
UltraWrite: A Lightweight Continuous Gesture
Input System with Ultrasonic Signals on COTS

Devices

Weiyu Chen†, Canlin Zheng†, Wenfeng He†, Yongpan Zou† and Kaishun Wu‡
† College of Computer Science and Software engineering, Shenzhen University, Shenzhen, China

‡ Information Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China

richardcwy426@gmail.com; zhengcanlin2020@email.szu.edu.cn; yongpan@szu.edu.cn; wuks@ust.hk

Abstract—Due to the advantages of acoustic sensing such
as device ubiquity, hands-free interaction and privacy security,
acoustic-based gesture input techniques have gained extensive at-
tention and many excellent works have been proposed. However,
these works have the following shortcomings: high cost of system
construction, non-continuous input, and degraded performance
in cross-user scenarios. To overcome the above shortcomings,
we propose UltraWrite, a continuous gesture input system that
needs rather low system construction cost, supports continuous
input, and achieves high cross-user recognition performance.
The key idea of our solution is to synthesize the data of
continuous gestures from isolated ones, and build an end-to-
end continuous gesture recognition model by introducing the
connectionist temporal classification (CTC) mechanism widely
used in natural language processing. We have implemented the
system on a commercial tablet and conducted comprehensive
experiments to evaluate its performance. The results demonstrate
that UltraWrite achieves an average word accuracy of 99.3% and
word error rate of 0.34% when considering only the first output
candidate word. In addition, we have also evaluated the system’s
robustness to background noise, sensing distance and angle. The
results reveal that UltraWrite displays strong robustness to these
factors.

Index Terms—Acoustic Sensing; Gesture Input; Cross-Domain
Learning

I. INTRODUCTION

With the emergence of new smart devices, the applica-

tions of human-computer interaction (HCI) have become in-

creasingly diverse. Among various input schemes, gesture-

based methods are particularly attractive due to their non-

verbal nature, natural interaction, high acceptance, and high

recognition rates. Consequently, gesture-based interaction has

been extensively studied by scholars in the field of pervasive

computing. These works can be broadly categorized according

to the sensing media employed, including vision-based gesture

interaction techniques [1], [2], radio-frequency signal-based

[3–5], inertial sensor-based [6], [7], and acoustic sensor-

based [8–13], among others. Among these approaches, gesture

recognition technology based on acoustic perception has been

rapidly developed for text input application scenarios, with

many works demonstrating superior recognition performance.

However, current methods of hand or finger gesture recog-

nition based on acoustic signals have the following key lim-

itations. First, these methods usually require a large training

dataset to achieve superior recognition performance, resulting

Fig. 1. Possible application scenarios of UltraWrite

in high system overhead. For instance, UltraGesture [13] needs

collecting 100 times for each gesture, and Ipanel [14] needs to

collect 50 times for each gesture. Moreover, most of the exist-

ing gesture recognition works face the problem of performance

degradation when new users use them. To address this issue,

some methods [15], [16] choose to personalize and fine-tune

the trained system model for new users, while others [8], [17].

[18] use domain adaptation methods for model optimization.

However, these methods require a relatively small sample size

from new users and may be computationally expensive. For

continuous input gestures with theoretically infinite categories,

these methods become impractical since the total number of

samples that new users need to provide increases significantly.

Therefore, a question naturally comes up: can we design a
low-overhead and cross-user friendly system for continuous
gesture text entry?

In this paper, we utilize active sensing to capture finger

writing activity with high-frequency acoustic signals emitted

from a speaker which is available in commercial devices

such as smartphones, tablets, and PC. To address the afore-

mentioned challenges, we employ the following strategies in

constructing UltraWrite. We devise a training dataset con-

struction approach based on decomposition and reconstruction

to minimize system overhead. The collection of continuous

gesture data was decomposed into the acquisition of isolated

gestures, followed by the synthesis of continuous gestures

from these isolated instances. To achieve continuous gesture

input, we formalize it as a natural machine translation (NMT)

task. Leveraging the distinctive features of gesture data, we

apply LeNet and Bi-GRU as feature extractors and translation

2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

979-8-3503-2603-1/24/$31.00 ©2024 IEEE 174

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 P

er
va

siv
e

Co
m

pu
tin

g
an

d
Co

m
m

un
ic

at
io

ns
 (P

er
Co

m
) |

 9
79

-8
-3

50
3-

26
03

-1
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
PE

RC
O

M
59

72
2.

20
24

.1
04

94
48

5

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 20,2024 at 15:33:44 UTC from IEEE Xplore. Restrictions apply.

modules, respectively. Tackling the difficulty of annotating

continuous gesture data, we utilize Connectionist Temporal

Classification (CTC). To address the cross-user issue without

adding usage costs for new users, we devise a decoupled train-

ing method by integrating domain adaptation during encoding

reconstruction and model decoupling. We employ the concept

of encoding reconstruction to train the feature extractor for

extracting domain-independent features. Ultimately, we design

a system based on sound wave perception that is cost-effective,

supports continuous input, and exhibits excellent cross-user

performance. Fig. 1 shows the possible application scenarios.

In brief, our work can be summarized by highlighting the

following main contributions.

1) We design the dataset construction scheme by combining

the task decomposition and reconstruction idea and

the data augmentation method. This scheme keeps the

system overhead at a very low level.

2) We transform the gesture input as an NMT task and

implement continuous gesture input by using acoustic

sensing combined with CTC in the speech domain.

We propose a training strategy across user scenarios

that combines domain adaptation methods for encoding

reconstruction with the model decoupling training idea.

3) We implement a prototype system on the Android plat-

form, and deploy it on mobile devices. The experimental

results indicate that our system achieves an accuracy of

99.29% for seen words and 83.04% for unseen words

across users. The results validate the promising practical

usability of UltraWrite.

The rest of this paper is organized as follows. Sec. II

discusses the related works. Sec. III introduces the details of

system design. In Sec. IV and Sec. V, we demonstrate the

system implementation, experimental setup, and performance

evaluation, respectively. Finally, Sec. VI concludes the paper.

II. RELATED WORK

A. Acoustic-based Gesture Recognition

Zou et al. utilized the Doppler effect to develop AcouDigit

[19], EchoWrite [20], and EchoWrite 2.0 [21], which allow

for letter and number input on mobile devices. Likewide,

RoboCIR [22] and UltraGesture [13] detect changes in channel

impulse response (CIR) induced by finger gestures, achieving

a high recognition precision of 15 and 12 hand gestures. For

alphabetic and numeric input, Yang et al. used sound signals

to develop WordRecorder [23] and Ipanel [14]. Additionally,

Ma et al. proposed UbiWriter [24] and WritingRecorder [25].

However, our work differs from them in two aspects. For one

thing, these works require collecting massive training data to

build recognition models which bring about heavy labourious

burden. For another thing, they do not deal with the problem

of continuous gesture recognition which is rather significant

in many HCI applications.

