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Abstract—Heart rate (HR) and respiratory rate (RR) are es-
sential physiological indicators of people’s physical function and
exercise performance. Advancement in sensor technology has ren-
dered earable devices with in-ear microphones feasible for vital
sign monitoring. However, it is rather challenging to monitor heart
rate and respiration simultaneously with a single earable device
especially when a person is doing exercises. This is because intense
physical activities can lead to significant noise interference which
can easily obscure physiological signals. To address this challenge,
this paper presents VitalEar, an exercise physiological monitoring
system based on in-ear microphones, designed to estimate HR and
RR while addressing complex motion interference and variability
in users and activities. VitalEaremploys Empirical Wavelet Trans-
form (EWT) to decompose heartbeats into periodic and harmonic
coefficients, enhancing noise reduction in the ECG spectrogram
reconstruction model. Additionally, VitalEarincorporates a DCN-
LSTM-based breathing curve reconstruction model to mitigate
background noise and variability in user and activity. The exper-
iments show that VitalEarachieves an average MAE of 5.61 BPM
and 2.31 RPM, MAPE of 4.16% and 10.58% for HR and RR
estimation, respectively. Compared to related work, our approach
offers significant advantages in robustness against intense physical
activities.

Index Terms—Earable device, vital sign, heartbeat monitoring,
respiration monitoring.
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I. INTRODUCTION

HR AND RR are crucial physiological indicators used for
medical diagnosis and for assessing exercise intensity and

fatigue levels [1]. The percentage of HR relative to the maximum
heart rate (HRmax), calculated as (HRmax ≈ 220− Age), is
an effective measure of exercise intensity. For the general pop-
ulation, maintaining an exercise intensity within 60% ∼ 90%
of HRmax for 15 ∼ 60 minutes is ideal [1]. RR is a reliable
indicator of physical fatigue and energy retention, reflecting
exercise tolerance across different populations [2]. With its high
sensitivity to varying fatigue states, RR is a reliable predictor
of fatigue duration [3]. Furthermore, RR effectively reflects the
intensity, load, and effort of physical tasks, as well as changes
in exercise volume, and is utilized in various sports activities
[4], [5], [6], [7]. Excessive exercise, characterized by prolonged
duration or high intensity, can lead to bodily harm and even
death [8]. In ostensibly healthy individuals, abnormal HR during
exercise and recovery periods is associated with an increased risk
of sudden cardiac death [9]. Therefore, monitoring HR and RR
during exercise helps understand one’s physical condition and
determine if the current exercise intensity is appropriate, thus
ensuring effective workouts and avoiding overexertion.

Among existing exercise physiological monitoring de-
vices, wrist-worn smartwatches utilizing photoplethysmogra-
phy (PPG) are commonly preferred. However, during physical
activity, body movement may displace the PPG sensor, alter the
light path, and produce motion artifacts that impact performance
[10]. Furthermore, wrist-worn exercise watches cannot monitor
RR. Currently, chest straps are considered the most effective
exercise physiological monitoring devices [11], but they are
cumbersome to wear, require close skin contact, are prone to
sweat accumulation, and are difficult to clean. Consequently,
researchers have explored earable devices for physiological
sensing. A. Martin et al. have utilized in-ear microphones (Mic)
to capture audio within the ear canal for HR and RR estimation,
demonstrating the feasibility of in-ear physiological sensing
[12]. T. Ahmed et al. have reported the complementary use of
IMU and in-ear Mic for RR estimation in a stationary state [13].
Noise generated during exercise may significantly affect physio-
logical sensing performance. To address this, hEARt [14], an au-
dio denoising method, achieves motion-resistant HR estimation.
Additionally, Breathpro [15] captures noise distribution using
an external Mic to aid in-ear Mic denoising, thereby facilitating
respiratory pattern classification during running. These studies
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demonstrate that in-ear Mic can effectively facilitate physiolog-
ical sensing in complex aerobic exercise environments.

During aerobic exercise, audio signals are significantly in-
terfered with by body movements and background noise in
the environment. Heartbeat sounds are typically distributed at
frequencies below 100 Hz. Unfortunately, during exercise, fric-
tion sounds from body tissues and footsteps also fall within the
low-frequency range, with intensities much stronger than those
of heartbeat sounds. Consequently, heartbeat sounds are masked
by noise. Furthermore, the walking pace closely matches the
HR, complicating the separation of the fundamental frequency
through signal processing. In terms of RR monitoring, experi-
ments conducted in uncontrolled gym environments face chal-
lenges, as background noise shares a similar frequency distribu-
tion with breathing sounds, thereby masking them. Moreover,
significant variation in the temporal and frequency distribution
of breathing sounds occurs due to differences in individuals’
respiratory tracts, breathing rhythms, and exercise states, chal-
lenging the robustness of the system. In Section II, we provide
a detailed introduction to these challenges. To address these
issues, a sports physiological parameter evaluation system, Vi-
talEar, has been designed. For HR estimation, the empirical
wavelet transform (EWT) is utilized to adaptively capture the
weak period and harmonic frequencies of the heartbeat within
the original audio signal. Subsequently, a ECG spectrogram
reconstruction model is employed to further eliminate noise.
For RR estimation, a breathing waveform reconstruction model
is constructed by combining DCN and Bi-LSTM. This approach
effectively captures the distribution differences of breathing
sounds in both the frequency and time domains, thus reducing
the impact of background noise.

The main contributions of this work are summarized as
follows:
� We designed a wireless mobile earable prototype with

in-ear Mic named VitalEarthat mitigates the effects of
body movement, environmental noise, and variability in
users and activities during exercise, and demonstrated its
effectiveness in estimating HR and RR through testing with
15 subjects. To the best of our knowledge, we are the first
to achieve estimation of HR and RR under complex motion
conditions.

� We incorporate EWT to effectively extract more heart-
beat information as additional features from low-frequency
noise, and combine this with deep learning techniques to
improve the accuracy of HR estimation.

� We developed a spatial and temporal feature extraction
module for respiratory waveform reconstruction using
DCN and Bi-LSTM. This module extracts respiratory pat-
terns across different individuals and activities, overcom-
ing the effects of individual differences, activity varia-
tions, and background noise, thus enabling accurate RR
estimation.

The rest of this paper is organized as follows. Section II intro-
duces the principles and noise challenges. Section III presents
the system design of VitalEar. Section IV covers the imple-
ment of VitalEar. Section V presents the experimental results.

Fig. 1. The spectrograms of acoustic signals captured in different scenarios.

Section VI discusses related works. Section VII discusses the
future directions of VitalEar. Section VIII concludes our work.

II. PRIMARIY STUDY

This section presents the fundamental physical principles and
key challenges underlying VitalEarfor HR and RR monitoring
especially under aerobic exercises.

