
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 1

UltraWrite: A Lightweight Continuous Gesture
Input System with Ultrasonic Signals on COTS

Devices
Yongpan Zou, Member, IEEE, Weiyu Chen, Yunshu Wang, Canlin Zheng, Wenfeng He, and Kaishun Wu, Fellow,

IEEE

Abstract—Due to the advantages of device ubiquity, natural in-
teraction and privacy preservation, acoustic-based gesture input
has received widespread attention. Researchers have proposed
various techniques for different applications. However, the ex-
isting work has shortcomings of heavy data-collection overhead,
non-continuous input, and performance degradation in cross-
user scenarios. To overcome these shortcomings, we propose
UltraWrite, an acoustic-based gesture input system that only
needs extremely low data-collection overhead, supports contin-
uous input, and achieves high cross-user recognition accuracy.
The key idea of our solution is to synthesize training data
of continuous gestures from isolated ones, build a lightweight
continuous gesture recognition model based on connectionist
temporal classification (CTC) mechanism, and design a novel
decoupled model training strategy to improve its cross-user recog-
nition capability. We have implemented prototype systems on
commercial devices and conducted comprehensive experiments
to evaluate their performance. The results show that UltraWrite
achieves an average top-1 word accuracy of 99.3% and top-1
word error rate of 0.34%. In addition, we have also evaluated
UltraWrite’s robustness to the sensing distance, angle, background
noise, and device. The results reveal that UltraWrite possesses
strong robustness to these factors.

Index Terms—Acoustic Sensing; Continuous Gesture Input;
Cross-Domain Learning; Connectionist Temporal Classification

I. INTRODUCTION

W ITH the emergence of smart devices, novel human-

computer interaction (HCI) techniques have garnered

growing attention from academia. Researchers have proposed

various HCI approaches for different applications. Among

them, human gesture recognition (HGR) is particularly at-

tractive and has been studied extensively which provides a

natural, innovative, and modern way of non verbal communi-

cation. According to the adopted sensing modality, the existing

works can be mainly categorized into vision-based [1, 2],

Y. Zou, W. Chen, Y. Wang, C. Zheng, and W. He are with the College of
Computer Science and Software Engineering, Shenzhen University, 3688 Nan-
hai Ave, Shenzhen, Guangdong, China, 518060. E-mail: yongpan@szu.edu.cn;
richardcwy426@gmail.com; wangyunshu2018@email.szu.edu.cn; zhengcan-
lin2020@email.szu.edu.cn.

K. Wu is with the Information Hub, The Hong Kong University of Science
and Technology (Guangzhou), 1 Duxue Road, Guangdong, China. E-mail:
wuks@ust.hk.

Copyright©2024 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

Manuscript received September xx, 2024

radio frequency-based [3–5], inertial sensor-based [6, 7], and

acoustic-based [8–16]. Among different approaches, gesture

recognition based on acoustic signals has gained much atten-

tion due to the ubiquity of sensors, fine-grained granularity,

and high robustness to ambient interference.

Fig. 1. Possible scenarios where UltraWrite can be applied

However, current works in this field have several key

limitations. First, they require collecting a massive amount of

training data to train a recognition model, which brings about

overwhelming labor overhead. For instance, UltraGesture [13]

and Ipanel [17] need to collect 100 and 50 samples for each

kind of gesture, respectively. The data-collection overhead

is particularly heavy for gesture-based text-input applications

since the categories of texts are more diverse. Although

model-based approaches such as FingerIO [14], Soundtrak

[15], and AMT [16] do not require extensive training, they

rely on multiple microphones for localization and tracking.

Moreover, due to strict frequency response requirements, these

methods are difficult to deploy on mobile devices, lacking

broad applicability. Second, the vast majority of existing

acoustic HGR systems recognize discrete gestures, meaning

there are pauses between gestures. This reduces the efficiency

and user experience of human-computer interaction, especially

in gesture-based text input applications. Although SonicASL

[18] can recognize continuous ASL gestures, they are not

able to recognize unseen words as its basic unit of training

data is a word. At last, existing works usually encounter

severe performance degradation for unseen users due to diverse

gesture habits. To address this issue, some works [19, 20]

personalize and fine-tune the already trained model, and others

[8, 21, 22] make use of domain adaptation techniques for

model optimization. However, such methods have two critical

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 2

deficiencies. On one hand, these models are computationally

expensive which are difficult to be supported by mobile de-

vices. On the other hand, these methods require an unseen user

to provide samples for retraining the model. For continuous

gesture input applications, this becomes unacceptable as the

number of feedback samples increases significantly. As a

result, a crucial question arises: Can we design a low-overhead
and cross-user-friendly system for continuous gesture text
entry?

In this paper, we utilize active sensing to capture finger-

writing activities with high-frequency acoustic signals emitted

from a speaker and received by a microphone which are avail-

able in commercial devices such as smartphones, tablets, and

PCs. To address the aforementioned challenges, we employ

several strategies in constructing our system called UltraWrite.

First, we propose a training dataset construction approach

based on decomposition and reconstruction to minimize sys-

tem overhead. The collection of continuous gesture data is

decomposed into the acquisition of isolated gestures, followed

by the synthesis of continuous gestures from these isolated

instances. Second, to accomplish continuous gesture input, we

formalize it as a natural machine translation (NMT) task and

make use of the Connectionist Temporal Classification (CTC)

mechanism to tackle the difficulty of annotating continuous

gesture data. To reduce the complexity of the model, we

apply LeNet and Bi-GRU as feature extractors and transla-

tion modules, respectively. Third, to address the cross-user

issue without adding usage costs for new users, we devise a

decoupled training strategy by integrating domain adaptation

during encoding reconstruction and model decoupling. We

use encoding reconstruction to train the feature extractor

to extract domain-independent features. Based on the above

techniques, we design a real-time system that is cost-effective,

supports continuous input, and exhibits excellent cross-user

performance. Fig. 1 shows the potential application scenarios

of UltraWrite.

In summary, our work highlights the following main con-

tributions:

1) We design a novel dataset construction scheme by

combining task decomposition and reconstruction with

a data augmentation method. This scheme can not only

effectively reduce the overhead of collecting training

datasets to an extremely low level, but also guarantee

a high recognition accuracy.

2) We transform the problem of continuous gesture input

into an NMT task and resolve it based on CTC mecha-

nism widely used in the speech recognition domain. In

addition, we also propose a cross-user training strategy

that combines domain adaptation for encoding recon-

struction with model decoupling training.

3) We implement a prototype real-time system on Android

platform on commercial mobile devices. The experimen-

tal results indicate that our system achieves an accuracy

of 99.29% for seen words and 83.04% for unseen words

across users, validating the promising practical usability

of UltraWrite.

The rest of this paper is organized as follows. Sec. II

discusses the related works. Sec. III introduces the details of

system design. In Sec. IV and Sec. V, we demonstrate the

system implementation, experimental setup, and performance

evaluation, respectively. Finally, Sec. VII concludes the paper.

II. RELATED WORK

A. Acoustic-based Gesture Recognition

Gesture recognition based on acoustic signals can be cat-

egorized into acoustic feature-based methods [13, 17, 23–

32] and model-based methods [14–16]. Zou et al. employed

the Doppler effect to create AcouDigit [23], EchoWrite [24],

and EchoWrite 2.0 [25], which allow for letter and number

input on mobile devices. Similarly, Wang et al. and Liu et al.

presented RoboCIR [26] and UltraGesture [13], respectively,

to detect changes in channel impulse response (CIR) resulting

from gestures, achieving high-precision recognition of 15 and

12 hand gestures. For alphabetic and numeric input, Yang

et al. used sound signals to develop WordRecorder [27] and

Ipanel [17]. Additionally, Ma et al. sequentially proposed Ubi-

Writer [28] and WritingRecorder [29]. However, feature-based

methods typically require the collection of a large amount of

training data. Additionally, the aforementioned methods are

unable to handle continuous gesture input.

Gollakota et al. proposed FingerIO [14], which implements

fine-grained finger tracking for gesture recognition by mod-

eling sound propagation. Similarly, Soundtrak [15] achieves

gesture recognition by extracting phase changes from the echo.

Zhu et al. proposed the AMT [16], realizing high-precision

gesture recognition. Although these approaches eliminate the

time-consuming and labor-intensive data collection process,

they often require multiple microphones for computation. By

leveraging the Doppler effect, we propose a novel cross-

domain training strategy and data synthesis approach, enabling

universal and lightweight continuous gesture recognition.

B. Continuous Gesture Recognition

Continuous gesture interaction has been shown to enhance

the user experience, particularly in scenarios involving text

input for human-computer interaction. To this end, Yang

et al. utilized motion sensors on smartwatches to develop

Signspeaker [33], which enables continuous input of Sign

Language gestures. Wang et al. proposed MyoSign [34] and

WearSign [35], which employ motion sensors and electromyo-

graphic (EMG) signals collected from Myo armband devices

[36]. They also developed WriteAS [37] for English input on

smartwatches based on IMU signals. Wang et al. developed

DeepSLR [38] for hand gesture recognition using two Myo

armbands. However, these systems rely on IMU and EMG for

gesture input, and DeepSLR [38] and WearSign [35] require

the collection of EMG signals to capture subtle muscle move-

ments, limiting their use on non-handheld devices. Further-

more, differences in signal processing schemes between the

two media prevent these systems from being interchangeable.

