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With the rise of mobile devices, bel canto practitioners increasingly utilize smart devices as auxiliary 

tools for improving their singing skills. However, they frequently encounter timbre abnormalities during 

practice, which, if left unaddressed, can potentially harm their vocal organs. Existing singing assessment 

systems primarily focus on pitch and melody and lack real-time detection of bel canto timbre abnormalities. 

Moreover, the diverse vocal habits and timbre compositions among individuals present significant challenges 

in cross-user recognition of such abnormalities. To address these limitations, we propose TimbreSense, a 

novel bel canto timbre abnormality detection system. TimbreSense enables real-time detection of the five 

major timbre abnormalities commonly observed in bel canto singing. We introduce an effective feature 

extraction pipeline that captures the acoustic characteristics of bel canto singing. By applying temporal 

average pooling to the Short-Time Fourier Transform spectrogram, we reduce redundancy while preserving 

essential frequency-domain information. Our system leverages a transformer model with self-attention 

mechanisms to extract correlation and semantic features of overtones in the frequency domain. Additionally, 

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grants 62172286 and 

U2001207, in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2022A1515011509, in part 

by the Guangdong Provincial Key Laboratory of Integrated Communication, Sensing, and Computation for Ubiquitous 

Internet of Things under Grant 2023B1212010007, in part by the Project of the DEGP under Grant 2023KCXTD042, and by 

Tencent’s “Rhinoceros Birds” Scientific Research Fund for Young Researchers of Shenzhen University. 

Authors’ Contact Information: Yuzheng Zhu, College of Computer Science and Software Engineering, Shenzhen Uni- 

versity, Shenzhen, Guangdong, China; e-mail: zhuyuzheng2022@email.szu.edu.cn; Chengzhe Luo, College of Computer 

Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong, China; e-mail: luochengzhe2020@ 

email.szu.edu.cn; Yongpan Zou (Corresponding author), College of Computer Science and Software Engineering, Shenzhen 

University, Shenzhen, Guangdong, China; e-mail: yongpan@szu.edu.cn; Dongping Chen, College of Computer Science and 

Software Engineering, Shenzhen University, Shenzhen, Guangdong, China; e-mail: 3265637790@163.com; Kaishun Wu, 

Information Hub, The Hong Kong University of Science and Technology - Guangzhou Campus, Guangzhou, Guangdong, 

China; e-mail: wuks@hkust-gz.edu.cn. 

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee 

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and 

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be 

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org . 

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM. 

ACM 1550-4859/2025/01-ART7 

https://doi.org/10.1145/3708545 

ACM Trans. Sen. Netw., Vol. 21, No. 1, Article 7. Publication date: January 2025. 



7:2 Y. Zhu et al. 

we employ a few-shot learning approach involving pre-training, meta-learning, and fine-tuning to enhance 

the system’s cross-domain recognition performance while minimizing user usage costs. Experimental results 

demonstrate the system’s strong cross-user domain recognition performance and real-time capabilities. 

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing ; Ubiquitous and 

mobile computing systems and tools; Ubiquitous and mobile devices; 
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1 Introduction 

Timbre is a key indicator of a singer’s vocal quality, shaped by vocal production organs such as 
the vocal cords, throat, and nasal passages. Improper vocal techniques can cause various timbre 
abnormalities, leading to less pleasing performances and potentially harming the singer’s vocal 
health [ 22 , 25 ]. For instance, excessive tension in the vocal cords during phonation and improper 
muscle use can cause phonotraumatic vocal hyperfunction. Once formed, these lesions may hinder 
proper vocal fold closure, reducing sound production efficiency [ 23 , 26 ]. In traditional bel canto 
training, experienced instructors quickly identify students’ pronunciation issues, enabling them 

to sense and correct improper vocal exertion. This approach deepens students’ understanding 
while preventing harm caused by incorrect pronunciation. However, this traditional method relies 
heavily on the expertise of the instructors and remains subjective. Moreover, hiring professional 
vocal instructors can create an unaffordable financial burden for learners. 