A. Physical Principles

When the ear canal is blocked, low-frequency heartbeat
sounds transmitted to the ear canal via bone conduction are
amplified by the occlusion effect, allowing even faint heart-
beat sounds to be captured [16]. For breathing, airflow passing
through the narrow regions of the nasal and oral cavities creates
turbulence, producing respiratory sounds that are transmitted to
the in-ear microphone via bone conduction [17]. As shown in
Fig. 1(d), the heartbeat signal is a short-period narrowband signal
below 100 Hz, whereas the breathing signal is a long-period
broadband signal ranging from 256 to 4096 Hz. The periods
and frequency distributions of these signals differ significantly.
By comparing Fig. 1(a) and (c), we can also observe that even
under the same conditions, the heartbeat sounds of different
users differ. The heartbeat sound of User A has distinct peaks,
while the heartbeat sound of User B is lower and more diffuse.
Additionally, the high-frequency nature of breathing sounds
prevents enhancement by the occlusion effect and leads to high-
frequency attenuation, resulting in much lower energy compared
to heartbeat sounds. Due to the differing physical principles,
significant differences exist between these two sounds.
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Fig. 2. The spectra of acoustic signals captured by an earphone under different
activities.

B. Noise Challenge

1) Impact of Low-Frequency Noise: As shown in Fig. 2, the
Fourier spectra within a 5-second window are presented for
various activities (resting, walking, running, biking, boating).
The red vertical line marks the average frequency of the true HR
within the window. At rest, the fundamental frequency (heartbeat
period) and harmonics of the heartbeat are clearly and regularly
displayed in the spectrum. During walking and running, the
frequency distribution of footstep sounds closely resembles that
of heartbeat sounds but with higher energy, which can obscure
the harmonic frequency distribution of the original heartbeat
sounds. During biking, despite the absence of footstep noise,
low-frequency sounds from leg and body movements—caused
by friction between body tissues—are transmitted to the ear
canal via bone conduction, contaminating the low-frequency
harmonics of the heartbeat. In boating, the increased amplitude
of body movements exacerbates this low-frequency contami-
nation. In summary, during physical activities, friction sounds
from body tissues and footsteps significantly interfere with heart
sounds. This interference presents a challenge for accurately
extracting the HR from the audio.

2) Impact of High-Frequency Noise: The experiment was
conducted in an uncontrolled gym where numerous noise
sources, such as sounds from exercise equipment and air condi-
tioning systems, occupy similar frequency bands as respiratory
sounds. As shown in Fig. 1(a) and (b), the spectrograms of audio
in a resting state were compared with and without earmuffs
(providing −37 dB noise reduction). With earmuffs on, back-
ground noise is blocked, facilitating the observation of breathing
sound distribution. Without earmuffs, background noise masks
weak breathing sounds and introduces high-energy narrowband
noise, complicating the capture of effective breathing informa-
tion. Additionally, the breathing frequency distribution varies
among users and activities. As shown in Fig. 1(a) and (c), the
breathing rhythms and respiratory tract vary among different

users, resulting in User B having a breathing signal with a
shorter duration and higher frequency distribution (exceeding
512 Hz). As shown in Fig. 1(a) and (d), when earmuffs are worn
during biking, increased exercise intensity enhances breathing
and accelerates airflow speed in the respiratory tract, resulting
in a broader frequency distribution and higher intensity. These
factors present challenges for accurately extracting the RR from
audio.

III. SYSTEM DESIGN

A. System Overview

The system framework is illustrated in Fig. 3. Participants
wear earphones equipped with an in-ear microphone to collect
heart and breathing sounds from the ear canal during aerobic
exercise. Simultaneously, participants wear a Zephyr chest strap
[11] to obtain real ECG and breathing waveforms as ground
truth (GT). During signal preprocessing, the audio signal is first
decomposed into several coefficients using EWT. Lower-order
detail coefficients capture low-frequency information related to
heartbeat periods and harmonics, whereas higher-order detail
coefficients capture information about breathing sounds. Log-
Mel spectrograms of the original audio, as well as heartbeat pe-
riod and harmonic coefficients, are obtained and stacked to serve
as input for the ECG spectrogram reconstruction model. Si-
multaneously, breathing sound coefficients are pre-emphasized,
and their Log-Mel spectrogram is obtained and used as input
for the breathing waveform reconstruction model. For model
training, the GT ECG and breathing waveform are preprocessed,
and a sequence reconstruction model is used to reconstruct the
breathing waveform from the audio spectrogram. Because the
ECG waveform contains more details (such as the QRS complex)
compared to the breathing waveform, employing a sequence
model presents challenges. Consequently, a spectrogram recon-
struction model is employed to reconstruct ECG spectrogram
from audio spectrogram. Finally, inverse STFT processing is
performed on the obtained ECG spectrogram to reconstruct the
ECG waveform. HR and RR estimation are then conducted using
a peak-to-peak detection algorithm.

B. Data Preprocessing

As previously mentioned, the audio signal consists of mul-
tiple sound sources. Common signal decomposition methods
include Empirical Mode Decomposition (EMD) [18] and Dis-
crete Wavelet Transform (DWT). EMD is ineffective at sepa-
rating information from different modes and is prone to mode
mixing; DWT employs fixed-ratio sub-band frequency division
and lacks adaptive filtering capability. Therefore, Empirical
Wavelet Transform (EWT) [19] is used, which adaptively selects
frequency bands and overcomes mode mixing issues caused by
signal time-frequency scale discontinuities.

For the signal f(t), the normalized FFT spectrum of the audio
is obtained, andM maxima points in the spectrum are identified
and sorted in descending order. The spectrum is then divided
using the minima points between each pair of adjacent maxima
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Fig. 3. The system overview of VitalEar.

Fig. 4. The results after Empirical Wavelet Transform.

points as boundaries ωn, where ω0 = 0 and ωn = π. Each seg-
ment is represented as Λn = [ωn−1, ωn], as shown in Fig. 4(f).
A transition phase Tn, centered at ωn with a width of 2τn,
is defined. The signal is decomposed into approximation and
detail coefficients using EWT, with approximation coefficients
typically containing only some trends of the signal, which are not
useful for HR and RR estimation. Therefore, the segment of the
spectrum with frequencies ranging from 0 to ω1 is discarded to
reduce the computational load. For ∀n > 1, given the empirical
wavelet function (1):

ψ̂n(ω) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if ωn + τn ≤ |ω| ≤ ωn+1 − τn+1

cos[π2β(
1

2τn+1
(|ω| − ωn+1 + τn+1))]

if ωn+1 − τn+1 ≤ |ω| ≤ ωn+1 + τn+1

sin[π2β(
1

2τn
(|ω| − ωn + τn))]

if ωn − τn ≤ |ω| ≤ ωn + τn
0 otherwise.

(1)

The function β(x) = x4(35− 84x+ 70x2 − 20x3) is most
used in [20].