Jin et al. proposed SonicASL [18], which implements acoustic-

based continuous sign language recognition. The basic recog-

nition unit of SonicASL is a word, which means that the

system is not able to recognize words that have not appeared.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 3

In summary, the systems necessitate costly training datasets

and do not address cross-user issues.

C. Domain-Adaption Method

Zou et al. proposed JADA [21], and Wang et al. developed

Rfree-GR [22], both utilizing an adversarial domain adaptation

scheme to design model networks and training strategies to

address cross-domain user and cross-environment problems.

Yang et al. designed an adversarial domain adaptation deep

learning network framework to tackle cross-modal problems

in gesture interaction data [39]. Tang et al. proposed WiGr

[40], which uses a non-confrontational domain adaptation

scheme to measure the similarity of feature spaces between

two domains. This approach improves feature extraction for

cross-domain invariant features and addresses cross-user and

cross-environment challenges. Similarly, Pheng et al. proposed

MDO-K [41] to solve cross-modal challenges. Yang et al. pro-

posed AirFi [42], which mitigates the performance degradation

in cross-environment testing for WiFi sensing tasks by aligning

the feature distributions of the source and target domains to

the same prior distribution.

III. SYSTEM DESIGN

In this section, we elaborate on the design details of our

system. As illustrated in Fig. 2, we first characterize gesture

movements using the Doppler effect of sound waves. To reduce

the cost of constructing the training dataset, we use synthetic

instead of real collected data, employing data augmentation

methods to expand the dataset. Next, we design a model based

on CNN to extract features from the input data. Finally, these

features pass through a context encoder to produce output

words.

A. Doppler Effect

According to the Doppler effect, when a user writes within

the range of the speaker’s acoustic field, the recorded echo

signal by the microphone experiences a frequency shift. The

magnitude of this frequency shift is determined by the relative

motion velocity between the finger and the device, as described

by the equation:

Δf = f0 ·
∣∣∣∣1− vs ± vf

vs ∓ vf

∣∣∣∣ (1)

In this equation, the variables f0, vs, and vf represent the

frequency of the emitted signal, the speed of signal propaga-

tion in the air, and the speed of relative motion between the

finger and the device, respectively.

B. Signal Processing

The acoustic signal captured by the microphone is initially

converted into a spectrogram using an STFT with a Hamming

window. We set the frame length to 8192 and the window step

size to 512 based on empirical methods. We use a window size

of 100 frames with a 70% overlap for sliding segmentation.

1) Denoising: For our experiment, the transmission fre-

quency of the microphone is set to 19 KHz, and the velocity

of finger movement is measured to be approximately 2.5 m/s.

Consequently, the maximum frequency shift is calculated to

be 281 Hz according to equation Eq.(1). Thus, the theoretical

effective frequency band is [18722, 19281] Hz. To simplify

the calculations, we extend the effective frequency range to

[18700, 19300] Hz and extract the spectrogram data within

this range to eliminate background noise.

The spectrogram reveals that the frequency shift caused by

finger movement appears blurred, indicating a low signal-to-

noise ratio in the raw signal. This blurring is primarily due to

the direct transmission of the acoustic signal from the speaker

to the microphone, resulting in a strong frequency component

at the center frequency (i.e., 19 KHz), as illustrated in Fig.

3a. Consequently, we use a fourth-order Butterworth band-stop

filter to filter out the frequency band near the center frequency.
2) Gesture detection: Based on the denoised spectrogram,

we employ the cumulative sliding window method to intercept

the motion gesture signals. Referring to Eq.(1), the spec-

trogram illustrates an increase in the recorded echo signal’s

frequency when the finger approaches the device, as depicted

in Fig. 3a. Conversely, a decrease in the echo signal’s fre-

quency is observed, as shown in Fig. 3b. During periods

without gesture actions, all frequency components within the

current STFT frame exhibit signal strengths below 0 dB, as

demonstrated in Fig. 3c. To implement the sliding window

approach, we set the window size (Wslide) to 5 frames, with

a sliding step size of 2 frames.

Algorithm 1 Gesture Detection Algorithm

Input: Raw Spectrogram PRaw

Output: Gesture Spectrogram PGes

1: while True do
2: Wslide = GetSlideWindow(PRaw); {Window Sliding}
3: Flag = CheckGestureStart(Wslide); // Returns True if

the gesture is the starting point

4: StartPoint = Wslide[0];
5: while Flag do
6: Wslide = GetSlideWindow(PRaw);

7: Flag = CheckGestureEnd(Wslide);

8: if Flag = False then
9: Flag = CheckNext20StftWindow(PRaw);

10: end if
11: end while
12: EndPoint = Wslide[0];
13: pGes = PRaw[StartPoint : EndPoint];

14: PushToBufferArea(PGes);

15: end while

The current sliding window is positioned at the beginning of

the word gesture when the dominant frequency, which is the

frequency component with the highest signal strength, deviates

from 19 KHz within all frames encompassed by the sliding

window. Consequently, we designate the first window within

the sliding window as the starting point of the word gesture.

The sliding window progresses in increments of 2 frames.

Once the dominant frequency of all frames within the sliding

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 4

Window
framing

Fig. 2. The overview of UltraWrite’s architecture

(a) Colse (b) Remove (c) Norm

Fig. 3. Relationship between finger relative motion and fre-

quency variation

window equals 19 KHz, it marks the end of the word gesture.

In this case, we designate the first STFT window within the

sliding window as the tentative endpoint of the gesture action.

Furthermore, users may experience brief pauses between

letters while writing. Based on this, after determining the

endpoints, the sliding window examines the subsequent 20
frames (approximately 300 ms) to check if they contain gesture

instances. The aforementioned gesture detection process is

summarized in Algorithm 1.

3) Signal enhancement: Due to hardware constraints, si-

multaneous operation of these devices generates some noise.

These non-zero components appear as light yellow patches

in the spectrogram and are referred to as random noise. As

observed in Fig. 3b, the frequency shift induced by gestures

remains somewhat masked by this noise. To address this

issue, we employ normalization, Gaussian smoothing, and

thresholding techniques to enhance the signal of the detected

and intercepted gesture spectrogram denoted as PGes.

Firstly, we utilize zero-one normalization to scale the fre-

quency signal strength of the spectrogram to a value within

the range of [0, 1] dB. This normalization helps mitigate the

influence of absolute amplitude variations, as demonstrated in

Fig. 4a. Next, we employ the Gaussian blur method to smooth

the spectrogram. The Gaussian filter, which involves a 2D

convolution smoothing operation, effectively blurs the image

and removes finer details. This smoothing process is illustrated

in Fig. 4b. We set the window size (ksize) of Gaussian

smoothing to 5, and the standard deviation (σ) is set to 1. After

the Gaussian smoothing, we proceed with thresholding. Prior

to thresholding, we establish a threshold value (α) to determine

which elements of the spectrogram should be set to 0. Fig. 4c

illustrates the application of thresholding, where elements

exceeding the threshold are preserved. Through experimental

observations, we determine that an appropriate value for α that

maximizes the quality of the enhanced spectrogram can be set

to 6.8 in our system design.

(a) After Normaliza-
tion

(b) After Gaussian
smoothing

(c) After Threshold-
ing

Fig. 4. Different stages of signal enhancement of extrude the

doppler shifts pattern of word gesture “AM”

C. Gesture Design and Analysis

The system aims to achieve word gesture input, but each

person has unique handwriting characteristics. Conventionally,

building an extensive training dataset requires inviting different

volunteers to write word gestures. Moreover, in daily life,

there are up to 6200 high-frequency vocabulary words, making

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 5

it impractical to include all these words in the training set.

We decompose the collection of words into the collection of

letters. In this section, we standardize the writing of letters

and analyze the factors affecting gesture frequency offset.

1 2

3

1 2 1 2 1

2

3 1

2

3 1
2

3

1
2

3

1

2
1

2

3

1 2
3

1 2

3

1
2

1

2 1

2

3

1

2

1 2

1

2

3

4 1 2
1 2

3

1

2

3

4

Fig. 5. The basic stokes specification of letters

1) Gesture design: The letter gesture consists of multiple

strokes, and the frequency offset formed by writing different

strokes varies. Due to variations in writing habits, different

users may have different writing sequences for the same letter.

Taking the letter ’H’ as an example, some users may prefer

a vertical-horizontal-vertical writing style, while others may

lean towards a vertical-vertical-horizontal style. Similarly, if

letter gestures with different writing styles are simultaneously

collected, it would increase the construction cost of the training

dataset and make recognition more challenging. Therefore,

standardizing the writing of letters is necessary. After investi-

gating the writing habits of multiple volunteers and referring

to the teaching standards for children’s letter writing, we

standardize the writing of 26 letters as shown in Fig. 5. We

will discuss further in Sec. III-D.
2) Gesture analysis: According to Formula Eq.(1), the

frequency offset caused by gesture motion is determined by

the relative velocity between the microphone and the finger.

During the writing process, the relative velocity is influenced

by both the user’s writing speed and amplitude. Furthermore,

standardizing writing speed and amplitude is impractical as it

directly affects the user’s writing experience.
To summarize the impact of these two factors on gesture

features, we invite participant (V1) to write the letter ’A’ at

different speeds and amplitudes. The experimental results are

shown in Fig. 6. It can be observed that the amplitude of the

frequency offset increases with a higher writing speed, and

the writing time increases with a larger writing amplitude.

Additionally, when the writing amplitude is kept constant, an

increase in writing speed leads to a shorter writing time. Thus,

the frequency offset feature is influenced by both writing speed

and amplitude in the time domain, while in the frequency

domain, it is only affected by writing speed. We will discuss

this in detail in Sec. III-D.