With the development of sensing technology, different modalities have been widely used in 
various sensing tasks, such as health monitoring [ 41 , 42 ] and identity authentication [ 45 , 46 ]. An 
increasing number of intelligent systems are also available to assist in vocal practice. Most com- 
mercial intelligent singing training systems focus on melody and rhythm [ 10 , 44 ], overlooking 
the crucial element of timbre perception and thus failing to meet the needs of bel canto practice. 
Other singing voice evaluation techniques are limited by specific experimental conditions [ 27 , 29 , 
39 ], such as particular timbre categories, specific singers, controlled environments, and profes- 
sional equipment. Due to these limitations, no methods currently exist for real-time detection of 
bel canto timbre abnormalities using portable devices like smartphones. 

The types of timbre abnormalities mainly include the following five categories [ 6 , 24 , 38 ]: 

—Too bright sound ( White ): excessive brightness may result from limited pharyngeal space 
or tension in the pharyngeal resonator. This sound is perceived as rough, dry, straight, and 
lacking resonance. 

—Tongue inward ( Uvular ): produced by inward hyoid contraction and tongue root retraction, 
this sound lacks color and penetration. It is perceived as stiff and overly dark. 

—Hypo-nasality ( Nasal ): hypo-nasality makes the singer sound “stuffy” or as if they have a 
blocked nose. A low uvula and soft palate cause nasal obstruction during sound production, 
leading to improper nasal resonance. 

—Breathy sound ( Breathy ): poor vocal cord closure results in a sound accompanied by no- 
ticeable breathy noise, perceived as weak, dull, and hoarse. 

—Raised larynx ( Larynx-lift ): excessive throat constriction and a raised larynx produce a 
squeezed, harsh sound, sometimes leading to a straight tone. 
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In acoustics, singing timbre is primarily determined by the number, selection, and strength of 
overtones [ 37 ]. This factor significantly contributes to individual differences in timbre. During 
singing, the vocal cords vibrate to produce the fundamental tone. The fundamental tone resonates 
within the vocal cavities, generating overtones. These overtones continue to resonate, producing 
higher-frequency overtones. Consequently, overtones exhibit semantic features across various fre- 
quency bands and correlations among themselves. 

In summary, there are three challenges in our work. First, variations in vocal structure and 
singing techniques cause sounds within the same timbre abnormality category to differ acous- 
tically. This challenge impacts the model’s generalization, as shown in Section 5.4 . Second, the 
interrelation among overtones in the frequency domain makes it essential to capture their cor- 
relation and semantic features in the spectrogram. Third, inexperienced trainees often struggle 
with muscle control during bel canto practice, leading to unpredictable timbre abnormalities. Post- 
practice feedback makes it hard for trainees to recall when errors occurred. In contrast, real-time 
monitoring helps them remember the muscle states linked to incorrect phonation, aiding in er- 
ror avoidance and enhancing learning. Additionally, bel canto practice sessions last 1 to 2 hours, 
and failing to correct errors promptly can harm the throat. Therefore, the system needs to be 
real-time and deployable on mobile devices. In this article, we develope a real-time timbre abnor- 
mality detection system for mobile devices, offering immediate feedback to bel canto trainees. We 
propose a deep learning model using average-pooled spectral features and a self-attention mecha- 
nism, tailored specifically to bel canto singing. The model reduces parameters and computational 
complexity while maintaining effective recognition. We also introduce a meta-learning approach 
for cross-user training. After pre-training, we customize task generation strategies for our spe- 
cific task in meta-learning. Finally, the model requires minimal target user data for fine-tuning to 
achieve strong generalization. 

The contributions of our work are as follows: 

—To the best of our knowledge, we are the first to propose a timbre abnormality detection 
system tailored for bel canto, evaluating five types of abnormalities and deploying it on a 
mobile platform. 

—We adaptively modify the input of the transformer model to better suit our task, efficiently 
extracting correlation and semantic features of overtones in the frequency domain with 
fewer parameters, ensuring real-time performance. 

—We design few-shot learning task generation strategies tailored to our task, integrating 
pre-training, meta-learning, and fine-tuning. Compared with other classical cross-domain 
methods, our approach achieves the best results in this application. 

The rest of this article is as follows. Section 2 introduces related work on singing evaluation. 
Section 3 presents the system design. Section 4 provides details on dataset collection and model 
deployment. Section 5 covers the evaluation. Section 6 is the discussion. Section 7 concludes the 
article. 