We can view EWT as a filter bank composed of (1). The detail
coefficientsW ε

f (n, t) are obtained by the inner product with the
empirical wavelets:

W ε
f (n, t) = 〈f, ψn〉 = (f̂(ω)ψ̂n(ω))

∨ (2)

Therefore, the empirical mode fk is given by:

fk(t) =W ε
f (k, t) � ψk(t) (3)

As shown in Fig. 4(b), some heartbeat signals in the original
audio are obscured by motion noise, complicating their identi-
fication. After EWT, the corresponding coefficients are selected
based on specific frequency bands. As shown in Fig. 4(c),
coefficients in the 1 ∼ 3 Hz range contain the heartbeat period
and resemble a sinusoidal curve, which helps determine the ap-
proximate position of the heartbeat. We add coefficients ranging
from 3 ∼ 20 Hz (Fig. 4(d)), which encompass the harmonic
information of the heartbeat and provide more detailed insights
into ECG reconstruction. The computational complexity of
searching for the maxima points in EWT increases with the
sampling rate. To mitigate this, we adopt a strategy of reducing
the audio sampling rate and constraining the frequency search
range. Nevertheless, lowering the sampling rate may lead to the
loss of high-frequency components in respiratory signals. To
address this issue, the original signal is duplicated and filtered
within the 256 ∼ 4096 Hz band, where respiratory components
are concentrated. A wavelet-based filter is constructed to ex-
tract respiratory coefficients, followed by pre-emphasis and
Mel spectrogram computation to derive respiratory features.
Concurrently, the original signal is downsampled to 1 kHz and
processed with EWT. To further accelerate the EWT process,
the frequency search range for heartbeat signals is restricted
to 0 ∼ 20 Hz. Within this range, peak detection is performed
to extract the heartbeat cycle and harmonic coefficients. These
features are then stacked with the original audio signal, and
Mel spectrograms are computed to generate the final heartbeat
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Fig. 5. The architecture of ECG spectrogram reconstruction model.

features. The window lengths for the Fast Fourier Transform
are 128 for heart features and 2048 for respiratory features. The
window lengths for the Short-Time Fourier Transform (STFT)
are also 128 and 2048, with overlap lengths of 51 and 256,
respectively. The number of Mel filters used is 64 for heart
features and 128 for respiratory features. Although EWT can
capture the harmonic information of the heartbeat sound, it
is still affected by noise. Therefore, we employ deep learning
techniques for further heartbeat extraction.

C. ECG Spectrogram Reconstruction

As shown in Fig. 5, a U-Net [21] model is employed as
the base, integrated with a channel attention mechanism to
effectively extract features from both the original and EWT
spectrograms. In the encoder, feature maps are subjected to
repeated 3× 3 convolutions, LeakyReLU activation functions,
and normalization layers, followed by extraction using the
channel attention mechanism. SE-Net [22] is used to perform
global average pooling, compressing the spatial features of each
channel into a scalar. The scalar is then passed through two fully
connected layers and a Sigmoid function to derive the channel
attention weights. The channel attention mechanism enables the
model to adaptively select effective feature channels from both
the original spectrogram and EWT-derived features, thereby
enhancing model performance. In the decoder, the data undergo
successive up-convolution blocks, with the number of feature
maps being halved at each step. After each up-convolution, the
feature maps are concatenated with the corresponding encoder
feature maps, followed by convolutional blocks and batch nor-
malization. The final layer utilizes a 1× 1 convolution to map
the feature maps to a single output channel spectrogram, which
serves as the reconstructed ECG spectrogram. During training,
the GT ECG is upsampled to 1 kHz after passing through a
first-order bandpass filter with a 10 ∼ 50 Hz range, and its
STFT spectrogram is obtained using the same time-frequency
transformation parameters as those used for heart features. We
use the Adam optimizer with a learning rate of 0.002 and perform
100 iterations with a batch size of 256.

D. Breathing Waveform Reconstruction

As described in Section II, the distribution of breathing sounds
varies with individual characteristics and physical activity, fre-
quently being obscured by background noise. A deep learning
framework is designed to effectively reconstruct breathing wave-
form from audio spectrogram, as illustrated in Fig. 6.

Fig. 6. The architecture of breathing waveform reconstruction model.

1) Spatial Feature Extraction: Before inputting into the
model, the respiratory feature is reshaped to 250× 128, where
250 represents the number of time bins and 128 represents the
number of frequency bins. The window length for the breathing
feature is 10 seconds, and the GT breathing waveform is sampled
at 25 Hz. Reshaping the time bins to 250 ensures the temporal
alignment of the reconstruction. The respiratory feature first
passes through a convolutional block to extract shallow features.
The convolutional block structure is the same as shown in
Fig. 5. It is then processed through two layers of DCN [23]
blocks to extract deep feature representations of the breathing
sound. For a convolution kernel with K sampling positions,
wk and pk denote the weight and predefined offset of the k-th
position, respectively. For a 3x3 convolution, K = 9. x(p) and
y(p) denote the input and output feature maps at position p,
respectively. The deformable convolution formula is:

y(p) =

K∑
k=1

wk · x(p+ pk +Δpk) (4)

where Δpk denotes the learnable offset for the k-th position
and is a real number with no range restrictions. Δpk is obtained
by applying a separate convolutional layer to the same input
feature map, which outputs 2 K channels with kernel weights
initialized to zero. The learning rate for this convolutional layer
is set to 0.1 times that of the other conventional layers. After
the DCN, a LeakyReLU activation function layer is applied,
followed by a global pooling layer. After two DCN blocks,
the output is connected to the upsampling convolution block.
This upsampling convolution block structure is similar to that in
Fig. 5. The key difference is that this block only expands along
the time dimension while continually halving the frequency bins.
Finally, it produces an intermediate feature with 1 frequency bin
dimension, 512 channels, and a time length of 250. This feature
is then input into the temporal information capture module.

As shown in Fig. 7, we present the Class Activation Maps
(CAMs) generated by using DCN and CNN for spatial feature
extraction, respectively. CAM is applied to the output of the
spectral feature extractor to visualize which frequency-time
regions the model attends to during heart rate and respiratory
rate estimation. This enhances model interpretability and helps
verify that the network is focusing on physiologically relevant
features. Comparing Fig. 7(a) and (c), the feature maps from
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Fig. 7. The CAM maps of DCN and CNN block.

DCN are more continuous and effectively capture the frequency
distribution of the breathing sound. Fig. 7(a) and (b) show better
robustness to frequency variations caused by different individu-
als and exercise intensities. In Fig. 7(b), DCN effectively isolates
the breathing sound from background noise, while the feature
maps from the CNN in Fig. 7(d) contain substantial background
noise incorrectly identified as breathing sound. In summary,
DCN demonstrates superior feature extraction capabilities for
breathing sounds compared to CNN.