B. Continuous Gesture Recognition

Continuous gesture interaction has been shown to enhance

the user experience, particularly in scenarios involving text

input for human-computer interaction. To this end, Sign-

speaker [26] utilizes motion sensors on smartwatches to enable

continuous input of Sign Language gestures. MyoSign [27]

and WearSign [28] employ motion sensors and electromyo-

graphic (EMG) signals collected from Myo armband devices

[29]. They also developed DeepSLR [30] for hand gesture

recognition using two Myo armbands, including simultaneous

recognition of both hands, and WriteAS [31] for English

input on a smartwatch. However, these systems rely on

IMU and EMG for gesture input, and DeepSLR [30] and

WearSign [28] require collecting EMG signals to capture

subtle muscle movements, limiting their use on non-handheld

devices. Furthermore, differences in signal processing schemes

between the two media prevent these systems from being

interchangeable. Nonetheless, the systems necessitate costly

training datasets and do not address cross-user issues.

III. SYSTEM DESIGN

In this section, we will elaborate on the design details of

our system. As shown in Fig. 2, we first characterize gesture

movements using the Doppler effect of sound waves. To reduce

the cost of constructing the training dataset, we use synthetic

data instead of real collected data, and data augmentation

methods are employed during this process to expand the

dataset. Next, a CNN is designed to extract features from the

input data, and finally, these features are passed through a

context encoder for encoding to output words.

Fig. 2. The overview of UltraWrite’s architecture

A. Signal Processing

The acoustic signal captured by the microphone is initially

converted into a spectrogram using an STFT with a Hamming

window. We set the frame length to 8192 and window step size

to 512 through empirical means. And we adopt a window size

of 100 frames with a 70% overlap for sliding segmentation.

2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

175
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 20,2024 at 15:33:44 UTC from IEEE Xplore. Restrictions apply.

1) Denoising: The transmit frequency of the microphone

is set to 19 KHz. According to the Doppler effect, when a

user writes within the range of the speaker’s acoustic field,

the recorded echo signal by the microphone will experience

a frequency shift. The magnitude of this frequency shift is

determined by the relative motion velocity between the finger

and the device, as described by Eq.(1).

Δf = f0 ·
∣∣∣∣1− vs ± vf

vs ∓ vf

∣∣∣∣ (1)

In the equation, the variables f0, vs, and vf represent the

frequency of the emitted signal, the speed of signal propa-

gation in the air, and the speed of relative motion between

the finger and the device, respectively. For our experiment,

the velocity of finger movement was measured to be ap-

proximately 2.5 ms. Consequently, the maximum frequency

shift was calculated to be 281Hz, resulting in a theoretical

effective frequency band of [18722, 19281]Hz. To simplify

the calculations, we extend the effective frequency range to

[18700, 19300]Hz and extract the spectrogram within this

band range to eliminate background noise.

The spectrogram reveals that the frequency shift caused by

finger movement appears blurred, indicating a low signal-to-

noise ratio in the raw signal. This blurring is primarily due to

the direct transmission of the acoustic signal from the speaker

to the microphone, resulting in a frequency component of

significant strength at the center frequency (i.e., 19 KHz),

as illustrated in Fig. 3a. Consequently, we use a fourth-order

Butterworth band-stop filter to filter out the frequency band

near the center frequency.

(a) Colse (b) Remove (c) Norm

Fig. 3. The relationship between finger motion and frequency

variation

2) Gesture detection: Based on the denoised spectrogram,

we employ the cumulative sliding window method to intercept

the motion gesture signals. Referring to Eq.(1), the spectro-

gram illustrates an increase in the recorded echo signal’s fre-

quency, as depicted in Fig. 3a, when the finger approaches the

device. Conversely, a decrease in the echo signal’s frequency is

observed, as shown in Fig. 3b. During periods without gesture

actions, all frequency components within the current STFT

frame exhibit signal strengths below 0 dB, as demonstrated in

Fig. 3c. To implement the sliding window approach, we set

the window size (Wslide) to 5 frames, with a sliding step size

of 2 frames.

The current sliding window is positioned at the beginning

of the word gesture when the dominant frequency, which cor-

responds to the frequency component with the highest signal

strength, differs from 19 KHz within all frames encompassed

Algorithm 1 Gesture Detection Algorithm

Input: Raw Spectrogram PRaw

Output: Gesture Spectrogram PGes

1: while True do
2: Wslide = GetSlideWindow(PRaw); {Window Sliding}
3: Flag = CheckGestureStart(Wslide); // Returns True if

the gesture is the starting point

4: StartPoint = Wslide[0];
5: while Flag do
6: Wslide = GetSlideWindow(PRaw);

7: Flag = CheckGestureEnd(Wslide);

8: if Flag = False then
9: Flag = CheckNext20StftWindow(PRaw);

10: end if
11: end while
12: EndPoint = Wslide[0];
13: pGes = PRaw[StartPoint : EndPoint];

14: PushToBufferArea(PGes);

15: end while

by the sliding window. Consequently, we designate the first

window within the current sliding window as the starting

point of the word gesture. The sliding window progresses in

increments of 2 frames. Once the dominant frequency of all

frames within the sliding window equals 19 KHz, it signifies

that the current sliding window denotes the end of the word

gesture. In this case, we designate the first STFT window

within the current sliding window as the tentative endpoint of

the gesture action. Furthermore, users may experience brief

pauses between letters while writing. Based on this, after

determining the endpoints, the sliding window examines the

subsequent 20 frames (approximately 300 ms) to ascertain if

they contain gesture instances. The aforementioned gesture

detection process is summarized in Algorithm 1.

3) Signal enhancement: Due to the hardware constraints,

simultaneous operation of these devices generates some noise.

These non-zero components are visually depicted as light

yellow patches in the spectrogram, and are referred to as

random noise. As observed in Fig. 3b, the frequency shift

induced by gestures remains somewhat masked by this noise.

To address this issue, we employ normalization, Gaussian

smoothing, and thresholding techniques to enhance the signal

of the detected and intercepted gesture spectrogram denoted

as PGes. Fig. 4a, Fig. 4b, and Fig. 4c illustrate the spectro-

gram after undergoing normalization, Gaussian smoothing, and

thresholding, respectively.

B. Dataset Construction

In order to reduce the cost of data collection for training, we

divide the original data acquisition task for training (word) into

smaller units (letter). By synthesizing data using these letters,

we can minimize the cost of acquiring the training dataset.

Besides, we observe that writing between letters may lead to

additional Doppler frequency shifts.

2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

176
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 20,2024 at 15:33:44 UTC from IEEE Xplore. Restrictions apply.