2 Related Work 

2.1 Acoustic Features of Timbre 

Several studies have investigated the link between timbre and acoustic features. Acoustic feature 
analysis uses signal processing techniques to extract features from audio. These features include 
the singing power ratio [ 3 , 16 ], fundamental frequency perturbations [ 29 ], average energy [ 25 ], 
and resonance peak correlations [ 19 ]. Experts then analyze these features statistically to establish 
correlations between specific timbre concepts and acoustic characteristics [ 1 , 11 , 18 , 19 , 25 , 29 ]. For 
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Fig. 1. The overview of TimbreSense. 

instance, J. Sundberg et al. examined how phonation mechanisms of structures like the nasal cavity 
and vocal tract affect timbre characteristics [ 11 , 21 ]. They also explored the connection between 
singing emotions and both physiological and acoustic indicators [ 33 ]. However, evaluating timbre 
solely based on acoustic features has limitations. This method is one sided and lacks clarity, as 
complex timbre cannot be fully captured by a few simple features. Additionally, the criteria for 
defining timbre through these features are vague, often relying on experts’ subjective evaluations. 
Thus, this approach serves only as an auxiliary tool for timbre evaluation. 

2.2 Machine Learning-based Singing Evaluation 

With advancements in computing, machine learning and deep learning have been applied to acous- 
tic feature analysis, primarily categorized into automatic singing evaluation and classification. Au- 
tomatic singing evaluation uses extracted audio features as input and employs expert ratings as 
target outputs for the model [ 32 , 34 , 43 ]. Expert scoring incorporates subjective perceptual fac- 
tors related to timbre, like mellowness and fullness. This approach depends heavily on expert 
knowledge, reducing the model’s objectivity. Automatic singing classification effectively catego- 
rizes well-defined timbres with clear perceptual definitions, making it more objective than expert 
ratings. In recent decades, many studies have used machine learning to classify vocal patterns 
in singing [ 4 , 15 ], including singer identification [ 17 ], voice disease diagnosis [ 20 , 26 ], bel canto 
emotion recognition [ 35 ], and singing style classification [ 5 , 28 ]. These studies do not address vo- 
cal abnormalities students frequently encounter during practice, nor have they been implemented 
in real-time systems. Our system evaluates five common timbre abnormalities that students fre- 
quently face during practice. This classification encompasses more categories than previous stud- 
ies, adding to the challenge. We also introduce few-shot learning methods to enhance the perfor- 
mance of our model. 

3 System Design 

3.1 System Overview 

This study presents TimbreSense, a timbre abnormality detection system specifically designed for 
bel canto. As shown in Figure 1 , the system captures audio signals from smart devices. Singing 
event detection is used to extract relevant audio segments, converting them into spectrogram 

representations. The core architecture of our model is built around a transformer encoder. To 
boost performance across diverse user profiles, we implement few-shot learning during training, 
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Fig. 2. Extracting valid audio segments. 

treating each user profile as a distinct domain. Initially, the feature encoder is pre-trained on 
an open-source dataset, followed by fine-tuning using meta-learning techniques. In the testing 
phase, data from the target user are meticulously preprocessed and classified, providing precise 
indications of timbre abnormalities. 

3.2 Data Preprocessing 

Detecting the singing voice is essential to minimize computing overhead from non-speech audio. 
We employ Voice Activity Detection (VAD ) based on Gaussian Mixture Model from WebRTC 

[ 2 ]. The process’s effectiveness is illustrated in Figure 2 . After VAD extracts valid audio signals, 
pre-emphasis [ 40 ] is applied to enhance high-frequency components, resulting in a spectrogram 

with balanced frequencies. We then use non-overlapping 500-ms windows to segment the signal, 
transforming it into spectrograms via Short-Time Fourier Transform (STFT) . The audio is sam- 
pled at 48 kHz. Each segment length and FFT size are set to 2,048, with an overlap of 1,024 between 
segments. 