D. Dataset Construction
Based on the analysis in Sec. III-C2, variations in writing

speed and amplitude among users introduce significant diver-

sity in the collected data, making data acquisition for gesture

(a) Slow speed (b) Mid speed (c) High Speed

(d) Small amplitude (e) Mid amplitude (f) Large amplitude

Fig. 6. ’A’ ’s spectrogram in different speeds and amplitudes

recognition systems a challenging and labor-intensive process.

However, we observe that for most users, writing speed and

amplitude fall within a fixed range. This observation en-

ables us to leverage data augmentation techniques to enhance

the original gesture features. Furthermore, we identify that

transitions between words can introduce additional Doppler

frequency shifts, which we refer to as ”reset gestures.” Given

the complexity of word-level data augmentation and the high

cost of data collection, using words as the augmentation unit

poses considerable challenges. To address this, we decompose

the augmentation unit into individual letters and reset ges-

tures. By applying time-warping techniques, we stretch and

compress these gestures in the time domain. Subsequently,

the discrete letter and reset gesture segments are synthesized

into words following the augmentation strategy, as illustrated

in Table I. This letter-level synthesis approach significantly

reduces the cost associated with acquiring a comprehensive

training dataset while maintaining the integrity of the gesture

recognition process.

We analyze the spectrograms of the 676 feasible combina-

tions of 2-gram letter gestures obtained from 26 letter gestures.

We categorize the starting and ending points of the gesture into

three positions: top, middle, and bottom, considering only the

finger’s distance in the direction perpendicular to the device.

By combining the stroke order of letters, we get six Doppler

frequency shift patterns, namely top to top (t2t), top to bottom

(t2b), middle to top (m2t), middle to bottom (m2b), bottom

to top (b2t), and bottom to bottom (b2b). Furthermore, the

t2t and b2b resetting gestures denote relative motions in the

direction parallel to the device, without significant frequency

shifts. As a result, we disregard these two resetting gestures

and ultimately select 26 letters and 4 resetting gestures as our

isolated gestures.

The Doppler shift pattern is influenced by the relative

motion speed between the finger and the smart device. The

relative movement speed is affected by both the writing

speed and magnitude. Based on the discussion in Sec. III-C2,

the writing speed influences both the time domain and the

frequency domain of the Doppler shift pattern, whereas the

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 6

writing magnitude solely affects the time domain. Therefore,

we focus on constraining the writing magnitude during the

collection of letter gestures and resetting gestures. Specifi-

cally, the volunteer was instructed to maintain a consistent

writing magnitude of 10×16 cm2. There were no restrictions

imposed on the writing speed within a single session, which

encompasses the writing of letter gestures from ‘A’ to ‘Z’.

(a) ρ = 0.80 (b) ρ = 1.00 (c) ρ = 1.20

Fig. 7. Enhancement results for different values of the factor

ρ for letter gesture ‘A’

1) Data augmentation: By implementing the letter and

homing gesture collection scheme described above, we en-

hance the diversity of the gesture data spectrograms in the

frequency domain. To further improve the diversity of the

spectrograms in the time domain, we employ a data augmen-

tation technique inspired by the time-warping technique used

in speech recognition. Specifically, for the spectrograms of the

input letter gestures or resetting gestures denoted as PGes(t),
we stretch or compress them in the time domain dimension

by factors ρ to generate new data spectrograms, denoted as

PGes(ρt). Through experimentation, we determine the factors

to be ρ ∈ [0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20].
With this data augmentation technique, each letter gesture or

resetting gesture data is expanded into nine new gesture data

instances. Fig. 7 displays the spectrograms of the letter gesture

‘A’ multiplied by the factors 0.80, 1.00, and 1.20, respectively,

illustrating the impact of the time-warping technique.

2) Data synthesis: In this Section, we identify the training

dataset construction scheme for reconstructing word gesture

data from letters and resetting gestures. Word gestures are

composed of letter gestures, and because there is a writing

order for the letter gestures within the word gesture, the letter

gestures are sequentially connected in the time domain of the

time-frequency map. Based on this observation, we design the

specific training dataset construction scheme.

Prior to collecting pseudo-word gesture data, we examine

the writing process of real word gestures and analyze the

characteristics of the shift pattern generated by these gestures.

As mentioned earlier, users may experience brief pauses

when writing word gestures. These pauses are reflected in

the spectrogram as interruptions in the Doppler frequency

shift, particularly in the time domain dimension. Furthermore,

in the absence of pauses, when users write these gestures

fluently, the Doppler frequency shift patterns formed by two

consecutive letter gestures may partially overlap or intersect in

the time domain. Moreover, during the word writing process,

users maintain a consistent writing speed and magnitude.

This implies that the letter and resetting gestures used for

synthesizing word gesture data should be written at similar

speeds and magnitudes to ensure fidelity to real-word writing.

By considering these observations, we can generate pseudo-

word gestures that closely resemble the real word gestures.
To ensure that the writing speed and magnitude of the

synthesized letters and resetting gestures closely match each

other, we select the letters and resetting gestures required for

a word from the same session of the data collection, using the

same data augmentation factor ρ. During the synthesis process,

we need to simulate two scenarios, namely, continuous writing

and writing with pauses. Let’s consider two spectrograms, P1

and P2, both representing letter gestures. First, we generate a

random parameter Gap within the range of [−25, 5]. If Gap
is negative, it simulates the occurrence of a pause during

writing. In this case, we create a spectrogram P̃ consisting

of |Gap| STFT frames, where each pixel value is set to

0. Next, we concatenate the spectrograms P1, P̃ , and P2

along the column dimension. In the case where Gap is zero,

it signifies continuous writing, and we directly concatenate

the spectrograms P1 and P2 along the column dimension.

However, the processing scheme becomes more intricate when

Gap is positive. We superimpose the last Gap STFT frames

P
′
1 of spectrogram P1 with the initial Gap STFT frames P

′
2 of

P2. For each pixel point, we select the larger value between

the corresponding pixel points of P
′
1 and P

′
2, as depicted in

Eq.(2).

P
′
(x, y) =

{
P

′
1(x, y) if P

′
1(x, y) > P

′
2(x, y)

P
′
2(x, y) otherwise

(2)

where P
′

represents the new spectrogram obtained from the

superimposed part, with the number of columns equal to

|Gap|. The variables x and y denote the coordinates of the

pixel points. It is important to note that when P1 represents

a resetting gesture and P2 represents a letter gesture, the

randomly generated parameter Gap can only be positive.

TABLE I: The word template encompasses five parts of

speech.

Part of speech Words

Verb
AM, ARE, IS, CAN, DO, HELLO, MAKE, SAY,
GIVE, PUT

Articles THE

Noun FAMILY, PERSON, JOB, QUIT, WORLD, ZERO

Pronouns YOU, THAT

Adverb HOW, WHAT, WHERE, WHY, BUT, NEXT

When synthesizing word gestures, we need to select a

word as a template. To ensure diversity, we have chosen

25 commonly used words from the Corpus of Contemporary

American English (COCA) as templates for synthesizing word

gestures. These words are selected based on the following

criteria: containing all 26 letters of the alphabet, sufficient

word length, and their ability to form meaningful sentences.

The 25 words are grouped according to their main parts of

speech and are summarized in Table I.
Fig. 9 illustrates the synthesis process of ”AM”, where the

letters ”A” and ”M” undergo a certain degree of stretching

and are combined with the corresponding GAP to synthesize

the word ”AM”.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 7

5x5 ConvTrans

FC-512

FC-256

FC-128

U
p-Sam

ple

5x5 ConvTrans

U
p-Sam

ple

5x5 Conv

2x2 Pool

BatchN
orm

5x5 Conv

2x2 Pool

BatchN
orm

FC-512

FC-256

FC-128
Encoder Decoder

CNN CNN CNN CNN CNN···

···

LinearLinear Linear Linear Linear

Step-2 Feature Extractor Translate Module

Lock Param

UnLock ParamBiGRU ··
·

BiGRU BiGRU BiGRU BiGRU

Step-1

Fig. 8. The model architecture. The feature extractor retains only the encoder from the autoencoder. During the training phase,

the parameters of the pre-trained feature extractor are frozen, and only the parameters of the translation module are adjusted.

Fig. 9. ”AM” is synthesized by combining ”A” and ”M” with

a pause

E. Model Training

In this subsection, we provide a detailed description of the

system modeling and the design of the cross-domain training

strategy. Fig. 8 illustrates the network framework that we have

designed. The framework encompasses our model composition

as well as the cross-domain training strategy.

1) Model design: We apply an analogous transformation

to convert the continuous gesture input task into an NMT task

[43], aiming to achieve continuous gesture input. The NMT

task can be further divided into two subtasks: a) encoding

and embedding the source sequence from the original rep-

resentation space to the feature space, which corresponds to

the feature extraction module; b) transcribing the encoded and

embedded feature vector sequence with context information,

which corresponds to the translation module.

In this system, the source sequence is the spectrogram frame

sequence, which can be considered a sequence of images. We

employ a CNN to encode and embed the original sequence.

We design the feature extractor based on the LeNet model,

taking into account factors such as model size, recognition

performance, and response time. Although there are other

classification models suitable for mobile devices, such as

AlexNet, MobileNet [44], and ResNet, they often have specific

requirements on the size and complexity of the training dataset.