(a) After normaliza-
tion

(b) After Gaussian
smoothing

(c) After the thresh-
olding

Fig. 4. Different stages of signal enhancement of extrude the

doppler shifts pattern of word gesture ‘AM’

We analyze the spectrograms of the 676 feasible combina-

tions of 2-gram letter gestures obtained from 26 letter gestures.

We categorize the starting and ending points of the gesture into

three positions: top, middle, and bottom, considering only the

finger’s distance in the direction perpendicular to the device.

By combining the stroke order of letters, we get six Doppler

frequency shift patterns, namely top to top (t2t), top to bottom

(t2b), middle to top (m2t), middle to bottom (m2b), bottom

to top (b2t), and bottom to bottom (b2b). Furthermore, the

t2t and b2b resetting gestures denote relative motions in the

direction parallel to the device, without significant frequency

shifts. As a result, we disregard these two resetting gestures

and ultimately select 26 letters and 4 resetting gestures as our

isolated gestures.

Doppler shift pattern is influenced by the relative motion

speed between the finger and the smart device. The relative

movement speed is affected by both the writing speed and

magnitude. The writing speed influences both the time domain

and the frequency domain of the Doppler shift pattern, whereas

the writing magnitude solely affects the time domain. Based

on this observation, we focus on constraining the writing

magnitude during the collection of letter gestures and resetting

gestures. Specifically, the volunteer was instructed to maintain

a consistent writing magnitude of 10 × 16 cm2. There were

no restrictions imposed on the writing speed within a single

session, which encompasses the writing of letter gestures from

‘A’ to ‘Z’.

(a) ρ = 1.20 (b) ρ = 1.00 (c) ρ = 0.80

Fig. 5. The enhancement results with different values of ρ for

letter gesture ‘A’

1) Data augmentation: By implementing the letter and

homing gesture collection scheme described above, we en-

hance the diversity of the gesture data spectrograms in the

frequency domain. To further improve the diversity of the

spectrograms in the time domain, we employ a data augmen-

tation technique inspired by the time-warping technique used

in speech recognition. Specifically, for the spectrograms of the

input letter gestures or resetting gestures denoted as PGes(t),
we stretch or compress them in the time domain dimension

by factors ρ to generate new data spectrograms, denoted as

PGes(ρt). Through experimentation, we determine the factors

to be ρ ∈ [0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20].
With this data augmentation technique, each letter gesture or

resetting gesture data is expanded into nine new gesture data

instances. Fig. 5 displays the spectrograms of the letter gesture

‘A’ multiplied by the factors 1.20, 1.00, and 0.80, respectively,

illustrating the impact of the time-warping technique.

2) Data synthesis: Prior to collecting pseudo-word gesture

data, we examine the writing process of real word gestures

and analyze the characteristics of the shift pattern generated

by these gestures. As mentioned earlier, users may experience

brief pauses when writing word gestures. These pauses are

reflected in the spectrogram as interruptions in the Doppler

frequency shift, particularly in the time domain dimension.

Furthermore, in the absence of pauses, when users write these

gestures fluently, the Doppler frequency shift patterns formed

by two consecutive letter gestures may partially overlap or

intersect in the time domain. Moreover, during the word

writing process, users maintain a consistent writing speed and

magnitude. This implies that the letter and resetting gestures

used for synthesizing word gesture data should be written at

similar speeds and magnitudes to ensure fidelity to real-word

writing. By considering these observations, we can generate

pseudo-word gestures that closely resemble the real word

gestures.

To achieve that the writing speed and magnitude of the

synthesized letters and resetting gestures closely match each

other, we select the letters and resetting gestures required for

a word from the same session of the data collection, using the

same data augmentation factor ρ. During the synthesis process,

we need to simulate two scenarios, namely, continuous writing

and writing with pauses. Let’s consider two spectrograms, P1

and P2, both representing letter gestures. First, we generate a

random parameter Gap within the range of [−25, 5]. If Gap
is negative, it simulates the occurrence of a pause during

writing. In this case, we create a spectrogram P̃ consisting

of |Gap| STFT frames, where each pixel value is set to

0. Next, we concatenate the spectrograms P1, P̃ , and P2

along the column dimension. In the case where Gap is zero,

it signifies continuous writing, and we directly concatenate

the spectrograms P1 and P2 along the column dimension.

However, the processing scheme becomes more intricate when

Gap is positive. We superimpose the last Gap STFT frames

P
′
1 of spectrogram P1 with the initial Gap STFT frames P

′
2 of

P2. For each pixel point, we select the larger value between

the corresponding pixel points of P
′
1 and P

′
2, as depicted in

Eq.(2).

P
′
(x, y) =

{
P

′
1(x, y) if P

′
1(x, y) > P

′
2(x, y)

P
′
2(x, y) otherwise

(2)

where P
′

represents the new spectrogram obtained from the

2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

177
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 20,2024 at 15:33:44 UTC from IEEE Xplore. Restrictions apply.

superimposed part, with the number of columns equal to

|Gap|. The variables x and y denote the coordinates of the

pixel points. It is important to note that when P1 represents

a resetting gesture and P2 represents a letter gesture, the

randomly generated parameter Gap can only be positive.

TABLE I: Words template

Part of speech Words

Verb
AM, ARE, IS, CAN, DO, HELLO, MAKE, SAY,
GIVE, PUT

Articles THE
Noun FAMILY, PERSON, JOB, QUIT, WORLD, ZERO

Pronouns YOU, THAT
Adverb HOW, WHAT, WHERE, WHY, BUT, NEXT

When synthesizing word gestures, we need to select a

word as a template. To ensure diversity, we have chosen

25 commonly used words from the Corpus of Contemporary

American English (COCA) as templates for synthesizing word

gestures. These words have been selected based on the follow-

ing criteria: containing all 26 letters of the alphabet, sufficient

word length, and their ability to form meaningful sentences.

The 25 words have been grouped according to their main parts

of speech and are summarized in Table I.

C. Model Training

In this subsection, we provide a detailed description of the

system modeling and the design of the cross-domain training

strategy. The framework encompasses our model composition

as well as the cross-domain training strategy.

1) Model design: We apply an analogous transformation

to convert the continuous gesture input task into a NMT task

[32], aiming to achieve continuous gesture input. The NMT

task can be further divided into two subtasks: a) encoding

and embedding the source sequence from the original rep-

resentation space to the feature space, which corresponds to

the feature extraction module; b) transcribing the encoded and

embedded feature vector sequence with context information,

which corresponds to the translation module.

In this system, the source sequence is the spectrogram frame

sequence, which can be considered as a sequence of images,

we employ a CNN to encode and embed the original sequence.

We design the feature extractor based on the LeNet model,

taking into account factors such as model size, recognition

performance, and response time. Although there are other

classification models suitable for mobile devices, such as

AlexNet, MobileNet [33], and ResNet, they often have specific

requirements on the size and complexity of the training dataset.