2) Temporal Feature Extraction: A complete breath com-
prises two phases: inhalation and exhalation. In the GT breathing
waveform, inhalation and exhalation are represented by the
rising and falling edges of the curve, respectively. In the audio
time-frequency domain, these phases appear as two consecutive
regions of concentrated energy. The sounds of inhalation and
exhalation are very similar, rendering convolution ineffective
for accurately reconstructing the breathing waveform phases.
Consequently, the model inaccurately reconstructs inhalation
and exhalation as the falling and rising edges of the breathing
curve. A bidirectional LSTM (Bi-LSTM) is employed to capture
the long-term dependencies of breathing, allowing the model to
determine whether the current position corresponds to inhalation
or exhalation based on contextual information. The Bi-LSTM
consists of 8 layers, each with an hidden layer dimension of 256.
The output is then fed into a fully connected layer to reduce the
Bi-LSTM output to one dimension, resulting in the reconstructed
breathing waveform.

We apply a first-order bandpass filter with a range of 0.3 to 0.8
Hz to the GT breathing waveform to eliminate motion artifacts,
which is used as the ground truth for the model. We use the
Adam optimizer with a learning rate of 0.002 and perform 100
iterations with a batch size of 64.

Fig. 8. The prototype of VitalEar.

E. HR and RR Estimation

After model inference, the reconstructed ECG spectrogram
and breathing waveform are obtained. Due to the lack of phase
information in the reconstructed ECG spectrogram, the Griffin-
Lim algorithm [24] is employed to convert the frequency domain
representation back to the time domain. A sliding window with
a length of 10 seconds and a step size of 5 seconds is applied
to segment the reconstructed ECG and breathing curves. Peak-
to-peak detection is used for each window to calculate the time
intervals between peaks. The z-score of these intervals is then
computed, and outliers are filtered out. The HR and RR for
each window are determined by averaging the remaining time
intervals. Finally, a moving average filter is applied to smooth
the HR and RR curves.

IV. IMPLEMENTATION

A. The Prototype of VitalEar

Although in-ear microphones are integrated into existing
commercial earbuds (e.g., AirPods Pro), API access to their
microphone outputs is not available. To collect audio data from
ear canal, a neckband earphone prototype was designed. Specifi-
cally, a digital omnidirectional MEMS microphone (MEMSens-
ing MSM261S4030H0R) was embedded into a small earbud, as
shown in Fig. 8(a). The microphone is connected to an ESP32
microcontroller unit (MCU) via a flexible flat cable. The MCU
acquires the audio data collected by the microphone through the
Inter-IC Sound (IIS) digital audio transmission protocol. Digital
transmission significantly reduces noise generated during the
transmission process. The MCU transmits the audio to a laptop
via Wi-Fi. During use, the device is worn around the neck, as
shown in Fig. 8(b).

B. Data Collection

We involve data collection from 15 participants, comprising
5 females and 10 males, with ages ranging from 20 to 27. The
participants exhibit varying levels of physical activity: 3 individ-
uals exercise less than once per week, 5 exercise once weekly,
another 5 engage in physical activity 2 ∼ 3 times per week, and
2 individuals exercise more than four times weekly. As shown
in Fig. 9, we collect experimental data using exercise equipment
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TABLE I
GROUND TRUTH DISTRIBUTION OF HR AND RR

Fig. 9. The experimental setup.

in an uncontrolled gym environment. We collect some common
aerobic activities: walking, running, biking, resting, boating and
stair climbing. Walking and running data are recorded on a
treadmill at speeds of 3 km/h and 6 km/h, respectively, while the
other activities are performed on a stationary bike and rowing
machine. Each activity is sampled twice, with each sample
lasting 3 minutes. Prior to data collection, users are instructed to
remain still for 20 seconds to capture relatively pure heart sound
data, which helps align the audio with the GT. We calculate
the cross-correlation coefficient between the GT ECG and the
20-second quiet period to align the data. As shown in the Table I,
we report baseline HR and RR for each participant across various
activities. Among these, running and stair climbing elicit the
highest average heart rate, whereas cycling and rowing yield the
highest average respiratory rate. Zephyr [11] monitoring devices
capture the real ECG and breathing waveform at sampling rates
of 250 Hz and 25 Hz, respectively, while the prototype device
samples at 10 kHz.

V. EVALUATION

We use leave-one-user-out cross-validation to partition the
data, where the data of one user is held out for testing, and the
model is trained using data from other users. For the cross activ-
ities evaluation, We use leave-one-activity-out cross-validation
to partition the data, where the data of one activity is held out
for testing, and the model is trained using data from other activ-
ities. We evaluate the system’s performance using the following
metrics:
� Mean Absolute Error (MAE): it is the average absolute

error between the groundtruth and estimation within each
window.

� Mean Absolute Percentage Error (MAPE): it is calculated
by the absolute error divided by the groundtruth within
each window.

� Bland-Altman (BA) Plots [25]: it illustrates the range
within ±1.96 standard deviations of the mean difference

Fig. 10. The individual study of HR and RR estimation.

between two methods with 95% data points falling within
this range. This metric is used for assessing the consistency
between ground truth and VitalEar.

A. Overall Performance

As shown in Fig. 10, the MAE for HR and RR estimation
across different users and activities is presented. Data for User3
and User4 during stair climbing have been excluded due to
equipment placement issues. The following findings can be
derived from the results. First, there is no correlation between HR
and RR estimation. Users U5, U6, and U8 show poorer perfor-
mance in RR estimation, but perform well in HR estimation. In
contrast, users U4, U9, U11, and U12 show poorer performance
in HR estimation, but perform well in RR estimation. This
discrepancy is mainly caused by different physical properties
of heartbeat and breathing. The occlusion effect significantly
amplifies low-frequency heartbeat sounds, while having a minor
impact on high-frequency breathing sounds. Therefore, reduced
occlusion caused by improper ear seal has more severe impact on
heartbeat sounds and results in higher MAE for HR estimation,
while the performance of RR estimation remains stable. Second,
even the same activity has different impact on HR and RR
estimation. VitalEarprovides excellent HR estimation in resting,
with an average MAE of 1.56 BPM, but results in poor RR
estimation. This is due to reduced breathing intensity during
rest, which makes breaths less distinguishable from background
noise. Conversely, VitalEaryields a good RR estimation with
an average MAE of 1.50 RPM but a poor HR estimation
in boating. This is due to the synchronization of breathing
with the boating movements stabilizes RR, while body noise
from boating obscures low-frequency heartbeats, as detailed in
Section II, impairing HR measurement. We also find that the
boating performance of users U4, U8, U9, and U10 is poor,
which is due to the high intensity of their activity during this ex-
ercise, causing excessive noise that masks the heartbeat sounds.
When running, VitalEarshows the highest MAE for both HR
and RR due to strong footstep noise that masks heartbeats.
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TABLE II
THE BASELINE COMPARISON FOR HR ESTIMATION

Fig. 11. The empirical cumulative distribution function of error for HR & RR
estimation.

Moreover, body movements in running cause vibrations of the
hardware, inducing additional interference that obscures the
breathing sounds.