Actually, LeNet proves to be a more suitable choice for our

task, as further elaborated in Sec. V-B4.

In our task, the source sequence aligns with the target

sequence, thus necessitating precise labeling of the source

sequence. To tackle the source sequence labeling difficulty,

we employ CTC. Specifically, we utilize the GRU model to

construct the Translation Module. Although there are other

classification models suitable for mobile devices, we find that

Bi-GRU yields the best results after comparing it with Bi-

RNN and Bi-LSTM, as detailed in Sec. V-B5. Following the

Bi-GRU layer, we include a linear layer that outputs a letter or

null label ε for each spectrogram frame in the source sequence.

Considering the size of the translation module, we opt to use

an encoder instead of a decoder during its design.

2) Cross-domain training strategy design: The data syn-

thesis approach significantly reduces the cost associated with

data collection. A crucial question that arises is whether new

users can effectively utilize UltraWrite for gesture recognition

without providing any samples. In conventional deep learning

modeling, it is generally assumed that the training dataset

(source domain) and the test dataset (target domain) are

independent and identically distributed (i.i.d.). However, this

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 8

assumption often fails to hold in real-world application scenar-

ios. In our task, the source domain consists of a synthetically

generated dataset, while the target domain comprises real-

world data collected from users. This discrepancy introduces a

challenge for the model’s cross-domain recognition capability,

as the distributional shift between the two domains may hinder

generalization performance.

We observed that the primary difference between the source

and target domains lies in the Doppler frequency bandwidth

caused by gestures. This difference can be explained by

two factors. First, when different users perform the same

gesture, slight variations occur in the movement patterns of

the entire arm during the writing process due to uncontrollable

factors such as palm size, arm length, and finger thickness.

These slight variations in movement are captured through the

scattering properties of sound waves, resulting in differences in

the width of the frequency bandwidth. Additionally, different

users may execute certain strokes differently when performing

the same gesture. However, it is important to note that despite

these differences, the source and target domains still belong

to the same homogeneous data domain, and the Doppler shift

similarity of the same word gesture remains high. In summary,

although there are some minor differences in the Doppler

frequency shift features caused by different users performing

the same gesture, the overall trend remains highly similar.

Therefore, we need to ensure that the model focuses on the

Doppler shift trend in gesture data rather than on minute

details.

In conventional encoding recognition domain adaptation

training strategies, the feature extraction module, decoder,

and classifier are typically jointly trained. Nevertheless, joint

training of these sub-modules can introduce coupling rela-

tionships that may hinder each sub-module from focusing on

its specific task. Based on this consideration, we devise a

cross-domain training strategy that involves training the feature

extractor and the translation module separately, effectively

decoupling the modules. To enable the feature extractor to

capture common features, we train it using an autoencoder

framework to accomplish source data reconstruction, and the

loss function is defined by Eq.(3).

Lrec =
1

n

n∑
i=1

(Xi − X̃i)
2 (3)

where n represents the count of spectrogram frames, i denotes

the spectrogram frame index, and x refers to the reconstructed

spectrogram frame. To prevent bias in the feature extractor

during translation module training, we fix its parameters and

adjust only those of the translation module, as shown in Fig. 8.

The loss calculation during the training of the translation

module is obtained by Eq.(4).

LCTC =
∑

(X,Y)∈B

− logP (Y |X) (4)

where X and Y respectively represent the input sequence and

the corresponding label of the same batch B.
3) Bayesian spelling correction: We employ Bayesian

inference to correct the model’s outputs. Let’s assume that a

word gesture’s spectrogram consists of T spectrogram frames.

As we know, the model generates a 27-dimensional likelihood

vector for each spectrogram frame. This vector includes a

blank character ε, as required by the CTC encoding rule, and

26 letter characters. We denote the model’s output probability

matrix as M. Based on M, we obtain a temporary word

W̃ = w̃1, w̃2, · · · , w̃T . To maximize the probability of W̃ , the

character with the highest probability in the vector is typically

selected as the label for the current frame. Its probability can

be calculated by Eq.(5).

P (W̃) =
T∏

t=1

max
0≤i≤26

Mt,i (5)

w̃t = li = arg max
0≤i≤26

Mt,i (6)

where i represents the index of the probability vector for each

frame, and li denotes the character corresponding to index i
with the highest probability. However, errors in the output of

certain frames can lead to misspellings in the final word output

W , including letter substitutions, deletions, or insertions. To

obtain the correct word, we introduce word frequency into the

calculation of the current frame probability.

According to the Markov chain assumption, the output of

several previous frames should be taken into account concur-

rently when determining the label for the current frame. This

consideration, which involves only the labels from the previous

frame, is referred to as a 2-gram dependency. Let i and j repre-

sent the indices corresponding to the labels of the current and

previous frames, respectively. The transition probability P (j, i)
can be derived by calculating the corresponding frequencies

within a large dataset of words, as follows:

P (li|lj) =
Cwt−1,wt

Cwt−1

=
Clj ,li

Clj ,A→Z
(7)

where Clj ,li denote the frequency of the letter combination

(lj , li). Clj ,A→Z denote the frequency of the letter combi-

nation that the first letter w̃t−1 is lj . When t − 1 equals 1,

meaning that w̃t−1 is the first letter of the temporal word W̃ ,

the corresponding P (li|lj) reduces to P (li). There is a special

case where the transition probability is set to 1 when one of

the characters in the current or previous frame is blank ε.
Consequently, Eq.(5) and Eq.(6) can be simplified as follows:

P (W̃) =

T∏
t=1

max
0≤i,j≤26

P (li|lj)×M(t, i) (8)

w̃t = li = arg max
0≤i,j≤26

P (li|lj)×M(t, i) (9)

Following the aforementioned procedure, probabilities of

mapping the input spectrogram frame sequence to different

candidate words of the same length T are obtained. Based on

these probabilities, we select the top-ranked temporary words

W̃ as candidates. Once the temporary word W̃ is obtained, we

generate the final output word W = w1, w2, · · · , wN (N ≤ T)

in accordance with the CTC encoding rule.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 9

IV. IMPLEMENTATION AND EXPERIMENTS

A. Implementation

We implement UltraWrite as an Android application on

a Samsung Tab S2 whose speaker emits sinusoidal acoustic

wave at 19 KHz and the microphone receives echo signals with

a sampling rate of 44.1 KHz. After receiving the echo signals,

the system processes signals following the pipeline as shown

in Fig. 2. The deep learning model is trained with PyTorch on

a a server with an Intel(R) Xeon(R) Platinum 8260 CPU and

NVIDIA GeForce RTX 2080Ti GPU. After that, the trained

model is packed into a pt file and deployed on the tablet. In

this work, we have only tested UltraWrite with a single device

owing to the consideration that most commercial smart devices

are capable of emitting and receiving 19 KHz acoustic signals,

and share similar frequency response. However, speakers on

different devices indeed possess some differences in frequency

response and can easily have dips or spikes at various output

ranges. Such differences may impact the system performance.

We leave this evaluation as one of our future works.

B. Experimental Setup

We randomly select 10 volunteers (denoted by V1 to V10),

including one female and nine males, to participate in the data

collection process on campus. The ages of the volunteers range

from 22 to 25 years old, and all are right-handed. Prior to

conducting the specific experiments, we provide the volunteers

with gesture writing specifications.

Data collection takes place in a quiet laboratory environment

with noise levels below 50 dB. Specifically, we placed the

data collection equipment flat on the table, facing the user’s

microphone, and then set up a 10×16 cm2 square centimeter

matrix in a vertical direction about 5 centimeters away from

the speaker, where the user accomplishes the writing within

this range. Fig. 10 illustrates the experimental setup. During

the writing process, the user remains quiet, and the equipment

remains stationary. Finally, we collect the letter gesture dataset

and word gesture dataset in this environment. We invite only

one volunteer (V1) to collect the letter dataset. The volunteer

writes from ‘A’ to ‘Z’ in order, forming a round of letter data.

In the same round, the volunteer writes at a similar speed

as much as possible between gestures (letter or reset gesture)

with an interval of approximately 1 second. In the end, we

obtain 15 rounds of a total of 450 gestures, including 390
letter gestures and 60 reset gestures.

To collect the testing dataset, we invite 10 volunteers

(including V1) to participate in the collection of word gesture

data. The data collection task is based on 25 words shown in

Table I, with each word written 15 times. After collecting the

data, we perform a simple check to remove some samples that

are unusable due to device or collection process anomalies. In

the end, each volunteer collects an average of 351 word gesture

samples.

V. EVALUATION

In this section, we evaluate UltraWrite’s performance from

different aspects. We employ word accuracy (W-Acc) as the

(a) tablet 0◦ (b) tablet 30◦

(c) phone 0◦ (d) phone −30◦

Fig. 10. The experimental setup

main metric which denotes the ratio of the sample count that

is correct to the total sample count.

W −Acc =
CountTrue

CountAll
(10)

We also use char error rate (CER) as the other evaluation

metric which is defined by Eq.(11).

CER =
Nsub +Ndel +Nins

NGroundTruth
(11)

where Nsub, Ndel, and Nins denotes the number of required

substitutions, deletions, and insertions, respectively. The top-

k terms are considered when calculating the criterion, as the

correction process produces the highest probability candidates.