Actually, LeNet proves to be a more suitable choice for our

task, as further elaborated in Sec. V-B1.

In our task, the source sequence aligns with the target

sequence, thus necessitating precise labeling of the source

sequence. To tackle the source sequence labeling difficulty,

we employ the CTC. Specifically, we utilize the GRU model

to construct the Translation Module. Although there are other

classification models suitable for mobile devices, we find that

Bi-GRU yields the best results after comparing it with Bi-

RNN and Bi-LSTM, as detailed in Sec. V-B2. Following the

Bi-GRU layer, we include a linear layer that outputs a letter or

null label ε for each spectrogram frame in the source sequence.

Considering the size of the translation module, we opt to use

an encoder instead of a decoder during its design.

2) Cross-domain training strategy: In the conventional

deep learning modeling process, it is typically assumed that

the training dataset (source domain) and test dataset (target

domain) are independent and identically distributed. However,

this assumption often does not hold in practical application

scenarios. In our task, the source domain comprises the

synthetic dataset, while the target domain consists of the real

dataset written by users.

Conventional encoding recognition domain adaptation train-

ing strategy, the feature extraction module, decoder, and classi-

fier are typically jointly trained. Nevertheless, joint training of

these sub-modules can introduce coupling relationships that

may hinder each sub-module from focusing on its specific

task. Based on this consideration, we devise a cross-domain

training strategy that involves training the feature extractor and

the translation module separately, effectively decoupling the

modules. The feature extractor is trained using an autoencoder

framework to accomplish source data reconstruction, and the

loss function is defined by Eq.(3).

Lrec =
1

n

n∑
i=1

(Xi − X̃i)
2 (3)

where n represents the count of spectrogram frames, i denotes

the spectrogram frame index, and x refers to the reconstructed

spectrogram frame. During the training of the translation

module, the parameters of the feature extraction module are

kept fixed, and only the parameters of the Translation Module

are adjusted. The loss calculation during the training of the

translation module is obtained by Eq.(4).

LCTC =
∑

(X,Y)∈B

− logP (Y |X) (4)

where X and Y respectively represent the input sequence and

the corresponding label of the same batch B.

3) Spelling correction: We employ Bayesian inference to

correct the model’s outputs. Let’s assume that a word gesture’s

spectrogram is divided into T spectrogram frames. As we

know, the model generates a 27-dimensional likelihood vector

for each spectrogram frame. This vector includes a blank

character ε, as required by the CTC encoding rule, and 26
letter characters. We denote the model’s output probability

matrix as M. Based on M, we obtain a temporary word

W̃ = w̃1, w̃2, · · · , w̃T . To maximize the probability of W̃ ,

the character with the highest probability in the vector is

commonly selected as the label for the current frame. Its

probability can be calculated by Eq.(5).

P (W̃) =

T∏
t=1

max
0≤i≤26

Mt,i (5)

2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

178
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 20,2024 at 15:33:44 UTC from IEEE Xplore. Restrictions apply.

w̃t = li = arg max
0≤i≤26

Mt,i (6)

where i represents the index of the probability vector for each

frame, and li denotes the character corresponding to index i
with the highest probability. However, errors in the output of

certain frames can lead to misspellings in the final word output

W , including letter substitutions, deletions, or insertions. To

obtain the correct word, we introduce word frequency into the

calculation of the current frame probability.

According to the Markov chain assumption, the output of

several previous frames should be taken into account concur-

rently when determining the label for the current frame. This

consideration, which involves only the labels from the previous

frame, is referred to as a 2-gram dependency. Let i and j repre-

sent the indices corresponding to the labels of the current and

previous frames, respectively. The transition probability P (j, i)
can be derived by calculating the corresponding frequencies

within a large dataset of words, as follows:

P (li|lj) =
Cwt−1,wt

Cwt−1

=
Clj ,li

Clj ,A→Z
(7)

where Clj ,li denote the frequency of the letter combination

(lj , li). Clj ,A→Z denote the frequency of the letter combi-

nation that the first letter w̃t−1 is lj . When t − 1 equals 1,

meaning that w̃t−1 is the first letter of the temporal word

W̃ , the corresponding P (li|lj) reduces to be P (li). There

is a special case where the transition probability is set to 1

when one of the characters in the current or previous frame is

blank ε. Consequently, Eq.(5) and Eq.(6) can be simplified as

follows:

P (W̃) =

T∏
t=1

max
0≤i,j≤26

P (li|lj)×M(t, i) (8)

w̃t = li = arg max
0≤i,j≤26

P (li|lj)×M(t, i) (9)

Following the aforementioned procedure, probabilities of

mapping the input spectrogram frame sequence to different

candidate words of the same length T can be obtained.

Based on these probabilities, we select the top-ranked tem-

porary words W̃ as candidates. Once the temporary word

W̃ is obtained, we generate the final output word W =
w1, w2, · · · , wN (N ≤ T) in accordance with the CTC

encoding rule.

IV. IMPLEMENTATION AND EXPERIMENTS

A. Implementation

We implement UltraWrite as an Android application on

a Samsung Tab S2 whose speaker emits sinusoidal acoustic

wave at 19 KHz and the microphone receives echo signals

with a sampling rate of 44.1 KHz. After receiving the echo

signals, the system processes signals following the pipeline

as shown in Fig. 2. The deep learning model is trained with

Pytorch on a a server with an Intel(R) Xeon(R) Platinum 8260

CPU and NVIDIA GeForce RTX 2080Ti GPU. After that, the

trained model is packed into a pt file and deployed on the

tablet. In this work, we have only tested UltraWrite with a

single device owing to the consideration that most commercial

smart devices are capable of emitting and receiving 19 KHz

acoustic signals, and share similar frequency response. But

speakers on different devices indeed possess some differences

in frequency response and can easily have dips or spikes at

various output ranges. Such differences may have impact on

the system performance. We leave this evaluation as one of

our future work.

B. Experimental Setup
We randomly select 10 volunteers (denoted by V1 to V10),

including one female and nine males, to participate in the data

collection process on campus. The ages of the volunteers vary

from 22 to 25 years old, and all were right-handed. Prior to

conducting the specific experiments, we provide the volunteers

with gesture writing specifications.
Data collection takes place in a quiet laboratory environment

with noise levels below 50 dB. Specifically, we placed the

data collection equipment flat on the table, facing the user’s

microphone, and then set up a 10×16 cm2 square centimeter

matrix in a vertical direction about 5 centimeters away from

the speaker, where the user accomplish the writing within this

range. During the writing process, the user remains quiet, and

the equipment remains stationary. Finally, we collect the letter

gesture dataset and word gesture dataset in this environment.

We invite only one volunteer (V1) to collect the letter dataset.