3.3 Network Design 

As stated in the Introduction, the correlation and semantic features of overtones in the frequency 
domain contain rich information, crucial for distinguishing different timbres. To extract mean- 
ingful timbral features, capturing effective global information from the spectrogram is essential. 
Transformers excel in extracting semantic features compared to RNNs and CNNs, demonstrating 
strong capabilities in capturing long-distance dependencies. Thus, we employ the transformer’s 
self-attention mechanism to capture global information from the input data, effectively identi- 
fying long-range dependencies within the spectrogram. The attention mechanism is detailed in 
Equation ( 1 ), where Q , K , and V represent the query, key, and value matrices and d k denotes 
the key vector dimension. Unlike CNNs and LSTMs, transformers use attention to enable parallel 
computation, enhance efficiency and better capture long-range dependencies. This approach en- 
ables effective capture of correlation and semantic features across different frequency bands in the 
spectrogram, 

Attention (Q, K , V ) = softmax 

(
QK 

T 

√ 

d k 

)
V . (1) 

Our model, TimT, shown in Figure 4 , is similar to ViT [ 7 ] but includes adaptive modifications 
to the input. In bel canto practice, vocal exercises typically involve slow variations in pitch across 
different tones. Over short durations, the loudness, pitch, and timbre of singing remain stable. 
Therefore, within short timeframes, the frequency of the audio signal can be assumed to remain 
constant. As shown in Figure 3 (a), the energy of each frequency within the window remains rela- 
tively stable, with minor fluctuations at the boundaries of each peak. Given this, we apply temporal 
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average pooling to the spectrograms, which smooths out inherent fluctuations and random noise, 
as shown in Figure 3 (b). This process reduces temporal influence, directing the model’s attention 
to frequency domain information. Next, we normalize the spectrogram and use a sliding window 

to divide the one-dimensional spectrogram X ∈ R 

F×1 ×1 into N fixed-size tokens, where F denotes 
the number of frequency bins. Each token x i ( i = 1 , 2 , . . . , N ) passes through an embedding layer 
to generate its feature representation z i . It is worth noting that, unlike ViT, we use overlapping 
windows to preserve some mutual information between tokens. In ViT, segmented images main- 
tain edge continuity, while temporal-averaged spectrograms lack frequency direction continuity, 
complicating positional embedding learning. The token size is set to 64. Each token’s feature rep- 
resentation z i is added with a randomly initialized positional embedding p i . Preserving mutual 
information between tokens aids in learning positional encoding during training. The class em- 
bedding z 0 is randomly initialized, with its dimension matching the feature dimension of the other 
token embeddings z i . The class embedding is concatenated with the other token embeddings, 
passed through the positional embedding layer, and jointly fed into the transformer encoder. The 
class embedding engages in the self-attention calculations of the transformer and serves as the 
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final output, representing globally extracted spectral features. This feature then passes through an 
Multi-Layer Perceptron (MLP) followed by a Softmax layer to produce the class output for the 
sample. 

The transformer encoder is composed of L layers ( L = 4 ) of identical structure stacked sequen- 
tially. The encoder comprises multi-head attention, projection, and MLP modules. Residual con- 
nections and layer normalization are applied after each module. The multi-head attention module 
utilizes multiple sets of learnable queries, keys, and values, allowing the model to capture diverse 
internal relationships within the data. The projection block is a fully connected layer with zero 
bias, designed to reduce the feature dimension. The MLP consists of two layers equipped with 
GELU non-linearity. 

3.4 Few-shot Learning for Cross-domain Recognition 

Variations in vocal anatomy and singing techniques among individuals cause acoustically similar 
timbres to exhibit significant differences in their acoustic properties. This variability presents chal- 
lenges to robust model generalization across different users. To tackle this and enhance cross-user 
capability, we adopt a few-shot learning approach, balancing user-friendliness and model per- 
formance. During the training phase, we leverage a comprehensive combination of pre-training, 
meta-learning, and fine-tuning techniques to effectively mitigate the cross-domain challenges aris- 
ing from the heterogeneous acoustic attributes of different vocalists. 

Pre-training . The transformer network inherently lacks inductive biases, making it necessary 
to acquire this prior knowledge through pre-training. We use the Vocalset [ 39 ] singing technique 
dataset for supervised pre-training of our model. Cross-entropy loss function is used to calculate 
the loss. We pretrain the model until the model exhibits satisfactory performance and the loss 
stabilizes. The encoder is then retained and connected to an untrained Softmax layer, whose output 
size matches the number of categories. This combined structure serves as the trainable model for 
the subsequent steps. 