A. Overall Performance

1) User-independent recognition: In the user-independent

test, we train the model using the synthetic dataset, which is

described in Sec. III-D, and evaluate the model on a test dataset

of word gestures written by volunteers in real-world scenarios,

the output is corrected using Bayesian correction. The output

is then corrected using Bayesian correction. Fig. 11 displays

the results of the cross-user case. Among the volunteers, we

collect the isolated gesture data used to synthesize the word

gesture dataset from V1. Therefore, V1 is a non-cross-user case

with a top-1 CER of 0% after correction by a language model.

The remaining volunteers were involved in the cross-user tests.

When considering only cross-user cases, the average top-1,

top-3, and top-5 W-Acc were 99.29%, 99.67%, and 99.74%,

respectively, and the corresponding average CER were 0.38%,

0.24%, and 0.20%, respectively. On average, there were 8
word recognition errors per volunteer. Among them, V9 had

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 10

the worst test results with the top-1, top-3, and top-5 W-

Acc of 98.22%, 98.81%, and 99.11%, respectively, and the

corresponding CER of 1.14%, 0.89%, and 0.73%, respectively.

This is because V9’s fingers may sway while writing, yet the

system still maintains a relatively high accuracy.

This experiment demonstrates where the proposed system

in this work achieves superior recognition performance in

cross-user scenarios. It is observed that the writing trajectories

of ”I”, ”J”, ”L”, and ”T” in Fig. 5 are similar. However,

when our recognition unit is the entire word, this similarity

does not impact the recognition accuracy. This is because the

system leverages relationships between letters within words

for recognition. Additionally, Bayesian modeling is applied to

refine the output. Simultaneously, the excellent cross-user per-

formance ensures that new users can have a good experience

with UltraWrite without any additional cost.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

−0.8

−0.4

0.0

0.4

0.8

1.2

1.6
C

E
R

 (%
)

 top-1 W-Acc top-1 CER

 top-3 W-Acc top-3 CER

 top-5 W-Acc top-5 CER

User ID

W
-A

cc
 (%

)

Fig. 11. The recognition performance in cross-user scenarios

2) Unseen word recognition: When users use the system,

there is a possibility that the system has not seen the word

gestures during the model training process. To evaluate the

system’s generalization ability to unseen words, we replace

the training dataset while retaining the test dataset. This

allows the model to recognize words it has not encountered

during training. To this end, we design a data template that is

completely different from the words in Table I to reconstruct

a synthetic dataset for model training. Specifically, we extract

all 2-gram and 3-gram letter combinations of the words in

Table I, and modify words of length 2 or 3 by substituting,

deleting, or inserting letters. Then, we combine the 2-gram and

3-gram letter combinations to form n-gram (n ∈ [2, 9]) letter

combinations, which serve as the template for synthesizing

the training dataset, as described in Sec. III-D. During the

testing phase, the input word gestures correspond to the words

in Table I. This test only changes the training dataset and

not the other settings. As shown in Fig. 12, the performance

of the system on unseen word gestures is reduced. However,

the top-5 W-Acc of all volunteers can still reach over 93%,

and the average top-1, top-3, and top-5 W-Acc are 83.04%,

91.65%, and 94.37%, respectively. These results indicate that

the system still maintains a reasonable recognition accuracy

for unseen word gestures, further affirming the rationality

of our system design. Additionally, the experiment validates

the applicability of UltraWrite to unseen words, theoretically

enabling the recognition of any unseen word.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

−4

0

4

8

12

C
E

R
 (%

)

 top-1 W-Acc top-1 CER

 top-3 W-Acc top-3 CER

 top-5 W-Acc top-5 CER

User ID

W
-A

cc
 (%

)

Fig. 12. The recognition performance in unseen word scenarios

B. Ablation Study

In this section, we conduct a series of ablation experiments.

The cross-domain training strategy proposed in the Sec. III-E2

improve the model’s generalization and the synthesized dataset

through the method proposed in Sec. III-D, significantly re-

ducing user costs. Additionally, spelling correction effectively

enhances W-Acc. Finally, to further lighten the system while

maintaining good performance, we carefully select the feature

extractor and the translation module.

1) Impact of cross-domain training strategy: In this part,

we evaluate the effectiveness of the cross-domain training

strategy proposed in Sec. III-E2. When testing without the

cross-domain training strategy, the training dataset consists of

synthetic word gesture dataset (D9), and only the CTC loss is

used as the loss function during the model training.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

User-ID
 w/o Training strategy W-Acc w/o Training strategy CER

 w Training strategy W-Acc w Training strategy CER

0

5

10

15

20

25

30

W
-A

cc
(%

)

C
E

R
(%

)
Fig. 13. The recognition performance with or without cross-

domain training strategy

Without employing our training strategy, the feature extrac-

tor does not utilize the reconstruction encoder and is trained

together with the translation module. Compared to the results

obtained using the cross-domain training strategy, the system

performance without the strategy significantly declines, as

shown in Fig. 13. It is noted that V1 is a non-cross-user

test, hence exhibiting minor performance degradation. For

the remaining users undergoing inter-user testing, there is a

substantial performance decline. The average top-1 W-Acc

decreases by 22.45%. Additionally, we calculate the difference

in CER for each user between scenarios with and without the

cross-domain training strategy. With the cross-domain training

strategy, the average top-1, top-3, and top-5 CER of the system

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 11

None Ours Adversarial ER PDA
50

60

70

80

90

100

0

5

10

15

20

C
E

R
 (%

)

 top-1 W-Acc top-1 CER

 top-3 W-Acc top-3 CER

 top-5 W-Acc top-5 CER

W
-A

cc
 (%

)

Fig. 14. The recognition performance with different cross-

domain training strategies

with cross-domain training strategy decreases by 17.16%,

14.86%, 14.01%, respectively.

In addition, we compare the effects of three data augmenta-

tion strategies: Adversarial Domain Adaption [45], Encoding

Reconstruction (ER) [46], and Prior Distribution Alignment

(PDA) [47], on the cross-user recognition performance of our

system. We conduct tests on nine volunteers (V2 to V10) and

the results are presented in Fig. 14. The results indicate that

all the three strategies can improve the system’s recognition

performance. However, the improvement achieved by these

strategies is still inferior to that of the cross-domain training

strategy proposed in this work. We believe that Adversarial

[45] may cause the extracted features to lose original infor-

mation, which can lead to encoding errors in the translation

module. The PDA [47] also faces similar problems, albeit to a

lesser degree. On the other hand, the ER [46] is more similar

to the strategy proposed in this work. The key difference

lies in our proposed cross-domain training strategy fusion’s

decoupled training approach. These results underscore the

necessity and effectiveness of our fusion decoupling training

approach. In conclusion, our proposed cross-domain training

strategy yields the most significant improvement in the sys-

tem’s recognition performance in cross-user scenarios. Fur-

thermore, this strategy does not require new users to provide

personal samples, making it more user-friendly and having

greater practical value. These results effectively demonstrate

the efficacy of our cross-domain training strategy.

D1 D3 D5 D7 D9

50

60

70

80

90

100

0

2

4

6

 top-1 W-Acc top-1 CER

 top-3 W-Acc top-3 CER

 top-5 W-Acc top-5 CER

Fig. 15. The recognition performance when training with

synthetic datasets of different scales. Di represents training

dataset (i = 1, 3, 5, 7, 9), where i indicates that the dataset is

increased by i times.

2) Impact of training dataset construction: In this part,

we evaluate the effectiveness of the train dataset construction

scheme described in Sec. III-D. We determine the scale of

the synthesized dataset by setting the scaling factor ρ. A

value of 1.0 for ρ means that data augmentation is not

used during dataset synthesis. We expand the value range

of ρ by 0.5 increasing two values at a time. The results

are shown in Fig. 15. When D1 is used for training, the

top-1, top-3, and top-5 CER are 5.13%, 3.92%, and 3.52%,

respectively. The corresponding W-Acc is 91.15%, 94.48%,

and 95.22%, respectively. These results indicate that the use

of only the synthesized word gesture dataset as the training

dataset is feasible. With the addition of data augmentation, the

recognition performance of the system improves, especially

with the wider value range of factor ρ. Our system achieves

the best recognition performance in D9. The top-1, top-3, and

top-5 CER are 0.34%, 0.22%, and 0.18%, respectively, and

the corresponding W-Acc is 99.36%, 99.71%, and 99.77%,

respectively.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

 w/o Spelling correction W-Acc w/o Spelling correction CER

 w Spelling correction W-Acc w Spelling correction CER

User-ID

0

2

4

6

C
E

R
(%

)

Fig. 16. The recognition performance with or without spelling

correction

3) Impact of spelling correction: In this section, we eval-

uate the spelling correction proposed in Sec. III-E3. Keeping

other settings unchanged, we apply spelling correction and

no spelling correction to the words predicted by the network,

respectively, as shown in Fig. 16. The average top-1 W-Acc

without correction is 92.99%, with a CER of 2.67%; with

correction, the average top-1 W-Acc is 99.36%, with a CER

of 0.34%. Compared to no spelling correction, the average W-

Acc after correction has increased by 6.36%, demonstrating

the effectiveness of the spelling correction module.

4) Impact of feature extractor: In UltraWrite, we de-

sign a feature extractor based on LeNet that can effectively

extract abstract features from the raw spectrogram frames.

We also examine different CNN models including AlexNet

[48], MobileNet-v3 [44], and ResNet-18 [49] as the feature

extractors on the system’s performance. This evaluation only

changes the backbone of the feature extractor without any

other settings. Fig. 17 presents the evaluation results, which

show that the overall recognition performance is best when

using LeNet as the feature extractor. The top-1, top-3, and

top-5 W-Acc are 99.36%, 99.71%, and 99.77%, respectively.