The volunteer writes from ‘A’ to ‘Z’ in order, forming a round

of letter data. In the same round, the volunteer writes at a

similar speed as much as possible between gestures (letter

or reset gesture) with an interval of approximately 1 second.

In the end, we obtain 15 rounds of a total of 450 gestures,

including 390 letter gestures and 60 reset gestures.
To collect the testing dataset, we invite 10 volunteers

(including V1) to participate in the collection of word gesture

data. The data collection task was based on 25 words shown in

Table I, with each word written 15 times. After collecting the

data, we perform a simple check to remove some samples that

were unusable due to device or collection process anomalies.

In the end, each volunteer has an average of 351 word gesture

samples.

V. EVALUATION

In this section, we evaluate UltraWrite’s performance from

different aspects. We employ word accuracy (W-Acc) as the

main metric which denotes the ratio of the sample count that

is correct to the total sample count.

W −Acc =
CountTrue

CountAll
(10)

We also use char error rate (CER) as the other evaluation

metric which is defined by Eq.(11).

CER =
Nsub +Ndel +Nins

NGroundTruth
(11)

where Nsub, Ndel, and Nins denotes the number of required

substitutions, deletions, and insertions, respectively. The top-

k terms are considered when calculating the criterion, as the

correction process produces the highest probability candidates.

2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

179
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 20,2024 at 15:33:44 UTC from IEEE Xplore. Restrictions apply.

A. Overall Performance

1) User-independent: In the user-independent test, we train

the model using the synthetic dataset, which is described

in Sec. III-B, and evaluate the model on a test dataset of

word gestures written by volunteers in real-world scenarios.

Fig. 6 displays the results of the cross-user case. Among

the volunteers, we collect the isolated gesture data used to

synthesize the word gesture dataset from V1. Therefore, V1 is

a non-cross-user case with a top-1 CER of 0% after correction

by a language model. The remaining volunteers were involved

in the cross-user tests. When considering only cross-user cases,

the average top-1, top-3, and top-5 W-Acc were 99.29%,

99.67%, and 99.74%, respectively, and the corresponding

average CER were 0.38%, 0.24%, and 0.20%, respectively. On

average, there were 8 word recognition errors per volunteer.

Among them, V9 had the worst test results with the top-1,

top-3, and top-5 W-Acc of 98.22%, 98.81%, and 99.11%,

respectively, and the corresponding CER of 1.14%, 0.89%,

and 0.73%, respectively. This experiment demonstrates that

the proposed system in this work achieves superior recognition

performance in cross-user scenarios.

2) Unseen word recognition: When users use the system,

there is a possibility that the system has not seen the word

gestures during the model training process. This subsection

evaluates the system’s ability to generalize to unseen word

gestures. To this end, we design a data template that is

completely different from the words in Table I to reconstruct

a synthetic dataset for model training. Specifically, we extract

all 2-gram and 3-gram letter combinations of the words in

Table I, and modify the words of length 2 or 3 by substituting,

deleting, or inserting letters. We then combine the 2-gram and

3-gram letter combinations to form n-gram (n ∈ [2, 9]) letter

combinations, which serve as the template for synthesizing

the training dataset, as described in Sec. III-B. During the

testing phase, the input word gestures correspond to the words

in Table I. This test only changes the training dataset and

not the other settings. As shown in Fig. 7, the performance

of the system on unseen word gestures is reduced. However,

the top-5 W-Acc of all volunteers can still reach over 93%,

and the average top-1, top-3, and top-5 W-Acc are 83.04%,

91.65%, and 94.37%, respectively. These results indicate that

the system still maintains a reasonable recognition accuracy

for unseen word gestures, further affirming the rationality of

our system design.

3) Response time: The response time of UltraWrite mainly

consists of the time spent on data processing, word prediction,

and spell correction. When tested on a Samsung Tab S2,

UltraWrite achieves an average response time of about 3340
ms to recognize a four-ltter English word, which means about

18 words can be inputted per minute. As the response time is

closely related to the device’s hardware, it should be much less

when UltraWrite is implemented on a more newly released

product.

B. Ablation Study

1) Feature extractor: In UltraWrite, we design a feature

extractor based on LeNet that can effectively extract abstract

features from the raw spectrogram frames. We also examine

different CNN models including AlexNet [34], MobileNet-

v3 [33], and ResNet-18 [35] as the feature extractors on

the system’s performance. This evaluation only changes the

backbone of the feature extractor without any other settings.

Fig. 8 presents the evaluation results, which show that the

overall recognition performance is best when using LeNet as

the feature extractor. The top-1, top-3, and top-5 W-Acc are

99.36%, 99.71%, and 99.77%, respectively. As the complexity

of the model increases, the system’s recognition performance

decreases. As analyzed in Sec. III-C, the dataset used in

this work is relatively simple. When the feature extractor is

too complex, the features will be more inclined towards the

training dataset, resulting in overfitting. Moreover, LeNet has

the smallest model size compared to AlexNet, MobileNet,

and ResNet, which are about 213, 16, and 42 times larger,

respectively. Considering the test results and the model size,

it is most reasonable to design the Feature Extractor based on

LeNet.

2) Translation module: In UltraWrite, we design a trans-

lation module based on Bi-GRU to encode the feature se-

quence extracted from the feature extractor in context. In

this section, we also conduct evaluation of the impact of

using different models as the translation module, including

RNN, LSTM, GRU, Bi-RNN, Bi-LSTM, and Bi-GRU. For

fair comparison, the layers of these models are all set to

be 2, and the bidirectional parameters are set to be true.

Eventually, we only change the backbone of the Translation

Module in this test, leaving other settings unchanged. The

evaluation result is presented in Fig. 9, which indicates that the

bidirectional networks can capture context information better

than the corresponding unidirectional networks. After statisti-

cal analysis, compared with the corresponding unidirectional

networks, the top-1, top-3, and top-5 average W-Acc of the

three bidirectional networks increase by 20.91%, 13.40%, and

12.20%, respectively. Among them, Bi-GRU and Bi-LSTM

have the best performance, with the top-1 W-Acc of 99.36%
and 99.03%, respectively, with a negligible difference between

them. However, in terms of model size, Bi-GRU is only 6.70
MB, while Bi-LSTM is 8.93 MB. After combining the test

results and the model size, it is the most reasonable choice to

design the translation module based on Bi-GRU.

3) Dataset construction: In this part, we evaluate the effec-

tiveness of the train dataset construction scheme described in

Sec. III-B. We determine the scale of the synthesized dataset

by setting the scaling factor ρ. A value of 1.0 for ρ means

that data augmentation is not used during dataset synthesis.