We have also calculated the empirical cumulative distribution
function (ECDF) for HR and RR estimation and obtained the
results shown in Fig. 11. We can see that about 60% of the
samples have an absolute error less than 12.5 BPM and 2.5 RPM
for HR and RR estimation in the worst case, respectively. What
is more, among the activities considered, running and boating
significantly influence HR estimation, while resting and biking
have the least effect. For RR estimation, boating and biking show
the least impact compared with other three activities.

B. Baseline Comparison

Table II presents the baseline comparison for HR estimation.
Our system is compared with DWT, EWT [19], HT [12], and
U-Net, where DWT is a common signal processing method,
and HT and U-Net are methods used in previous studies [12],
[14]. We also compare the experimental results of replacing
EWT with a Butterworth filter (BF) and DWT while keeping the
subsequent deep learning model unchanged, to demonstrate the

effectiveness of EWT in adaptive filtering. VitalEarachieves the
best performance in both MAE and MAPE for HR estimation.
Compared to using only U-Net, the average MAE and MAPE
decrease by 12.48% and 17.62%, respectively. In addition, Vi-
talEaroutperforms the BF-UNet and DWT-UNet in all activities.
This demonstrates the effectiveness of using EWT-extracted
heartbeat periodic and harmonic information to provide prior
knowledge for model inference during the signal preprocessing
stage.

Table III presents the baseline comparison for RR estimation.
Few studies address RR monitoring in dynamic conditions.
Several methods are compared: HT, used for RR estimation in
a stationary state as reported in [12]; and CNN-LSTM, which
substitutes the DCN block with a standard CNN block for
spatial feature extraction while keeping other architecture of
the breathing waveform reconstruction model unchanged. The
system outperforms the others in terms of MAE and MAPE.
Compared to CNN-LSTM, the system reduces average MAE
and MAPE by 15.38% and 20.40%, respectively, demonstrating
the effectiveness of DCN in capturing the frequency distribution
of breathing sounds.

C. Ablation Study

We separate spatial and temporal feature extraction in the
breathing waveform reconstruction model while maintaining
the same structure, obtaining two models for comparison: one
using only DCN and one using only Bi-LSTM. The DCN model
maps intermediate features to the breathing waveform using a
fully connected layer. The Bi-LSTM model treats time bins of
the input spectrogram as the temporal dimension and frequency
bins as the feature dimension for each time point. As shown in
Table IV, the average MAE for the DCN and Bi-LSTM models
is 3.23 and 5.02 RPM, respectively, with average MAPE of
16.61% and 24.78% . This indicates that spatial or temporal
feature extraction alone cannot effectively capture breathing
characteristics. Combining both methods enhances the capture
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TABLE III
THE BASELINE COMPARISON FOR RR ESTIMATION

TABLE IV
THE ABLATION EXPERIMENTS FOR RR ESTIMATION

TABLE V
THE CROSS ACTIVITIES EVALUATION FOR HR ESTIMATION

of both frequency and temporal aspects of breathing sounds,
thereby reducing RR estimation errors.

D. Cross Activities Evaluation

This section evaluates the system’s performance under cross-
activity conditions. A leave-one-activity-out strategy is adopted,
where data from the target activity are used for testing and
data from the remaining activities are used for training. Since
methods based on HT, DWT, and EWT rely primarily on signal
processing, their cross-activity performance is comparable to
that of cross-user evaluation and is therefore omitted here for
brevity.

As shown in Table V, our system achieves a 7.65% reduction
in average MAE and a 10.69% reduction in MAPE compared to
the DWT-UNet baseline, demonstrating improved generalizabil-
ity across activities. However, all methods—including ours—
exhibited decreased HR estimation accuracy in the cross-activity
setting compared to the cross-user setting. This performance
degradation is likely due to the presence of activity-specific
noise components not observed during training. Although signal
processing techniques such as EWT help extract preliminary

heartbeat features, residual noise—particularly low-frequency
interference—still affects ECG reconstruction and HR estima-
tion when the model encounters unfamiliar motion artifacts.

As shown in Table VI, for RR estimation, a similar trend
of reduced accuracy is observed in the cross-activity set-
ting. Nonetheless, our system consistently outperforms baseline
methods. The most notable performance drop occurs in the run-
ning activity. This is due to a combination of elevated respiratory
demand and biomechanical disruptions caused by rhythmic body
movements. Specifically, the mechanical coupling between limb
motion and respiratory musculature (e.g., diaphragm and inter-
costal muscles) results in non-uniform airflow and fragmented
respiratory sounds. These spectrally discontinuous patterns hin-
der effective waveform reconstruction and degrade estimation
accuracy.

E. Impact of Ambient Noise

We further evaluate the impact of ambient noise levels on
system performance. As shown in Fig. 12, experiments are con-
ducted in a gym (60 dB) and an office (40 dB). Due to equipment
constraints, only four activities—biking, resting, running, and
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TABLE VI
THE CROSS ACTIVITIES EVALUATION FOR RR ESTIMATION

Fig. 12. Impact of different noise on HR and RR estimation.

walking—are evaluated in the office setting. Fig. 12(a) shows
that HR estimation improves in quieter environments, with aver-
age MAEs of 5.00 BPM at 40 dB and 5.32 BPM at 60 dB. For RR
estimation, Fig. 12(b) indicates that the resting condition benefits
most from lower noise, with MAEs of 1.21 RPM and 2.52 RPM
at 40 dB and 60 dB, respectively. This may be due to spectral
overlap between ambient noise and breathing sounds; lower
noise allows the model to capture RR features more accurately
and reduce errors. Across all evaluated activities, average MAEs
for RR estimation are 2.21 RPM at 40 dB and 2.55 RPM at 60 dB.

For boating and stair climbing, which require specific equip-
ment not available in the office, participants perform these tasks
in the gym while wearing noise-reduction earmuffs rated at
−37 dB. Results show that for boating, the MAEs of HR and
RR estimation are 9.79 BPM and 6.38 BPM without earmuffs,
and 2.06 RPM and 1.88 RPM with earmuffs, respectively. For
stair climbing, the corresponding MAEs are 7.97 BPM and
4.85 BPM, and 2.51 RPM and 2.19 RPM. Surprisingly, wearing
earmuffs does not always improve accuracy; in some cases, it
degrades performance. This may be caused by the stethoscope
effect from friction between earmuffs and device cables during
movement, which contaminates the audio signal and affects
model inference.

F. Impact of Different Speed

To evaluate the generalizability of VitalEarunder varying
physical intensities, we conducte experiments in which users
walked or jogged on a treadmill at different speeds ranging from
1 to 6 km/h. This setup simulates a range of realistic aerobic
activities. As shown in Fig. 13, increasing movement speed
leads to stronger body-induced noise—such as tissue friction
and footstep impacts—which significantly raises the MAE in

Fig. 13. Impact of different speeds on HR and RR estimation.

Fig. 14. Impact of earplugs tightness on HR and RR estimation.