As the complexity of the model increases, the system’s

recognition performance decreases. As analyzed in Sec. III-E,

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 12

the dataset used in this work is relatively simple. When the

feature extractor is too complex, the features will be more

inclined towards the training dataset, resulting in overfitting.

Additionally, LeNet has the smallest model size, at only 0.27
MB. The sizes of AlexNet, MobileNet-v3, and ResNet-18

are 213 times, 16 times, and 42 times larger than LeNet,

respectively. Considering the test results and the model size, it

is most reasonable to opt for LeNet as the basis for designing

the feature extractor.

Lenet-5 AlexNet MobileNetV3 ResNet18
50

60

70

80

90

100

−2

0

2

4

6

C
E

R
 (%

)

 top-1 W-Acc top-1 CER

 top-3 W-Acc top-3 CER

 top-5 W-Acc top-5 CER

W
-A

cc
 (%

)

Fig. 17. The recognition performance of different networks

acting as feature extractor

5) Impact of translation module: In UltraWrite, we design

a translation module based on Bi-GRU to encode the feature

sequence extracted from the feature extractor in context. In

this section, we also conduct evaluation of the impact of

using different models as the translation module, including

RNN, LSTM, GRU, Bi-RNN, Bi-LSTM, and Bi-GRU. For

a fair comparison, the layers of these models are all set to

be 2, and the bidirectional parameters are set to be true.

Eventually, we only change the backbone of the translation

module in this test, leaving other settings unchanged. The

evaluation result is presented in Fig. 18, which indicates that

the bidirectional networks can capture context information

better than the corresponding unidirectional networks. After

statistical analysis, compared with the corresponding unidi-

rectional networks, the top-1, top-3, and top-5 average W-

Acc of the three bidirectional networks increase by 20.91%,

13.40%, and 12.20%, respectively. Among them, Bi-GRU and

Bi-LSTM have the best performance, with the top-1 W-Acc of

99.36% and 99.03%, respectively, with a negligible difference

between them. However, in terms of model size, Bi-GRU is

only 6.70 MB, while Bi-LSTM is 8.93 MB. After combining

the test results and the model size, it is the most reasonable

choice to design the translation module based on Bi-GRU.

C. System Robustness

To investigate the impact of sensing distance, angle, back-

ground noise and device on the results, we invite three

volunteers (V2, V3, and V5) to participate in the testing process.

1) Impact of distance: To evaluate UltraWrite’s robust-

ness to different distances, we conduct three sets of contrast

experiments, including: 1) Close, 5 cm; 2) Medium, 15 cm;

and 3) Far, 25 cm. The experimental settings are illustrated

in Fig. 19a. Volunteers are asked to write word gestures at

different distances as described above. The evaluation results

RNN GRU LSTM Bi-RNN Bi-GRU Bi-LSTM
0

20

40

60

80

100

−5

0

5

10

15

20

C
E

R
 (%

)

W
-A

cc
 (%

)

 top-1 W-Acc top-1 CER

 top-3 W-Acc top-3 CER

 top-5 W-Acc top-5 CER

Fig. 18. The recognition performance of different networks

acting as translate module

are shown in Fig. 19b. Our findings show that the system

performance decreases as the sensing distance increases. When

the perceived distance increases to 15 cm, the system perfor-

mance is slightly degraded, with the top-1, top-3, and top-5

W-Acc decreasing by 2.01%, 1.53%, and 1.12%, respectively.

When the perceived distance increases to 25 cm, the top-1, top-

3, and top-5 W-Acc decrease by 4.75%, 3.72%, and 3.18%,

respectively. Nevertheless, the overall W-Acc remains above

95%, indicating that UltraWrite has great robustness to sensing

distance.

(a) Distance setup

5cm 15cm 25cm
70

80

90

100

 top-1 W-Acc top-1 CER

 top-3 W-Acc top-3 CER

 top-5 W-Acc top-5 CER

Sensing Distance (cm)

W
-A

cc
 (%

)

−4

−2

0

2

4

6

 C
E

R
 (%

)

(b) Experimental result

Fig. 19. The impact of different distances

2) Impact of angle: Due to differences in users’ writing

habits, there may be variations in the writing angle. To evaluate

UltraWrite’s robustness to sensing angles, we conduct five sets

of contrast experiments based on the sensing angles that may

be encountered in practical usage. The sensing angles were set

to −30◦, −15◦, 0◦, 15◦, and 30◦, respectively, as shown in

Fig. 20a, where the writing range moves to the left indicating

a negative angle. We then instruct volunteers to perform word

gestures at different angles.

The result presents in Fig. 20b, demonstrate that the sys-

tem’s recognition performance gradually declines as the angle

increases. Notably, the performance degradation is more sig-

nificant at positive angles compared to negative angles. This

phenomenon can be attributed to the placement of the Tab

S2 speakers, which are positioned on the positive angle side.

When users perform gestures at positive angles, the relative

motion between their fingers and the device becomes more

pronounced, leading to greater variability in the input signals.

The system performs the worst when the sensing angle is

30◦, with the top-1, top-3, and top-5 W-Acc being 96.66%,

97.99%, and 98.26%, respectively. Nevertheless, UltraWrite
demonstrates robustness to sensing angles, with an overall W-

Acc above 96%.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 13

(a) Angle setup

−30 −15 0 15 30
90

92

94

96

98

100

 top-1 W-Acc top-1 CER

 top-3 W-Acc top-3 CER

 top-5 W-Acc top-5 CER

Sensing Angle(°)

W
-A

cc
 (%

)

−1

0

1

2

3

 C
E

R
 (%

)

(b) Experimental result

Fig. 20. The impact of different angles

3) Impact of noise: Due to the ambient noise level in ev-

eryday environments being below 70 dB, we conduct two sets

of comparison experiments with noise levels of [50, 60] dB and

[60, 70] dB, respectively. To control the noise level, we play

various audio files of different kinds of noise, such as daily

talking, speech, music, rain sounds, etc., at controlled volume

levels. Then, we ask volunteers to perform word gestures in

different noise. We summarize the results according to the

noise level, as shown in Fig. 21. It is apparent that the CER

and W-Acc in the lab environment are very close to those in

the noisy environment, and the difference is negligible. After

analysis, we found that the frequency of environmental noise

mainly concentrates below 1 KHz, which can be effectively

removed after the signal preprocessing in Sec. III-B.

4) Impact of devices: To account for potential differences

in data resulting from speaker and microphone locations,

as well as hardware issues, UltraWrite’s universality across

different smart devices is evaluated through three control ex-

periments involving Samsung Tab S2 (used solely for gesture

collection), Samsung Galaxy S9, and Xiaomi MI9. The results,

presented in Fig. 22, reveal that Xiaomi MI9 achieves top-

1, top-3, and top-5 W-Acc of 96.93%, 98.86%, and 99.32%,

respectively, with a slight decrease compared to Samsung Tab

S2. Conversely, the performance of Samsung Galaxy S9 shows

significant degradation, with top-1, top-3, and top-5 W-Acc

of 91.51%, 94.66%, and 95.21%, respectively. These results

demonstrate that performance variations may occur due to

sensor differences.

(0, 50] [50,60] [60,70]
50

60

70

80

90

100

 top-1 W-Acc top-1 CER

 top-3 W-Acc top-3 CER

 top-5 W-Acc top-5 CER

Noise level (dB)

W
-A

cc
 (%

)

−2

−1

0

1

2

 C
E

R
 (%

)

Fig. 21. The impact of differ-

ent noise levels

Tab S2 Galaxy S9 MI9
50

60

70

80

90

100

110

 top-1 W-Acc top-1 CER

 top-3 W-Acc top-3 CER

 top-5 W-Acc top-5 CER

Sensing Device

W
-A

cc
 (%

)

−4

−2

0

2

4

6

8

 C
E

R
 (%

)

Fig. 22. The impact of differ-

ent devices

D. System Running Performance

In this section, we conduct a comprehensive performance

evaluation of UltraWrite, considering metrics such as response

time, CPU and memory utilization, and power consumption.

We randomly selected participant V1 for the word gesture input

experiment, where each word gesture is written five times.

1) Response time: The response time of UltraWrite pri-

marily consists of data processing, word prediction, and spell

T
ab

 S
2

G
al

ax
y

S
9

M
I9

0 500 1000 1500 2000 2500 3000 3500
Time (ms)

 Data processing Model prediction Spelling correction

Fig. 23. UltraWrite’s response time

correction. To eliminate the influence of performance dis-

parities among devices, we conduct tests on Samsung Tab

S2, Samsung Galaxy S9, and Xiaomi MI9, as depicted in

Fig. 23. The results reveal that the word prediction phase

constitutes the largest proportion of the total processing time.

This is attributed to our translation module based on GRU,

which requires the current time step to calculate the next time

step and cannot be parallelized. Additionally, data processing

accounts for a significant portion of the response time, as we

need to handle empty signal segments. Tab S2 exhibits the

longest response time, recognizing only 18 word gestures per

minute, while Galaxy S9 and MI9 average approximately 31

and 21 word gestures per minute, respectively. Finally, it is

evident that longer input words result in longer response times.