Meta-learning . Model-Agnostic Meta-Learning (MAML) [ 8 ] is a meta-learning algorithm 

specifically designed for few-shot learning. The goal of MAML is to train a model that can quickly 
adapt to new tasks with only a small amount of training data. MAML’s core idea is to find an initial 
set of parameters θ through meta-learning, allowing the model to achieve good performance on 
new tasks after only a few gradient updates. The training process of MAML , illustrated in Figure 5 , 
involves meta-tasks, a meta-learner, and base-learners. Meta-tasks are generated by our task gen- 
eration strategy and are composed of small subsets of data from the source domain. Base-learners 
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Fig. 6. Task generation strategy. 

learn task-specific features on each meta-task, constructing target functions tailored to each task. 
The meta-learner integrates validation losses from multiple meta-tasks, identifying common pat- 
terns that facilitate generalization and enable rapid convergence on new tasks. 

The composition of meta-tasks plays a critical role in the effectiveness of meta-learning. To 
optimize MAML , we enhanced the task generation strategy by introducing two approaches: Real 
User Simulation (RUS) and Virtual User Simulation (VUS) . As shown in Figure 6 , assuming 
three users in the source domain data, in RUS, each meta-task’s data are sampled exclusively from 

a single user’s data. In VUS, each meta-task’s data are randomly sampled across all users. For 
instance, in RUS, data for meta-task 1 come solely from User1, whereas, in VUS, data for meta-task 
N are randomly sampled from User1, User2, and User3. RUS aims to simulate real-world scenarios 
where the model learns from new users. VUS is designed to enhance user diversity, especially 
when training data from users are limited. We balance the number of tasks generated by RUS and 
VUS in each training batch. As depicted in Figure 6 , we generate N meta-tasks, with the first N /2 
tasks generated using the RUS strategy and the rest using VUS. This balanced approach integrates 
both strategies, enhancing the effectiveness of meta-learning. In our experiment, the number of 
tasks generated by RUS corresponds with the number of users in the training set. We collect data 
from 18 users, generating 810 meta-tasks through the RUS strategy ( 18 users × 45 tasks per user). 
The number of meta-tasks generated using the VUS strategy matches that of the RUS strategy. 
Therefore, the total number of meta-tasks ( N ) amounts to 1,620. Each meta-task is divided into a 
support set and a query set. The support set assists the model in learning task-specific patterns, 
while the query set evaluates the model’s generalization to new domains with limited support data. 
The support set and query set configurations are 6-ways, 5-shot, and 6-ways, 10-shot, respectively. 
Here, “N -ways” denotes the number of categories in a task, while ‘ k-shots’ represents the number 
of samples per category. 

As shown in Figure 5 , in the training process of MAML , the parameters of the base learner 
f ϕ are first initialized by the parameters of meta-learner θ . In the inner optimization, the base- 
learner iterates over the support set D 

s 
i of the meta-task T i for l iterations, and update the 

parameters: 

θ l i ← θ l−1 i − α∇ ϕ [L T i (f ϕ (D 

s 
i ))](ϕ= θ l−1 

i 
). (2) 
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Once the base learners of all N meta-tasks have completed their iterations, the query sets D 

q 
i of 

each meta-task are used as a validation set. The current losses of each base learner are computed 
as follows: 

[L T i (f ϕ (D 

q 
i ))](ϕ= θ l 

i 
) = 

n ∑
j 

−y q ji log 
(
f ϕ (x q ji )

)
+ (1 − y q ji ) log 

(
1 − f ϕ (x q ji )

)
, (3) 

where y 
q 
ji and x 

q 
ji , j ∈ (1 , 2 , . . . , n), are the samples of the query set D 

q 
i . Finally, in the outer opti- 

mization, the parameters of the meta-learner are updated through 

θ ← θ − β
∑
T i 

∇ ϕ [L T i (f ϕ (D 

q 
i ))]ϕ= θ l 

i 

. (4) 

We use the cross-entropy loss function along and the Adam optimization algorithm with a 
weight decay set to 0.0001 to compute losses and update gradients. The paramaters α and β repre- 
sent the learning rates for inner and outer optimization, respectively. Specifically, α is set to 0.002, 
and β is set to 0.00015 empirically. The number of iterations for inner optimization l is 5, and for 
outer optimization it is 15. 