HR estimation. This trend suggests that higher locomotor inten-
sity introduces stronger low-frequency interference, making it
more difficult to extract heart sound components accurately. In
contrast, RR estimation remains relatively stable across different
speeds. This robustness can be attributed to the fact that respi-
ratory sounds predominantly occupy higher-frequency bands,
while motion-induced noise is primarily confined to lower
frequencies. The limited spectral overlap reduces interference,
thereby maintaining consistent estimation performance.

G. Impact of Earplugs Tightness

We evaluate the impact of earplug fit tightness on HR and
RR estimation accuracy. Since the proposed hardware system
supports interchangeable earplugs of various sizes, each partic-
ipant wears two different sizes under stationary conditions to
simulate varying levels of fit tightness. As shown in Fig. 14(a),
loose earplugs significantly degrade HR estimation, with the
MAE increasing to 6.35 BPM. This is mainly due to reduced
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Fig. 15. The impact of respiratory intensity on RR estimation.

occlusion in the ear canal, which weakens the amplification
of low-frequency heart sounds and impairs signal quality. In
contrast, the impact of earplug fit on RR estimation is relatively
minor, as shown in Fig. 14(b). This is because respiratory sounds
mainly occupy higher frequency bands, which are less affected
by occlusion loss. As a result, the system maintains stable RR
estimates even under loose-fitting conditions.

To address this issue, we can design an algorithm to determine
whether the earplug is tightly. For example, by calculating
the signal-to-noise ratio, we assess whether the quality of the
heartbeat signal meets the required standard. If not, the system
prompts the user to adjust or replace the earplugs.

H. Impact of Respiratory Intensity

Since respiratory intensity is difficult to measure directly,
we assess its effect on RR estimation performance indirectly
by analyzing the temporal trends in estimation error under two
contrasting activity conditions: stair climbing and resting. These
activities were chosen to control for confounding noise sources
such as footstep or equipment noise. As shown in the Fig. 15, we
plot the RR estimation error over time for all users under both
conditions. During stair climbing, sustained exertion leads to
progressively intensified breathing, which enhances the promi-
nence of respiratory acoustic features. This results in a gradual
reduction in estimation error over time. In contrast, during the
resting phase, as users recover from exertion, their respiratory
intensity declines, leading to weaker respiratory sound features
and an increase in estimation error. These findings suggest that
the system’s RR estimation accuracy is positively correlated with
respiratory intensity. In particular, higher-intensity breathing
produces clearer acoustic signals, which facilitate more accu-
rate estimation. This highlights the system’s suitability for use
in moderate to vigorous aerobic activities, where respiratory
patterns are more pronounced and consistent.

I. Real-World Tracking: A Case Study

We evaluate the real-world tracking performance of users
during various aerobic exercises in real-world conditions. Users
engage in boating, biking, running, and walking in the gym, with
rest periods between activities based on their exercise conditions.
Fig. 16(a) and (b) show the real-world tracking of HR and RR,
respectively. The average MAE for HR and RR estimates is

Fig. 16. The Real-world tracking performance of VitalEar.

Fig. 17. The long-term performance of HR and RR estimation.

3.46 BPM and 2.40 RPM, respectively, with MAPE values of
2.78% and 12.89% . The HR estimation MAE for each activity
phase is 4.00, 3.47, 3.93, and 3.44 BPM, while the RR estimation
MAE is 1.35, 0.88, 4.24, and 2.50 RPM. The HR estimation
performs well. Although some fluctuations are observed in RR
estimation, the overall trend is favorable.

J. Long-Term Performance

We perform long-term experiments with VitalEarto verify
the system’s performance under long-term use. Four volunteers
are recalled to collect new data. The time gap between data
collection in Session 1 and Session 2 is approximately six
months. As shown in Fig. 17, we analyze the data from Session
1 and Session 2 based on different activities. For HR estimation,
the MAE difference for walking between Session 1 and Session
2 is significant, with a difference of 2.36 BPM. However, overall,
the average MAE for Session 1 and Session 2 shows only a slight
difference, with values of 6.43 BPM and 5.95 BPM, respectively.
For RR estimation, the MAE difference for boating between
Session 1 and Session 2 is relatively large, with a difference of
0.31 RPM. The MAE for RR estimation is 2.02 RPM in Session
1 and 1.93 RPM in Session 2. Session 2 outperforms Session
1, which we hypothesize is due to the data for Session 1 being
collected in summer when the gym’s air conditioning and fans
are running, leading to higher environmental noise. In contrast,
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Fig. 18. The Bland-Altman plots of HR and RR estimation.

Session 2 data was collected in winter when the air conditioning
and fans were off, resulting in lower noise levels. Overall, the
long-term experiments demonstrate that VitalEaris capable of
sustained use.

K. Bland-Altman Plots

As shown in Fig. 18, the BA plots illustrate the agreement
analysis between ground truth values and the estimated HR
and RR under various conditions. In terms of HR estimation,
the deviations between the proposed method and the ground
truth remain consistently low across different activity states.
Notably, during resting and biking, the mean measurement
biases are −0.37 BPM and 0.66 BPM, respectively, indicating
the absence of systematic bias in the proposed approach. When
subjects are at resting (Figs. 4–6(a)), the limits of agreement
(red dashed lines) in the BA plot are relatively narrow, suggest-
ing high accuracy in HR estimation. However, during physical
activities (Fig. 18(b)–(f)), the limits of agreement widen as
exercise intensity increases, reflecting a rise in the standard
deviation of the HR estimates. Compared with prior studies, the
proposed method demonstrates superior performance under the
same activity conditions. Specifically, the limits of agreement
and mean bias during rest, walking, and running are (−2.14 to
1.42, −0.37), (−10.64 to 11.04, 0.20), and (−24.18 to 29.34,
2.58), respectively, which outperform those reported in hEARt
[14]: (−10.53 to 9.58, −0.48), (−23.37 to 18.03, −2.67), and
(−28.29 to 37.63, 4.67), and also exceed the performance of
study [12] under static conditions: (−14.3 to 13.4, −0.44).
During biking, walking, and stair climbing, the estimation bias
tends to decrease as HR increases. This phenomenon may be
attributed to prolonged activity leading to a stronger heartbeat,
which makes the heart sounds more prominent and thereby
improves HR estimation accuracy. In contrast, during boating
and running, the benefits of intensified heartbeat are partially
offset by strong motion artifacts, resulting in a less pronounced
improvement in the BA plots compared to other activities.

As shown in Fig. 18(g)–(l), the proposed method also main-
tains low deviations between estimated and ground truth RR

TABLE VII
DEVICE PARAMETERS

values across various activities. Specifically, during biking, boat-
ing, and stair climbing, the average biases are −0.08 RPM,
0.05 RPM, and −0.74 RPM, respectively, indicating minimal
systematic bias. Moreover, the width of the BA plot’s limits of
agreement remains similar across different activity conditions,
demonstrating that the system maintains stable performance
under varying measurement scenarios. Compared with previous
work, the proposed method achieves comparable or better per-
formance. For instance, during rest and walking, the results are
(−6.93 to 4.35,−1.29) and (−7.38 to 4.84,−1.27), respectively,
which are comparable to the static condition in study [12]:
(−2.62 to 7.48, 2.4), and superior to RRDetection [26] under
walking conditions: (−11 to 11, −0.13). These findings further
validate the reliability and adaptability of the proposed approach
for RR estimation.