0 50 100 150 200 250 300
0

20

40

60

80

100

0

10

20

30

40

M
em

or
y

us
ag

e
(%

)

C
PU

 u
sa

ge
 (%

)

 CPU Memory

Time (s)

Fig. 24. UltraWrite’s CPU and memory occupation

2) CPU and memory occupation: UltraWrite is deployed

on Android, allowing the use of the ’top’ command to query

resource utilization during system operation. We connect Tab

S2 to a PC, enabling the participant to engage in contin-

uous gesture input for five minutes while querying CPU

and memory usage every second. The results, as depicted

in Fig. 24, indicate that during the gesture input and signal

processing stages, CPU and memory usage remain relatively

low, approximately 12.5% and 13%, respectively. However,

in the word prediction phase, there is a sudden increase in

both CPU and memory usage, with the CPU reaching 100%,

and memory usage remaining below 36% (memory usage

positively correlates with the length of input word gestures). In

conclusion, the system consumes substantial device resources

during the prediction phase.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 14

TABLE II: Comparison with others continuous gesture input systems

Work Modality Training users1 Samples2
Seen word Unseen word

single-user cross-user single-user cross-user

Signspeaker [33] IMU 16 11680 98.96% 89.30% - -

DeepSLR [38] IMU+EMG 34 20400 89.20% - - -

MyoSign [34] IMU+EMG 15 7500 - 93.10% 92.40% -

WriteAS [37] IMU 12 22500 97.60% 84.60% 93.40% 83.80%

WearSign [35] IMU+EMG 15 10375 99.71% 94.50% 91.40% 89.20%

SonicASL [18] Acoustic 8 9600 90.60% - - -

Ours Acoustic 1 450 100% 99.74% 98.37% 93.92%

Training users1: The number of training users.
Samples2: The training data samples for constructing a gesture recognition system.

0 5 10 15 20 25 30
90

92

94

96

98

100

 Galaxy Tab S2 (Setup 1) Galaxy Tab S2 (Setup 2) Galaxy Tab S2 (Setup 3)

 Galaxy S9 (Setup 1) Galaxy S9 (Setup 2) Galaxy S9 (Setup 3)

Time (min)

En
er

gy
 (%

)

Fig. 25. UltraWrite’s battery consumption

3) Battery consumption: We also test the real-time power

consumption of UltraWrite’s on the Samsung Tab S2 and Sam-

sung Galaxy S9 (Setup 1). Participants perform continuous

gesture input for 30 minutes, with the battery level recorded

every 5 minutes. Additionally, we track power consumption

for the UltraWrite application being open but with no other

actions performed (Setup 2) and for the device screen being

simply on (Setup 3). As shown in Fig. 25, after 30 minutes

of continuous operation, the Tab S2’s battery level drops to

90.93%, with an average decrease of 1.51% every 5 minutes.

The Galaxy S9 maintains a battery level above 90%. Moreover,

when the device is idle or the app is open but not in use, the

battery consumption differs by no more than 1.5%. Compared

to Setup 2 and Setup 3, the power consumption during recog-

nition in UltraWrite is acceptable. Under ideal conditions, the

proposed system can run continuously for approximately 5.5
hours.

E. Comparison Against Related Approaches

Table II presents a comparison with state-of-the-art related

works in terms of recognition accuracy and the dataset cost

of training models. As we can see from Table II, only

Signspeaker [33], WriteAS [37], and WearSign [35] achieve

comparable recognition accuracy with UltraWrite. But they

require more than 13 times of training data, while WearSign

[37] collects 6,000 word samples and 4,375 sentence samples.

Other works have much lower recognition accuracy and a

heavier burden of collecting training data. The above results

verify that our method shows great superiority in recognition,

cost of system construction, and cross-user adaptation capa-

bility compared with existing works.

F. User Study
The user experience of continuous gesture recognition with

UltraWrite is crucial. In this section, we assess the system’s

user experience through the implemented system prototype

and Standard Usability Scale (SUS) interviews. SUS encom-

passes evaluations of effectiveness, usability, and satisfaction,

representing the main aspects of overall system assessment.

Fig. 26 presents the ten statements of SUS, along with his-

tograms and mean scores for each statement. Following SUS

guidelines, positive and negative statements are alternately

arranged. When users complete the scale, the ten statements

are arranged in the order of S1 to S10.
Overall, all volunteers consider UltraWrite to be a viable

system. However, one volunteer still holds a negative attitude

towards the system, stating, ’I acknowledge the system’s

recognition accuracy, but the burden of learning the writing

standards before using it makes me feel hesitant.’ Nevertheless,

the score for S4 is 1.8, indicating that the learning cost is

not significant, and standardized writing rules are necessary.

UltraWrite’s SUS usability score is 73, categorizing it as

‘GOOD’ in the scoring scale, and users are inclined to use

the system.

VI. DISCUSSION

A. System Performance
The system has a high response time mainly because the

translation module is based on GRU and can only perform

serial computation, resulting in slow calculation speed. In

the future, we will try to use extended convolutional neural

networks instead of GRU as the translation module.

B. Cross-Device Problem
The performance of the system is significantly influenced

by different devices, which is caused by the inherent hardware

differences that lead to variations in data of the same gestures.

Domain adaptation methods may not be effective in addressing

this data discrepancy issue, and therefore, few-shot learning

techniques could be explored as a potential solution.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 15

1 2 3 4 5 Mean

S1. I think that I would like to use this system frequently.
4.1

1 7 2

S3. I think the system is easy to use.

3.61 2 6 1

S5. I found this system made it easier to activate smart actions(events)

4.22 4 4

S7. I would imagine that most people would learn to use this system very

quickly. 4.2
1 4 5

S9. I felt very confident using the system.

4.03 4 3

S2. I found the system unnecessarily complex.

2.42 2 6

S4. I think that I would need the support of a technical person to be able to

use this system.
1.8

3 6 1

S6. I thought the system would be obtrusive in my daily life.

1.75 3 2

S8. I found this system very cumbersome to use.

2.22 5 2 1

S10. I needed to learn a lot of things before I could get along with this system.

2.81 4 3 2

Fig. 26. The ten statements of the modified Standard Usability

Scale (SUS), as well as the histograms and means of the scores

for each statement (S1∼S10). Each statement was scored from

1 (indicating ‘strongly disagree’) to 5 (indicating ‘strongly

agree’). For positive statements (S1, S3, S5, S7, S9), higher

scores are better. For negative statements (S2, S4, S6, S8, S10),

lower scores are better.

C. Gesture Discriminability
In this paper, we only use a pair of audio transceivers

for gesture recognition, resulting in low recognition rates for

gesture actions with similar writing trajectories, such as ‘X’

and ‘Q’. In the future, it is possible to try using a combination

of multiple audio transceivers to increase the dimensionality

of gesture information captured by the system, making similar

gestures distinguishable.

VII. CONCLUSION

Motivated by reducing the high cost of constructing an

acoustic gesture input system which supports continuous

input and good cross-user performance, we perceive word

gestures based on the Doppler effect, decompose them into

letter gestures for acquisition, and use data augmentation

methods to reconstruct word gestures, effectively reducing

system construction costs. We propose a network model that

can recognize continuous gestures by combining CTC. To

address the cross-user problem, we introduce an encoding

reconstruction cross-domain method to solve the problem of

decreased cross-user recognition performance. In summary,

our proposed system is cost-effective and can achieve a high

recognition rate for continuous gesture input without providing

samples from new users, and can be deployed on devices such

as smart glasses, headphones, and watches.

REFERENCES

[1] J. Pirker, M. Pojer, A. Holzinger, and C. Gütl, “Gesture-

based interactions in video games with the leap motion

controller,” in ACM CHI. Springer, 2017, pp. 620–633.

[2] A. D’Eusanio, S. Pini, G. Borghi, A. Simoni, and R. Vez-

zani, “Unsupervised detection of dynamic hand gestures

from leap motion data,” in CVPL ICIAP. Springer, 2022,

pp. 414–424.

[3] R. Gao, W. Li, Y. Xie, E. Yi, L. Wang, D. Wu, and

D. Zhang, “Towards robust gesture recognition by char-

acterizing the sensing quality of wifi signals,” ACM
IMWUT, vol. 6, no. 1, pp. 1–26, 2022.

[4] R. Gao, M. Zhang, J. Zhang, Y. Li, E. Yi, D. Wu,

L. Wang, and D. Zhang, “Towards position-independent

sensing for gesture recognition with wi-fi,” ACM
IMWUT, vol. 5, no. 2, pp. 1–28, 2021.

[5] C. Wang, J. Liu, Y. Chen, H. Liu, L. Xie, W. Wang,

B. He, and S. Lu, “Multi-touch in the air: Device-free

finger tracking and gesture recognition via cots rfid,” in

IEEE INFOCOM. IEEE, 2018, pp. 1691–1699.

[6] C. Liang, C. Hsia, C. Yu, Y. Yan, Y. Wang, and Y. Shi,

“Drg-keyboard: Enabling subtle gesture typing on the

fingertip with dual imu rings,” ACM IMWUT, vol. 6,

no. 4, pp. 1–30, 2023.

[7] K. Guo, H. Zhou, Y. Tian, W. Zhou, Y. Ji, and X.-Y. Li,

“Mudra: A multi-modal smartwatch interactive system

with hand gesture recognition and user identification,” in

IEEE INFOCOM. IEEE, 2022, pp. 100–109.

[8] L. Wang, X. Zhang, Y. Jiang, Y. Zhang, C. Xu, R. Gao,

and D. Zhang, “Watching your phone’s back: Gesture

recognition by sensing acoustical structure-borne propa-

gation,” ACM IMWUT, vol. 5, no. 2, pp. 1–26, 2021.