We expand the value range of ρ by 0.5 increasing two values

at a time. Di represents training dataset (i = 1, 3, 5, 7, 9),

where i indicates that the dataset is increased by i times. The

results are shown in Fig. 10. When D1 is used for training, the

top-1, top-3, and top-5 CER are 5.13%, 3.92%, and 3.52%,

2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

180
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 20,2024 at 15:33:44 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

−0.8
−0.4
0.0
0.4
0.8
1.2
1.6

CE
R

(%
)

 top-1 W-Acc top-1 CER
 top-3 W-Acc top-3 CER
 top-5 W-Acc top-5 CER

User ID

W
-A

cc
 (%

)

Fig. 6. Results of cross user

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

−4

0

4

8

12

CE
R

(%
)

 top-1 W-Acc top-1 CER
 top-3 W-Acc top-3 CER
 top-5 W-Acc top-5 CER

User ID

W
-A

cc
 (%

)

Fig. 7. Results of unseen word

Lenet-5 AlexNet MobileNetV3 ResNet18
50

60

70

80

90

100

−2

0

2

4

6

CE
R

(%
)

 top-1 W-Acc top-1 CER
 top-3 W-Acc top-3 CER
 top-5 W-Acc top-5 CER

Different Models

W
-A

cc
 (%

)

Fig. 8. Different feature extrac-

tor

RNN GRU LSTM Bi-RNN Bi-GRUBi-LSTM
0

20

40

60

80

100

−5
0
5
10
15
20

CE
R

(%
)

W
-A

cc
 (%

)

 top-1 W-Acc top-1 CER
 top-3 W-Acc top-3 CER
 top-5 W-Acc top-5 CER

Different Models

Fig. 9. Different translate mod-

ule

D1 D3 D5 D7 D9

50

60

70

80

90

100

0

2

4

6
CE

R
(%

)

 top-1 W-Acc top-1 CER
 top-3 W-Acc top-3 CER
 top-5 W-Acc top-5 CER

Dataset

W
-A

cc
 (%

)

Fig. 10. Dataset construction

1 2 3 4 5 6 7 8 9 10
0
5

10
15
20
25
30

CE
R(

%
)

User ID

 top-1
 top-3
 top-5

Fig. 11. CER difference

None Ours Adversarial ER PDA
50

60

70

80

90

100

0

5

10

15

20

Different strategies

CE
R

(%
)

 top-1 W-Acc top-1 CER
 top-3 W-Acc top-3 CER
 top-5 W-Acc top-5 CER

W
-A

cc
 (%

)

Fig. 12. Different strategies

(0, 50] [50,60] [60,70]
50

60

70

80

90

100

 top-1 W-Acc top-1 CER
 top-3 W-Acc top-3 CER
 top-5 W-Acc top-5 CER

Noise level (dB)

W
-A

cc
 (%

)

−2

−1

0

1

2

 C
ER

 (%
)

Fig. 13. Impact of noise level

respectively. The corresponding W-Acc is 91.15%, 94.48%,

and 95.22%, respectively. These results indicate that the use

of only the synthesized word gesture dataset as the training

dataset is feasible. With the addition of data augmentation, the

recognition performance of the system improves, especially

with the wider value range of factor ρ. Our system achieves

the best recognition performance in D9. The top-1, top-3, and

top-5 CER are 0.34%, 0.22%, and 0.18%, respectively, and

the corresponding W-Acc is 99.36%, 99.71%, and 99.77%,

respectively.

4) Cross-domain training strategy: In this part, we eval-

uate the effectiveness of the cross-domain training strategy

proposed in Sec. III-C2. When testing without the cross-

Domain training strategy, only the CTC loss is used as the

loss function during model training. The parameters of the

feature extractor and the translation module are adjusted in a

joint training mode. The training dataset is the synthesized

word gesture dataset (D9). We calculate the difference in

CER between the cases with and without the cross-domain

training strategy. The results are shown in Fig. 11. V1 is

a non-cross-user test, so the performance improvement is

minimal. Compared to the case without the cross-domain

training strategy, the recognition performance of the system

is significantly improved. The average top-1, top-3, and top-

5 CER of the system with cross-domain training strategy

decreases by 17.16%, 14.86%, 14.01%, respectively.

In addition, we compare the effects of three data augmen-

tation strategies: Adversarial [36], Encoding Reconstruction

(ER) [37], and Prior Distribution Alignment (PDA) [38], on

the cross-user recognition performance of our system. We

conduct tests on nine volunteers (V2 to V10) and the results

are presented in Fig. 12. The results indicate that all the three

strategies can improve the system’s recognition performance.

However, the improvement achieved by these strategies is still

inferior to that of the cross-domain training strategy proposed

in this work. We believe that Adversarial [36] may cause

the extracted features to lose original information, which can

lead to encoding errors in the translation module. The PDA

[38] also faces similar problems, albeit to a lesser degree.

On the other hand, the ER [37] is more similar to the

strategy proposed in this work. The key difference lies in our

proposed cross-domain training strategy fusion’s decoupled

training approach. These results underscore the necessity and

effectiveness of our fusion decoupling training approach. In

conclusion, our proposed cross-domain training strategy yields

the most significant improvement in the system’s recognition

performance in cross-user scenarios. Furthermore, this strategy

does not require new users to provide personal samples,

making it more user-friendly and having greater practical

value.

C. System Robustness

To investigate the impact of environmental noise, writing

distance, and writing angle on the results, we invite three

volunteers (V2, V3, and V5) to participate in the testing process.

1) Impact of noise: Due to the ambient noise level in

everyday environments being below 70 dB, we conduct two

sets of comparison experiments with noise levels of [50, 60]
dB and [60, 70] dB, respectively. To control the noise level,

we play various audio files of different kinds of noise, such

as daily talking, music, rain sounds, etc., at controlled volume

levels. Then, we ask volunteers to perform word gestures in

different noise. We summarize the results according to the

noise level, as shown in Fig. 13. It is apparent that the CER

and W-Acc in the lab environment are very close to those in

the noisy environment, and the difference is negligible. After

analysis, we found that the frequency of environmental noise

mainly concentrates below 1 KHz, which can be effectively

removed after the signal preprocessing in Sec. III-A.

2) Impact of distance: To evaluate UltraWrite’s robust-

ness to different distances, we conduct three sets of contrast

experiments, including: 1) Close, 5 cm; 2) Medium, 15 cm;

and 3) Far, 25 cm. The experimental settings are illustrated in

Fig. 14a. Volunteers were then asked to write word gestures

in different distance. The evaluation results are shown in

2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

181
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 20,2024 at 15:33:44 UTC from IEEE Xplore. Restrictions apply.

(a) Distance setup

5cm 15cm 25cm
70

80

90

100

 top-1 W-Acc top-1 CER
 top-3 W-Acc top-3 CER
 top-5 W-Acc top-5 CER

Sensing Distance (cm)

W
-A

cc
 (%

)

−4

−2

0

2

4

6

 C
ER

 (%
)

(b) Experimental result (c) Angle setup

−30 −15 0 15 30
90

92

94

96

98

100

 top-1 W-Acc top-1 CER
 top-3 W-Acc top-3 CER
 top-5 W-Acc top-5 CER

Sensing Angle(°)

W
-A

cc
 (%

)

−1

0

1

2

3

 C
ER

 (%
)

(d) Experimental result

Fig. 14. Impacts of distance and angle.

