity and 
complexity. Later works within this scope mainly 
attempt to design Wi-Fi radar systems to recognize 
finer-grained activities such as smoking with more 
sophisticated system design [9]. Another appli-
cation area of data-driven Wi-Fi radar is gesture 
recognition. Wang et al. [7] first proposed Wihear 
to recognize minute lip gestures with CSI when 
someone is speaking. By mapping lip gestures with 
vowels and consonants, they finally recover what 
the person has said. However, to prevent external 
interference from overwhelming signals of interest, 
Wihear adopts directional antennas and only works 
in a highly controlled environment. Later research 
in CSI-based gesture recognition moved toward 
recognizing gestures with commodity devices in a 
more realistic environment, covering a variety of 
applications such as human-computer interaction 
(HCI) [10], vital signs monitoring [11], keystroke 
eavesdropping [12], and user authentication [13].

The Model-Based Approach

In addition to the data-driven approach, Wi-Fi 
radar can also be designed with deterministic 
physical models and track human motion in real 
time. Although such Wi-Fi radar systems possess 
advantages of real-time monitoring and little sys-
tem training, the critical challenge lies in develop-
ing suitable models that correlate CSI with human 
behavior in a one-to-one mapping. Due to this 

Figure 4. The general architecture of data-driven 
Wi-Fi radar.
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challenge, only a few works have been conducted 
in this direction. In the following, we mainly intro-
duce two different models developed to monitor 
human walking and/or vital signs.

CSI-Speed Model: In CARM [5], the authors 
propose a CSI-based speed model that estimates 
the speed of human activities by monitoring the 
amplitude of CSI. The underlying principle of this 
model can be demonstrated as follows. In the set-
ting shown on the left side of Fig. 5a, the receiv-
er receives multipath components of transmitted 
signals, including the LOS component, wall and 
body reflections, and traveling from different prop-
agation paths. In a static environment, where all 
the objects are static except the human body, the 
LOS component and wall reflection are static, and 
thus result in a constant I-Q vector in the complex 
plane, as shown in the right part of Fig. 5a. When 
a person moves from P1 to P2, the traveling dis-
tance of body reflection changes approximately 
by |P1P2|, which consequently induces a phase 
shift to body reflection. As a result, the composite 
phase of received signals is to be changed accord-
ingly. In other words, the phase of received signals 
varies along with walking distance |P1P2|. Due to 
the randomness in CSI phase, the authors turn to 
tracking the variance of CSI amplitude instead of 
phase in the model, and build up a relationship 
between CSI amplitude and walking speed. 

Fresnel Zones Model: Fresnel zones, named 
for physicist Augustin-Jean Fresnel, refer to a 
series of concentric prolate ellipsoidal regions 
between and around a pair of signal (acoustic 
or RF) transmitter and receiver (at P1 and P2 in 
Fig. 5b). This model is originally put forward to 
understand and compute the strength of waves 
propagating in the space. Referring to Fig. 5b, 
the innermost ellipse is defined as the first Fres-
nel zone, the elliptical annuli between the first 
ellipse and the second one is defined as the 
second Fresnel zone, and the Nth Fresnel zone 
corresponds to the elliptical annuli between the 
(n – 1)th and nth ellipses. Correspondingly, the 
boundary between any two adjacent Fresnel 
zones (say nth and (n + 1)th) is defined as the nth 
Fresnel boundary. Now assume the transmitter at 
P1 is transmitting signals, and the receiver at P2 
only receives the LOS component through P1P2, 
if there are no other objects in the space (free 
space case). However, when a reflector is locat-
ed in a position, say Q1, the received signals are 
the combination of LOS component via P1P2 and 

multipath component via P1Q1 and Q1P2. Since 
these two components possess phase shifts of 
2f|P1P2|/c, and 2f(|P1Q1| + |Q1P2|)/c +  (c 
is signal speed, the added  phase shift is caused 
by reflection), the combination of them depends 
on their phase difference Df (i.e., 2f/c(|P1Q1| + 
|Q1P2| – |P1P2|) + ). When phase difference Df 
equals k and k is an odd number, indicating that 
phases of the two components are inverse, both 
components cancel each other, and the strength 
of received signals (i.e., CSI amplitude) decreas-
es consequently. On the contrary, if k is an even 
number, both components reinforce each other, 
and thus strengthen the strength of received sig-
nals. In both cases, the reflector is certain to be 
located in the Fresnel boundary, which is math-
ematically determined by the equation shown in 
Fig. 5b. Moreover, when the reflector is located 
in a Fresnel zone, the weaken or strengthen effect 
is in between compared to the case where the 
reflector is on the corresponding boundary.

According to the above analysis, it is clear that 
the strength of received signals is highly sensitive 
to the location of the reflector. In other words, if 
we treat the human body as a reflector, since any 
body motion results in variance of CSI amplitude, 
it is feasible to detect the position and monitor 
the movement of a human body in real time by 
analyzing CSI data. Moreover, as the resolution 
of the Fresnel zone for Wi-Fi signals is centime-
ter-level, it is possible to achieve fine-grained body 
motion and activity tracking with this model [14]. 
Based on this insight, Wang et al. first made use 
of the Fresnel zones model to explain the fun-
damental principles of CSI-based human activity 
recognition, and further explored the effect of 
position and orientation on the performance of 
vital signs detection [6]. With this model, they also 
achieved high-precision walking direction estima-
tion in [15].

Remaining Challenges and Open Issues
Wi-Fi radar is a promising technology that stands 
out for low hardware cost, pervasiveness, and 
unobtrusiveness. Although researchers have 
conducted pioneering exploration with notable 
achievements, there remain several critical chal-
lenges and open issues to be handled in order 
to further advance this area. First, for data-driv-
en Wi-Fi radar, improving the system scalability 
is a big challenge. Existing systems following this 
design routine are usually required to be trained 

Figure 5. Illustration of a CSI-speed model and a Fresnel zones model: a) visual and phasor representations of the CSI-speed model; b) 
the Fresnel zone model and corresponding signal superposition.
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and tested in the same environment. It is question-
able whether they can maintain high performance 
when the testing environment is changed even 
by furniture repositioning or other objects’ pres-
ence. Second, for existing model-based systems, 
robustness is a major concern since multipath 
has a great effect on model performance. When 
motions or objects out of interest exist, how to 
remove the induced multipath interference and 
maintain performance is still a remaining chal-
lenge. Moreover, we hold the viewpoint that it is 
worth trying a combination of both approaches. 
More specifically, it is desirable to combine the 
physical meaning of CSI with data mining tech-
niques in designing Wi-Fi radar systems.

Conclusion
In this article, we introduce an emerging and 
promising technology that transforms commodity 
Wi-Fi into radar-like systems that can recognize 
human behavior with channel state information. 
By surveying the latest works, we summarize the 
general framework of existing Wi-Fi radar systems, 
and figure out that the design of these systems 
mainly follows a data-driven approach or a mod-
el-based approach. For each kind of Wi-Fi radar, 
we give a detailed introduction to the fundamen-
tal principles and state-of-the-art applications. We 
envision that, although Wi-Fi radar still faces criti-
cal challenges toward practical use, it has shown a 
great vision of the future of the Internet of Things.
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