[9] P. Wang, R. Jiang, and C. Liu, “Amaging: Acoustic hand

imaging for self-adaptive gesture recognition,” in IEEE
INFOCOM. IEEE, 2022, pp. 80–89.

[10] Y. Wang, J. Shen, and Y. Zheng, “Push the limit of

acoustic gesture recognition,” IEEE TMC, vol. 21, no. 5,

pp. 1798–1811, 2020.

[11] H. Chen, F. Li, and Y. Wang, “Echotrack: Acoustic

device-free hand tracking on smart phones,” in IEEE
INFOCOM. IEEE, 2017, pp. 1–9.

[12] D. Li, J. Liu, S. I. Lee, and J. Xiong, “Fm-track:

pushing the limits of contactless multi-target tracking

using acoustic signals,” in ACM SenSys, 2020, pp. 150–

163.

[13] K. Ling, H. Dai, Y. Liu, A. X. Liu, W. Wang, and

Q. Gu, “Ultragesture: Fine-grained gesture sensing and

recognition,” IEEE TMC, vol. 21, no. 7, pp. 2620–2636,

2020.

[14] R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota,

“Fingerio: Using active sonar for fine-grained finger

tracking,” in ACM CHI, 2016, pp. 1515–1525.

[15] C. Zhang, Q. Xue, A. Waghmare, S. Jain, Y. Pu,

S. Hersek, K. Lyons, K. A. Cunefare, O. T. Inan, and

G. D. Abowd, “Soundtrak: Continuous 3d tracking of

a finger using active acoustics,” ACM IMWUT, vol. 1,

no. 2, pp. 1–25, 2017.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 16

[16] P. Wang, R. Jiang, J. Hu, Y. Zhu, H. Jiang, M. Li,

and C. Liu, “Amt +̂: Acoustic multi-target tracking with

smartphone mimo system,” IEEE TMC, 2024.

[17] M. Chen, P. Yang, J. Xiong, M. Zhang, Y. Lee, C. Xiang,

and C. Tian, “Your table can be an input panel: Acoustic-

based device-free interaction recognition,” ACM IMWUT,

vol. 3, no. 1, pp. 1–21, 2019.

[18] Y. Jin, Y. Gao, Y. Zhu, W. Wang, J. Li, S. Choi,

Z. Li, J. Chauhan, A. K. Dey, and Z. Jin, “Sonicasl: An

acoustic-based sign language gesture recognizer using

earphones,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 5,

no. 2, pp. 1–30, 2021.

[19] J. P. Sahoo, A. J. Prakash, P. Pławiak, and S. Samantray,

“Real-time hand gesture recognition using fine-tuned

convolutional neural network,” Sensors, vol. 22, no. 3,

p. 706, 2022.

[20] P. Wang, W. Li, S. Liu, Y. Zhang, Z. Gao, and P. Ogun-

bona, “Large-scale continuous gesture recognition using

convolutional neural networks,” in IEEE ICPR. IEEE,

2016, pp. 13–18.

[21] H. Zou, J. Yang, Y. Zhou, and C. J. Spanos, “Joint

adversarial domain adaptation for resilient wifi-enabled

device-free gesture recognition,” in IEEE ICMLA. IEEE,

2018, pp. 202–207.

[22] C. Dian, D. Wang, Q. Zhang, R. Zhao, and Y. Yu,

“Towards domain-independent complex and fine-grained

gesture recognition with rfid,” ACM CHI, vol. 4, no. ISS,

pp. 1–22, 2020.

[23] Y. Zou, Q. Yang, Y. Han, D. Wang, J. Cao, and K. Wu,

“Acoudigits: Enabling users to input digits in the air,” in

IEEE PerCom. IEEE, 2019, pp. 1–9.

[24] K. Wu, Q. Yang, B. Yuan, Y. Zou, R. Ruby, and M. Li,

“Echowrite: An acoustic-based finger input system with-

out training,” IEEE TMC, vol. 20, no. 5, pp. 1789–1803,

2020.

[25] Y. Zou, Z. Xiao, S. Hong, Z. Guo, and K. Wu, “Echowrite

2.0: A lightweight zero-shot text-entry system based on

acoustics,” IEEE T HUM-MACH SYST, vol. 52, no. 6,

pp. 1313–1326, 2022.

[26] Y. Wang, J. Shen, and Y. Zheng, “Push the limit of

acoustic gesture recognition,” IEEE TMC, vol. 21, no. 5,

pp. 1798–1811, 2020.

[27] H. Du, P. Li, H. Zhou, W. Gong, G. Luo, and

P. Yang, “Wordrecorder: Accurate acoustic-based hand-

writing recognition using deep learning,” in IEEE Info-
com. IEEE, 2018.

[28] H. Yin, A. Zhou, L. Liu, N. Wang, and H. Ma, “Ubiq-

uitous writer: Robust text input for small mobile devices

via acoustic sensing,” IEEE Internet of Things Journal,
vol. 6, no. 3, pp. 5285–5296, 2019.

[29] H. Yin, A. Zhou, G. Su, B. Chen, L. Liu, and H. Ma,

“Learning to recognize handwriting input with acoustic

features,” ACM IMWUT, vol. 4, no. 2, pp. 1–26, 2020.

[30] Y. Wang, J. Shen, and Y. Zheng, “Push the limit of

acoustic gesture recognition,” IEEE TMC, vol. 21, no. 5,

pp. 1798–1811, 2020.

[31] D. Li, J. Liu, S. I. Lee, and J. Xiong, “Room-scale

hand gesture recognition using smart speakers,” in ACM
Sensys, 2022, pp. 462–475.

[32] Y. Zou, Y. Wang, H. Dong, Y. Wang, Y. He, and K. Wu,

“Pregesnet: Few-shot acoustic gesture recognition based

on task-adaptive pretrained networks,” IEEE TMC, 2024.

[33] J. Hou, X.-Y. Li, P. Zhu, Z. Wang, Y. Wang, J. Qian,

and P. Yang, “Signspeaker: A real-time, high-precision

smartwatch-based sign language translator,” in ACM Mo-
bicom, 2019, pp. 1–15.

[34] Q. Zhang, D. Wang, R. Zhao, and Y. Yu, “Myosign:

enabling end-to-end sign language recognition with wear-

ables,” in ACM IUI, 2019, pp. 650–660.

[35] Q. Zhang, J. Jing, D. Wang, and R. Zhao, “Wearsign:

Pushing the limit of sign language translation using

inertial and emg wearables,” ACM IMWUT, vol. 6, no. 1,

pp. 1–27, 2022.

[36] T. Labs. MYO : Gesture control armband

by Thalmic Labs. 2013. [Online]. Available:

https://developerblog.myo.com/

[37] Q. Zhang, D. Wang, R. Zhao, Y. Yu, and J. Jing, “Write,

attend and spell: Streaming end-to-end free-style hand-

writing recognition using smartwatches,” ACM IMWUT,

vol. 5, no. 3, pp. 1–25, 2021.

[38] Z. Wang, T. Zhao, J. Ma, H. Chen, K. Liu, H. Shao,

Q. Wang, and J. Ren, “Hear sign language: A real-

time end-to-end sign language recognition system,” IEEE
TMC, vol. 21, no. 7, pp. 2398–2410, 2020.

[39] S. Xu, Y. Xue, X. Zhang, and L. Jin, “A novel unsu-

pervised domain adaptation method for inertia-trajectory

translation of in-air handwriting,” Pattern Recognition,

vol. 116, p. 107939, 2021.

[40] X. Zhang, C. Tang, K. Yin, and Q. Ni, “Wifi-based cross-

domain gesture recognition via modified prototypical

networks,” IEEE Internet of Things Journal, vol. 9,

no. 11, pp. 8584–8596, 2021.

[41] X. Shi, Y. Jin, Q. Dou, J. Qin, and P.-A. Heng, “Domain

adaptive robotic gesture recognition with unsupervised

kinematic-visual data alignment,” in IEEE/RSJ IROS.

IEEE, 2021, pp. 9453–9460.

[42] D. Wang, J. Yang, W. Cui, L. Xie, and S. Sun, “Airfi:

Empowering wifi-based passive human gesture recogni-

tion to unseen environment via domain generalization,”

IEEE Transactions on Mobile Computing, vol. 23, no. 2,

pp. 1156–1168, 2024.

[43] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N.

Dauphin, “Convolutional sequence to sequence learning,”

in IEEE ICML. PMLR, 2017, pp. 1243–1252.

[44] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen,

M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al.,
“Searching for mobilenetv3,” in IEEE/CVF ICCV, 2019,

pp. 1314–1324.

[45] Y. Ganin and V. Lempitsky, “Unsupervised domain adap-

tation by backpropagation,” in IEEE ICML. PMLR,

2015, pp. 1180–1189.

[46] M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and

W. Li, “Deep reconstruction-classification networks for

unsupervised domain adaptation,” in Springer ECCV.

Springer, 2016, pp. 597–613.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2024 17

[47] J. Wang, J. Chen, J. Lin, L. Sigal, and C. W. de Silva,

“Discriminative feature alignment: Improving transfer-

ability of unsupervised domain adaptation by gaussian-

guided latent alignment,” Pattern Recognition, vol. 116,

p. 107943, 2021.

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,”

Communications of the ACM, vol. 60, no. 6, pp. 84–90,

2017.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” in IEEE CVPR, 2016,

pp. 770–778.

Jane Doe Biography text here without a photo.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3586259

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:59:34 UTC from IEEE Xplore. Restrictions apply.