In summary, the Bland-Altman analysis confirms the consis-
tency of the proposed method in estimating HR and RR. The re-
sults demonstrate that the method maintains high measurement
accuracy and stability across a wide range of activity scenarios.

L. Deployment Evaluation

We conduct deployment tests on the HUAWEI Mate 30 Pro,
Redmi K50 Pro, Samsung Galaxy S20, and Redmi K70 Pro,
with Table VII summarizing the relevant performance metrics
of these smartphones. We assess the overall performance of the
system when HR and RR estimation are performed simultane-
ously. Both the signal processing pipeline and model inference
are deployed on a mobile device. Our evaluation focuses on
system response time, CPU and memory usage, and power
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Fig. 19. The deployment examinations of HR and RR estimation.

consumption. As shown in Fig. 19(a) and (b), we analyze the re-
sponse times of VitalEaracross different devices during various
processing stages. When HR and RR estimation are conducted
concurrently, the average inference latencies are 1.08 seconds
and 2.64 seconds, respectively. Given that HR and RR typically
change gradually, this level of latency is sufficient for real-time
physiological feedback.

Fig. 19(c) and (d) illustrate the CPU and memory usage of
VitalEaracross different processing stages on various devices.
The ECG spectrum reconstruction network and the respira-
tory waveform reconstruction network have parameter sizes
of 37.70 MB and 21.79 MB, respectively. Regarding resource
usage, the models currently use 32-bit floating-point (float32)
representation, resulting in relatively high CPU and memory
consumption—averaging 92.5% CPU usage and 1181.6 MB
memory usage. Quantization techniques can be considered in
future work to reduce floating-point precision, thereby lowering
memory consumption and improving computational efficiency.

Fig. 19(e) illustrates the power consumption of VitalEar. We
evaluate the power usage of four devices operating continuously
for 5 to 30 minutes under full battery conditions. On average,
the system consumes 6% of the device’s battery every 30 min-
utes, which is considered acceptable. Regarding the hardware
evaluation, VitalEarequipped with a 1000 mAh battery. During
HR and RR estimation, the system consumes approximately
0.42 W of power, corresponding to a current of 128 mA. Theo-
retically, this allows for up to 7.8 hours of continuous operation.
However, considering real-world factors such as battery voltage
fluctuations, the actual runtime is approximately 5.5 hours,
which is sufficient for typical exercise monitoring scenarios.

M. Comparison With Related Work

We compare our work with other relevant studies on in-ear
physiological sensing devices. Tables VIII and IX present com-
parisons of HR and RR estimation, respectively.

1) Activity Categories: Regarding activity categories, our
study covers a variety of aerobic exercises. During these ex-
ercises, the interference noise generated is more intense than in
other studies, making it more challenging to suppress noise for
accurate HR and RR estimation.

2) Performance Comparison: As shown in Table VIII, for
HR estimation, among passive in-ear microphone-based sys-
tems, hEARt [14] and Butkow et al. [27] uses a U-Net ar-
chitecture for spectral reconstruction, while A. Martin et al.
[12] apply Hilbert transform-based signal processing for HR
estimation. In contrast, our method combines EWT with deep
learning to extract additional heart-related features, improving
ECG reconstruction accuracy and outperforming these methods
across various activities. Unlike active acoustic systems such as
EarMonitor [28] and APG [29], which use speaker-microphone
pairs to capture detailed physiological signals, our passive sys-
tem leverages bone conduction occlusion to detect heart sounds.
Though active methods may perform better in high-motion
scenarios like running, our approach offers comparable accuracy
with lower power consumption. Compared to [12] and [30], our
system offers greater interference resistance and robustness.

For RR estimation, RRDetection [26] uses the IMU sensors
of commercial headphones for respiratory monitoring, while
[31] combines IMU and in-ear microphones to complemen-
tarily estimate RR. However, it relies on target detection to

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 24,2025 at 16:11:17 UTC from IEEE Xplore.  Restrictions apply. 



752 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 25, NO. 1, JANUARY 2026

TABLE VIII
THE COMPARISON OF HR ESTIMATION

TABLE IX
THE COMPARISON OF RR ESTIMATION

identify breathing energy clusters in discrete time-frequency
windows for RR estimation, which can result in some windows
failing to detect RR, leading to a lower monitoring retention
rate. In contrast, our method generates breathing waveforms
directly from the spectrogram, offering stronger continuity and
ensuring that every window can consistently reflect respiratory
frequency. Additionally, IMU signals are highly susceptible to
motion interference, so [31] can only estimate RR in scenarios
with minimal movement. BreathPro [15] uses both internal
and external microphones for RR estimation, employing the
external mic to mitigate noise interference. Our RR estimation
performs slightly worse under running conditions, primarily

due to the device’s reliance solely on an in-ear microphone,
which cannot capture external noise, making the task more
challenging. RespEar [32] reports MAEs of 1.48 RPM (resting)
and 2.28 RPM (walking/running), with MAPEs of 9.12% and
11.04%, respectively. Our method achieves an average MAE of
2.31 RPM and MAPE of 10.58% across all activities. While our
error is slightly higher in some cases, we use a 10-second win-
dow compared to RespEar’s 60-second window with 30-second
overlap, offering significantly better real-time performance.
Nonetheless, compared to [12], our approach can simultaneously
estimate HR and RR and demonstrates greater robustness against
interference.
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3) Deployment Comparison: Regarding latency, hEARt [14]
achieves HR estimation in 65.64 ms, and RespEar [32] requires
3.11 s and 12.27 s for its two RR estimation modes. Our system
performs HR and RR estimation jointly, with respective delays
of 1.08 s and 2.64 s. Although HR estimation latency is slightly
longer than that of hEARt, our RR estimation is significantly
faster than RespEar. Considering the slow variability of HR and
RR, our system still provides near-real-time feedback suitable
for practical applications.