Fine-tuning . The final stage of few-shot learning is fine-tuning. After meta-learning, the model 
needs only a few samples from target users to achieve domain generalization. The tasks encoun- 
tered by the model during this stage are consistent with those generated using the RUS strategy. 
Therefore, we use the same learning rates for the fine-tuning stage as mentioned earlier. We freeze 
the parameters of the transformer encoder and fine-tune only the subsequent classification head. 
We set the step size S empirically. When the number of iterations reaches S , we reduce the learning 
rate to facilitate stable convergence of the model towards the optimal position, 

θ l = 

{
θ l−1 − α∇ ϕ [L(f ϕ )](ϕ= θ l−1 ), 1 ≤ l ≤ S 

θ l−1 − αs ∇ ϕ [L(f ϕ )](ϕ= θ l−1 ), S < l 
, (5) 

where α = 0.002, αs = 0.001, S = 10. 

4 Implementation 

4.1 Data Collection 

We recruited 18 bel canto students (9 males and 9 females). Each student, guided by an experienced 
vocal coach, imitated sounds with timbre abnormalities. As shown in Figure 7 (a), the experiments 
were conducted in an uncontrolled meeting room with background noise of approximately 40 dB. 
Students were asked to perform vocal exercises from the standard bel canto training repertoire. 
They were required to sing the five foundational bel canto vowels (/a/, /e/, /i/, /o/, /u/) at various 
pitches. Pre-recorded audio segments of abnormal timbres were played, guiding students via an 
app to imitate them. Students maintained these timbres while performing vocal exercises. A vocal 
coach was actively involved throughout the entire data collection process. After the experiment 
concluded, the coach provided guidance on correct vocal techniques to protect students’ vocal 
health. Each timbre abnormality has 15 to 20 samples, with each valid segment ranging from 7 to 
13 seconds. After collecting 5 samples, we ask the participants about their condition. If they are in 
good condition, then we continue with the collection; otherwise, they rest for ∼1 to 2 minutes. As 
shown in Table 1 , four smartphones were used, RedMi K30s, Vivo X20, Samsung S8, and Samsung 
S20, to record the participants’ singing. Except for the Samsung S8, which used a wired headphone 
microphone with a 3.5-mm audio interface, the other smartphones used their built-in microphones. 
The smartphones were vertically mounted on stands at the same height as the participant’s head, 
approximately 30 cm from the mouth. The headphone microphone was clipped at the participant’s 
collar After data collection, a professional vocal coach was responsible for cleaning the timbre 
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(a) Bel canto audio data collection (b) TimbreSense APP

Fig. 7. Data collection and system deployment: (a) Bel canto audio data collection and (b) TimbreSense APP. 

Table 1. Device Parameters 

Device Sensor CPU RAM 

RedMi K30s Built-in microphone 2.8 GHz 8 G 

Vivo X20 Built-in microphone 2.2 GHz 4 G 

Samsung S20 Built-in microphone 2.8 GHz 12 G 

Samsung S8 Wired headphone microphone 2.3 GHz 4 G 

data. The coach screened out samples not aligning with the target abnormality category, discarding 
about 15% of them. In total, 1,944 timbre samples are collected across all categories for each device, 
and after data cleaning, 1,640 samples were retained. 

5 Evaluation 

5.1 System Implementation 

We develop an app for our system to facilitate audio recording and model inference, as shown 
in Figure 7 (b). Audio is recorded at a sampling rate of 48 KHz and saved as WAV files. The deep 
learning model in our system is built on PyTorch-1.11.0 and deployed on mobile devices. All train- 
ing processes are conducted on the server, while the mobile device handles the model inference. 
We developed an app on the smartphone platform for our system. The app first performs VAD, 
followed by processing of the detected valid audio segments. Finally, it performs model inference 
on the mobile device and returns the timbre abnormality results. 