TABLE II: Comparison with others continuous gesture input systems

Work Modality Training users Sizes
Seen word Unseen word

single-user cross-user single-user cross-user

Signspeaker [26] IMU 16 11680 98.96% 89.30% - -
DeepSLR [30] IMU+EMG 34 20400 89.20% - - -
MyoSign [27] IMU+EMG 15 7500 - 93.10% 92.40% -
WriteAS [31] IMU 12 22500 97.60% 84.60% 93.40% 83.80%
WearSign [28] IMU+EMG 15 6000 99.71% 94.50% 91.40% 89.20%
SonicASL [39] Acoustic 8 9600 90.60% - - -

Ours Acoustic 1 390 100% 99.74% 98.37% 93.92%

Fig. 14b. Our findings show that the system performance de-

creases as the sensing distance increases. When the perceived

distance is increased to 15 cm, the system performance is

slightly degraded, with the top-1, top-3, and top-5 W-Acc

decreasing by 2.01%, 1.53%, and 1.12%, respectively. When

the perceived distance increases to 25 cm, the top-1, top-

3, and top-5 W-Acc decrease by 4.75%, 3.72%, and 3.18%,

respectively. Nevertheless, the overall W-Acc remains above

95%, indicating that UltraWrite has great robustness to sensing

distance.

3) Impact of angle: Due to differences in users’ writing

habits, there may be variations in the writing angle. To evaluate

UltraWrite’s robustness to sensing angles, we conduct five sets

of contrast experiments based on the sensing angles that may

be encountered in practical usage. The sensing angles were set

to −30◦, −15◦, 0◦, 15◦, and 30◦, respectively, as shown in

Fig. 14c, where the writing range moves to the left indicating a

negative angle. We then ask volunteers to write word gestures

at different angles. The evaluation results are presented in

Fig. 14d, which show that the system’s performance gradually

decreases as the angle shifts. The system performs the worst

when the sensing angle is 30◦, with the top-1, top-3, and top-5

W-Acc being 96.66%, 97.99%, and 98.26%, respectively. Nev-

ertheless, UltraWrite exhibits great robustness to the sensing

angle, with an overall W-Acc above 96%.

D. Comparison Against Related Approaches

Table II presents a comparison with state-of-the-art related

works in terms of recognition accuracy and the dataset cost

of training models. As we can see from Table II, only

Signspeaker [26], WriteAS [31], and WearSign [28] achieve

comparable recognition accuracy with UltraWrite. But they

require more than 15 times of training data. Other works have

much lower recognition accuracy and a heavier burden of

collecting training data. In addition, we can notice that in the

cross-user scenario, UltraWrite only requires 390 (26 × 15)

alphabet gestures collected from a single volunteer to achieve

an average W-Acc of 99.74%. The above results verify that our

method shows great superiority in recognition, cost of system

construction, and cross-user adaptation capability compared

with existing works.

VI. CONCLUSION

Motivated by reducing the high cost of constructing an

acoustic gesture input system which supports continuous

input and good cross-user performance, we perceive word

gestures based on the Doppler effect, decompose them into

letter gestures for acquisition, and use data augmentation

methods to reconstruct word gestures, effectively reducing

system construction costs. We propose a network model that

can recognize continuous gestures by combining CTC. To

address the cross-user problem, we introduce an encoding

reconstruction cross-domain method to solve the problem of

decreased cross-user recognition performance. In summary,

our proposed system is cost-effective and can achieve a high

recognition rate for continuous gesture input without providing

samples from new users, and can be deployed in devices such

as smart glasses, headphones, and watches.

VII. ACKNOWLEDGEMENT

This research was supported in part by China NSFC

Grant (62172286, U2001207), Guangdong NSF Grant

(2022A1515011509), Guangdong Provincial Key Lab of In-

tegrated Communication, Sensing and Computation for Ubiq-

uitous Internet of Things (2023B1212010007), the Project of

DEGP (2023KCXTD042), and Tencent “Rhinoceros Birds”-

Scientific Research Foundation for Young Teachers of Shen-

zhen University. We also highly appreciate the effort of anony-

mous reviewers and our shepherd Dr. Till Riedel. Yongpan Zou

is the corresponding author.

2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

182
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 20,2024 at 15:33:44 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Pirker, M. Pojer, A. Holzinger, and C. Gütl, “Gesture-based
interactions in video games with the leap motion controller,” in
ACM CHI. Springer, 2017, pp. 620–633.

[2] A. D’Eusanio, S. Pini, G. Borghi, A. Simoni, and R. Vezzani,
“Unsupervised detection of dynamic hand gestures from leap
motion data,” in CVPL ICIAP. Springer, 2022, pp. 414–424.

[3] R. Gao, W. Li, Y. Xie, E. Yi, L. Wang, D. Wu, and D. Zhang,
“Towards robust gesture recognition by characterizing the sens-
ing quality of wifi signals,” ACM IMWUT, vol. 6, no. 1, pp.
1–26, 2022.

[4] R. Gao, M. Zhang, J. Zhang, Y. Li, E. Yi, D. Wu, L. Wang, and
D. Zhang, “Towards position-independent sensing for gesture
recognition with wi-fi,” ACM IMWUT, vol. 5, no. 2, pp. 1–28,
2021.

[5] C. Wang, J. Liu, Y. Chen, H. Liu, L. Xie, W. Wang, B. He, and
S. Lu, “Multi-touch in the air: Device-free finger tracking and
gesture recognition via cots rfid,” in IEEE INFOCOM. IEEE,
2018, pp. 1691–1699.

[6] C. Liang, C. Hsia, C. Yu, Y. Yan, Y. Wang, and Y. Shi, “Drg-
keyboard: Enabling subtle gesture typing on the fingertip with
dual imu rings,” ACM IMWUT, vol. 6, no. 4, pp. 1–30, 2023.

[7] K. Guo, H. Zhou, Y. Tian, W. Zhou, Y. Ji, and X.-Y. Li, “Mudra:
A multi-modal smartwatch interactive system with hand gesture
recognition and user identification,” in IEEE INFOCOM. IEEE,
2022, pp. 100–109.

[8] L. Wang, X. Zhang, Y. Jiang, Y. Zhang, C. Xu, R. Gao, and
D. Zhang, “Watching your phone’s back: Gesture recognition by
sensing acoustical structure-borne propagation,” ACM IMWUT,
vol. 5, no. 2, pp. 1–26, 2021.