VI. RELATED WORK

A. Mobile Physilogical Sensing

With the advancement of smart devices, many mobile devices
now have physiological sensing capabilities. Photoplethysmog-
raphy (PPG) is a widely used method, extensively applied in
smartwatches. Besides PPG, inertial measurement units (IMUs)
are also commonly employed in physiological monitoring. For
instance, D. Liaqat et al. [33] use the built-in IMU of smart-
watches combined with machine learning to estimate the user’s
respiratory rate (RR) during daily activities. P.-Y. Hsu et al. [34]
place a tri-axial accelerometer on the user’s sternum to measure
HR and RR before and after exercise. Additionally, Y. Cao
et al. [35] extract IMU signals from commercial wristbands and
use machine learning and deep learning methods to estimate
electrocardiogram (ECG) waveforms. X. Guo et al. [36] design
a hardware and software system based on biomagnetism to
monitor HR and respiratory rate in users of different skin tones,
significantly improving accuracy. However, for aerobic exer-
cises involving high-intensity and extensive body movements,
these methods may be less effective. For example, wristband
devices based on PPG exhibit an average error of up to 30%
during intense exercise [37]. ER-rhythm [38] use RFID tags
placed on the user’s limbs and chest to capture body movements
and breathing patterns during exercise, estimating locomotor-
respiratory coupling (LRC) through correlation methods. How-
ever, this method requires users to wear RFID tags and use
antennas, limiting its practicality. Additionally, there are efforts
to integrate extra sensors into masks for physiological monitor-
ing. For example, SpiroMask [39] uses consumer-grade masks
for lung function monitoring. C. Romano et al. [40] embed
microphones in the mask to monitor breathing during walking
and running. However, wearing a mask during aerobic exercise
affects the athlete’s breathing, disrupting normal performance.

B. Earable-Based Physilogical Sensing

Earable devices are easy to use, highly accepted by users, and
have integrated numerous sensors, including IMUs and in-ear
microphones. In recent years, researchers have made significant
advancements in earable physiological sensing, including appli-
cations such as ear disease monitoring [41], identity recognition
[42], [43], activity recognition [44], and more. For example,
Y. Cao et al. [45] designed a general-purpose acoustic sensing
platform based on commercial active noise-canceling (ANC)
headphones, demonstrating its functionality and adaptability
across various acoustic sensing applications. For HR estimation,

methods such as [30] have utilized ECG and PPG sensors on
Earable devices to monitor HR. hEARt [14], Butkow et al.
[27] and [12] have leveraged the occlusion effect for HR es-
timation. Techniques such as Earmonitor [28] and APG [29]
exploit the reflection of audio from speakers and microphones
to extract HR. For RR estimation, [31] have combined IMUs
with in-ear microphones to monitor RR, while BreathPro [15]
uses two microphones—one inside and one outside the ear—to
estimate RR during running. Most of these related works lack
the capability to simultaneously estimate HR and RR and are
predominantly conducted in stationary states, exhibiting poor
robustness. In contrast to previous studies, VitalEarenables reli-
able monitoring of HR and RR under motion conditions. Specif-
ically, we leverage EWT to preprocess audio-based heartbeat
information, which enhances feature robustness for downstream
deep learning models. This approach offers improved resilience
to noise compared to methods that do not incorporate signal
enhancement. Furthermore, we design a breathing waveform
reconstruction network that integrates both temporal and spatial
features, enabling the extraction of breathing signals from in-ear
audio. This architecture demonstrates superior generalizability
and performance in more complex physical activities and noisy
environments than existing methods. A detailed comparison of
related works is provided in Tables VIII and IX.

VII. DISCUSSION

VitalEarstill has some limitations at its current stage. First,
the system’s real-time performance can be further improved. To
reduce HR estimation errors, we uses the EWT as an audio data
preprocessing method. As described in Section III, the EWT
algorithm searches for M local maxima in the spectrum and
separates the detail coefficients. In practical applications, as
the sampling rate increases, the computational complexity of
searching for these maxima also increases. In the future, we
plan to optimize the performance of EWT’s search algorithm,
such as by exploring methods to reduce the sampling frequency
or narrowing the search range, to improve operational efficiency.

Second, since different physical activities introduce distinct
noise patterns, incorporating an activity classifier is indeed a
promising direction. By identifying the current activity in ad-
vance, the system can apply activity-specific denoising strate-
gies to improve the accuracy of HR and RR estimation. For
instance, as shown in Fig. 2, each activity produces characteristic
low-frequency noise, which may persist even after applying
Empirical Wavelet Transform. In future work, we plan to design
an activity recognition module and integrate it with an attention
mechanism that adaptively adjusts model parameters based on
the recognized activity. This approach is expected to enhance the
model’s robustness to activity-induced noise and further improve
estimation performance.

Additionally, our prototype device has potential for further
design improvements. We have already integrated an IMU sen-
sor in the current prototype to capture chest movements with
low motion interference, which helps address the issue of low
respiratory intensity during the resting state, a factor that reduces
RR estimation accuracy. In the future, we plan to further enhance
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the prototype by adding a speaker and sensors such as PPG in
the earbud, enabling multi modality HR and RR estimation for
more accurate results across a wider range of conditions.

As the hardware device designed in this study does not include
a built-in speaker, it is not possible to conduct experiments
involving simultaneous physical activity and music playback.
Nevertheless, this study discusses the feasibility of such a
scenario. For heart rate estimation, heart sound frequencies
are primarily concentrated below 50 Hz, while typical music
contains only about 1.5% of its energy in this range [46].
Therefore, the spectral overlap between heart sounds and music
is minimal, suggesting that music playback has limited inter-
ference with heart rate estimation. This indicates the potential
of the system to monitor heart rate during music playback. In
contrast, respiratory sounds occupy the 256 Hz to 5000 Hz range,
which overlaps significantly with the frequency spectrum of
most music. This presents challenges for accurate respiratory
rate estimation, as noted in previous studies [13]. Addressing
this issue may require hardware-level enhancements and signal
preprocessing. For example, subtracting the music signal from
the microphone input could help isolate respiratory sounds,
enabling more reliable estimation. Inspired by reference [32],
we can also explore the use of reconstructed ECG signals for
respiratory rate estimation based on the principle of respiratory
sinus arrhythmia (RSA). RSA reflects the modulation of heart
rate variability by respiratory activity. Therefore, by analyzing
the trend of heart rate variations in the reconstructed ECG signal,
it is possible to achieve effective estimation of the respiratory
rate.

Finally, in this work, we focus primarily on physiological
signal monitoring during aerobic exercises, and do not account
for performance under speaking conditions. In future work, we
will incorporate more activity categories and conduct experi-
ments in more complex scenarios, aiming to further improve the
system’s robustness. This will ensure that the system performs
effectively across diverse real-world conditions, thus enhancing
its reliability and adaptability across a broader range of activities.

VIII. CONCLUSION

This paper designs an earable physiological sensing system
based on an in-ear microphone, VitalEar, which enables HR
and RR estimation during various aerobic exercises. For HR
estimation, VitalEareffectively separates the heartbeat period
and harmonic coefficients, using them as additional features
combined with deep learning techniques to achieve accurate
HR estimation. For RR estimation, VitalEarconstructs spatial
and temporal feature extraction modules, effectively addressing
the diversity issues introduced by different users and exercise
intensities, while overcoming background noise interference.
And by capturing capture the long-term dependencies of breath-
ing, VitalEarachieves robust RR estimation. Through extensive
experiments and mobile deployment, we demonstrate the effec-
tiveness of VitalEarin HR and RR estimation, providing new
insights for the research and application of earable devices.
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