5.2 Experiment Setup 

We employ two distinct data partitioning approaches for our experiments. For the Backbone Net- 
work Experiments, we conduct 10-fold cross-validation on data from all users without utilizing 
few-shot learning. This approach assesses the performance of the backbone network in a non- 
cross-user scenario, establishing an upper limit for the model’s performance in cross-user tasks. 
In the remaining tests, we employ the leave-one-user-out method to partition training and testing 
data, evaluating the performance of few-shot learning methods in cross-user scenarios. We assess 
the accuracy of the models and the standard deviation across multiple test sets. 
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5.3 Selection of Backbone Network 

In the Backbone Network Experiments, we evaluate the performance of models with original spec- 
trogram inputs (2D) and models with temporal average-pooled spectrogram inputs (1D). We also 
assess the impact of window overlap rates on the token segmentation in our model. 

5.3.1 Original Spectrogram Inputs (2D). We compare the performance of conventional audio 
processing models to TimT . Conventional methods directly use the audio spectrogram obtained 
via STFT as input, differing from the temporal average pooling proposed in this article. We eval- 
uate several classic models, including ResNet18 [ 12 ], ResNet10 [ 30 ], LSTM [ 13 ], CNN-LSTM , MLP 

(Multilayer Perceptron), and the original ViT [ 7 ]. LSTM and CNN-LSTM are commonly used for 
audio processing [ 5 , 17 , 35 ]. ResNet18 , ResNet10 , ViT , LSTM , and CNN-LSTM all use the classic 2D- 
spectrogram input, while our model use the temporal average pooling 1D-spectrogram as input 
to match its model structures. As Figure 8 shows, our model achieves an accuracy of 95 . 8% . Com- 
pared with common models like LSTM and CNN-LSTM , our model shows improvements of 12 . 5% 

and 14 . 7% , respectively. The accuracy of ResNet18 approaches that of TimT at 92 . 0% . However, our 
model contains only 1.3 M parameters, significantly fewer than ResNet18 ’s 33 M. Additionally, we 
demonstrate the effectiveness of temporal average pooling. The original ViT model achieved an 
accuracy of only 76 . 6% . Temporal average pooling mitigates the influence of time, allowing the 
model to focus more on global correlations among overtones that form the timbre. Therefore, the 
model’s recognition accuracy improves significantly. 

5.3.2 Temporal Average-pooled spectrogram Inputs (1D). We evaluate the feature extraction ca- 
pabilities of different models on 1D inputs and select common 1D processing models for compar- 
ison. The input size for LSTM and CNN-LSTM matches the token size of our model, both set at 64. 
As shown in Figure 9 , our model achieves an accuracy of 95 . 8% , exceeding LSTM and CNN-LSTM 

by 11 . 3% and 10 . 0% , respectively, and surpassing CNN-1d and MLP by 15 . 1% and 23 . 4% , respec- 
tively. This demonstrates that the transformer model based on attention mechanisms effectively 
captures overtone features in the frequency domain and is well suited for our task. 

5.3.3 The Impact of Overlap of Token Segment. We conduct experiments on the token seg- 
mentation window overlap rate, demonstrating the effectiveness of retaining partial information 
between tokens. As shown in Figure 11 , the model’s recognition accuracy increases with the 
increase in overlap rate, reaching its peak at 50% , and then decreases. When the overlap rate 
becomes too high, excessive redundancy between adjacent frames causes the model to encounter 
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similar information during training, resulting in overfitting. Thus, considering accuracy, we select 
a 50% overlap rate as the optimal setting. 

5.4 Overall Performance 

We employ the leave-one-user-out method for data partitioning and train the data using our pro- 
posed model and few-shot learning approach. Figure 10 shows the model’s performance under 
different new user scenarios, with evaluations conducted under 5-shot and 10-shot settings. For 
5-shot, the average accuracy is 76 . 3% , with User3 achieving the highest accuracy of 92 . 6% and 
User14 the lowest at 61 . 9% . For 10-shot, the average accuracy improves to 84 . 5% . Comparing 5- 
shot and 10-shot, the 10-shot version shows varying degrees of accuracy improvement for all users, 
demonstrating more stable performance. 