[9] P. Wang, R. Jiang, and C. Liu, “Amaging: Acoustic hand imag-
ing for self-adaptive gesture recognition,” in IEEE INFOCOM.
IEEE, 2022, pp. 80–89.

[10] Y. Wang, J. Shen, and Y. Zheng, “Push the limit of acoustic
gesture recognition,” IEEE TMC, vol. 21, no. 5, pp. 1798–1811,
2020.

[11] H. Chen, F. Li, and Y. Wang, “Echotrack: Acoustic device-free
hand tracking on smart phones,” in IEEE INFOCOM. IEEE,
2017, pp. 1–9.

[12] D. Li, J. Liu, S. I. Lee, and J. Xiong, “Fm-track: pushing
the limits of contactless multi-target tracking using acoustic
signals,” in ACM SenSys, 2020, pp. 150–163.

[13] K. Ling, H. Dai, Y. Liu, A. X. Liu, W. Wang, and Q. Gu,
“Ultragesture: Fine-grained gesture sensing and recognition,”
IEEE TMC, vol. 21, no. 7, pp. 2620–2636, 2020.

[14] M. Chen, P. Yang, J. Xiong, M. Zhang, Y. Lee, C. Xiang, and
C. Tian, “Your table can be an input panel: Acoustic-based
device-free interaction recognition,” ACM IMWUT, vol. 3, no. 1,
pp. 1–21, 2019.

[15] J. P. Sahoo, A. J. Prakash, P. Pławiak, and S. Samantray, “Real-
time hand gesture recognition using fine-tuned convolutional
neural network,” Sensors, vol. 22, no. 3, p. 706, 2022.

[16] P. Wang, W. Li, S. Liu, Y. Zhang, Z. Gao, and P. Ogunbona,
“Large-scale continuous gesture recognition using convolutional
neural networks,” in IEEE ICPR. IEEE, 2016, pp. 13–18.

[17] H. Zou, J. Yang, Y. Zhou, and C. J. Spanos, “Joint adversarial
domain adaptation for resilient wifi-enabled device-free gesture
recognition,” in IEEE ICMLA. IEEE, 2018, pp. 202–207.

[18] C. Dian, D. Wang, Q. Zhang, R. Zhao, and Y. Yu, “Towards
domain-independent complex and fine-grained gesture recogni-
tion with rfid,” ACM CHI, vol. 4, no. ISS, pp. 1–22, 2020.

[19] Y. Zou, Q. Yang, Y. Han, D. Wang, J. Cao, and K. Wu,
“Acoudigits: Enabling users to input digits in the air,” in IEEE
PerCom. IEEE, 2019, pp. 1–9.

[20] K. Wu, Q. Yang, B. Yuan, Y. Zou, R. Ruby, and M. Li,
“Echowrite: An acoustic-based finger input system without

training,” IEEE TMC, vol. 20, no. 5, pp. 1789–1803, 2020.
[21] Y. Zou, Z. Xiao, S. Hong, Z. Guo, and K. Wu, “Echowrite 2.0:

A lightweight zero-shot text-entry system based on acoustics,”
IEEE T HUM-MACH SYST, vol. 52, no. 6, pp. 1313–1326,
2022.

[22] Y. Wang, J. Shen, and Y. Zheng, “Push the limit of acoustic
gesture recognition,” IEEE TMC, vol. 21, no. 5, pp. 1798–1811,
2020.

[23] H. Du, P. Li, H. Zhou, W. Gong, G. Luo, and P. Yang,
“Wordrecorder: Accurate acoustic-based handwriting recogni-
tion using deep learning,” in IEEE Infocom. IEEE, 2018.

[24] H. Yin, A. Zhou, L. Liu, N. Wang, and H. Ma, “Ubiquitous
writer: Robust text input for small mobile devices via acoustic
sensing,” IEEE Internet of Things Journal, vol. 6, no. 3, pp.
5285–5296, 2019.

[25] H. Yin, A. Zhou, G. Su, B. Chen, L. Liu, and H. Ma, “Learning
to recognize handwriting input with acoustic features,” ACM
IMWUT, vol. 4, no. 2, pp. 1–26, 2020.

[26] J. Hou, X.-Y. Li, P. Zhu, Z. Wang, Y. Wang, J. Qian, and
P. Yang, “Signspeaker: A real-time, high-precision smartwatch-
based sign language translator,” in ACM Mobicom, 2019, pp.
1–15.

[27] Q. Zhang, D. Wang, R. Zhao, and Y. Yu, “Myosign: enabling
end-to-end sign language recognition with wearables,” in ACM
IUI, 2019, pp. 650–660.

[28] Q. Zhang, J. Jing, D. Wang, and R. Zhao, “Wearsign: Pushing
the limit of sign language translation using inertial and emg
wearables,” ACM IMWUT, vol. 6, no. 1, pp. 1–27, 2022.

[29] T. Labs. MYO : Gesture control armband by Thalmic Labs.
2013. [Online]. Available: https://developerblog.myo.com/

[30] Z. Wang, T. Zhao, J. Ma, H. Chen, K. Liu, H. Shao, Q. Wang,
and J. Ren, “Hear sign language: A real-time end-to-end sign
language recognition system,” IEEE TMC, vol. 21, no. 7, pp.
2398–2410, 2020.

[31] Q. Zhang, D. Wang, R. Zhao, Y. Yu, and J. Jing, “Write,
attend and spell: Streaming end-to-end free-style handwriting
recognition using smartwatches,” ACM IMWUT, vol. 5, no. 3,
pp. 1–25, 2021.

[32] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional sequence to sequence learning,” in IEEE ICML.
PMLR, 2017, pp. 1243–1252.

[33] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for
mobilenetv3,” in IEEE/CVF ICCV, 2019, pp. 1314–1324.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” Com-
munications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in IEEE CVPR, 2016, pp. 770–778.

[36] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation
by backpropagation,” in IEEE ICML. PMLR, 2015, pp. 1180–
1189.

[37] M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li,
“Deep reconstruction-classification networks for unsupervised
domain adaptation,” in Springer ECCV. Springer, 2016, pp.
597–613.

[38] J. Wang, J. Chen, J. Lin, L. Sigal, and C. W. de Silva,
“Discriminative feature alignment: Improving transferability
of unsupervised domain adaptation by gaussian-guided latent
alignment,” Pattern Recognition, vol. 116, p. 107943, 2021.

[39] Y. Jin, Y. Gao, Y. Zhu, W. Wang, J. Li, S. Choi, Z. Li,
J. Chauhan, A. K. Dey, and Z. Jin, “Sonicasl: An acoustic-based
sign language gesture recognizer using earphones,” Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 5, no. 2, pp. 1–30, 2021.

2024 IEEE International Conference on Pervasive Computing and Communications (PerCom)

183
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 20,2024 at 15:33:44 UTC from IEEE Xplore. Restrictions apply.