To understand the misclassification of the system, we construct a classification confusion matrix 
shown in Figure 12 . Compared to other categories, white and breathy show the fewest misclassi- 
fications, while normal and nasal have the highest misclassification rates. This may be due to the 
fact that, aside from normal and nasal , other categories of abnormal timbres possess more distinct 
acoustic characteristics, making them easier for the model to differentiate. Normal is defined as 
the sound produced by the user that conforms to the norms of classical singing, and its auditory 
characteristics are primarily reflective of the user’s unique timbre. In contrast, other categories 
of abnormal timbres share common, interpretable auditory features. For instance, breathy sounds 
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have a breathy quality, while uvular sounds are perceived as stiff and dark. Consequently, the 
model faces more challenging to capture the characteristics of normal phonation. 

5.5 The Comparison with Baseline Methods 

We employ the following methods as baselines to assess the cross-domain performance of our 
system: 

—Src : The model is trained solely on source domain data without further adjustments using 
target domain data. 

—Tgt : Limited samples are extracted from the target domain for training, and the remaining 
data are used for testing. 

—Mix : The model is trained on a combination of limited target domain samples and all source 
domain data, with the remaining target domain data used for testing. 

—Domain-Adversarial training of Neural Networks (DANN) [ 9 ]: Domain-Adversarial 
training of Neural Networks is a prominent domain adaptation approach requiring sub- 
stantial unlabeled target domain data for adaptation. 

—GF : Global fine-tuning was initially trained using data from the source domain and further 
fine-tuned with limited samples from the target domain. 

—P > M > F [ 14 ]: This is a state-of-the-art few-shot learning approach following a pre-training, 
meta-learning, fine-tuning pipeline similar to our method. The key difference lies in its core 
meta-learning algorithm, which is the Prototypical Network [ 31 ]. Prototypical Network 
represents a metric-based meta-learning approach that generates prototypes for each class 
using limited labeled data from target users. Recognition results are determined by com- 
paring distances between test samples and prototypes during testing. 

—MAML [ 8 ]: Model-Agnostic Meta-Learning is a widely used and significant optimization- 
based meta-learning method. In our evaluation, this refers specifically to the original, un- 
modified MAML method. Our approach differs in the task generation strategy compared to 
the original MAML method. 

We use the same backbone network, evaluating all methods under 5-shot and 10-shot conditions. 
A leave-one-user-out evaluation strategy is used. Among baseline methods, Src uses only source 
domain data. DANN utilizes both source domain data and approximately 400–600 unlabeled target 
domain samples. Thus, these two baselines are not dependent on shot count. 

As shown in Figure 13 and Table 2 , we compare the results of baseline methods. Src achieves an 
accuracy of only 43 . 3% , significantly lower than the 95 . 8% shown in Figure 8 under non-cross-user 
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Table 2. Baseline Comparison of Few-shot Learning 

Accuracy Src Tgt Mix DANN GF P > M > F MAML Ours 

5-shot 43 . 1 (±1 . 3 ) 20 . 1 (±8 . 5 ) 52 . 3 (±1 . 1 ) 50 . 6 (±1 . 5 ) 70 . 4 (±1 . 2 ) 68 . 7 (±1 . 3 ) 53 . 5 (±1 . 4 ) 76 . 3 (±1 . 2 )
10-shot 43 . 1 (±1 . 3 ) 30 . 6 (±4 . 2 ) 55 . 8 (±2 . 1 ) 50 . 6 (±1 . 5 ) 76 . 9 (±1 . 2 ) 74 . 3 (±1 . 6 ) 56 . 4 (±2 . 2 ) 84 . 5 (±1 . 2 )

conditions. This demonstrates that for the same abnormal timbre categories among different in- 
dividuals, strong individual variability persists, resulting in poor cross-domain performance. Tgt , 
trained with very few target domain samples without cross-domain training, shows the lowest per- 
formance and suffers from severe overfitting. DANN utilizes substantial unlabeled target domain 
data, but its performance fails to meet basic requirements, indicating the unsuitability of unsu- 
pervised domain adaptation methods for bel canto timbre abnormal detection. GF is trained with 
source domain data and fine-tuned with a small amount of target domain data, achieving relatively 
good performance but still lagging behind our method. P > M > F , a prototype-based meta-learning 
method, performs worse than GF , suggesting the limitations of prototype-based methods in han- 
dling features with significant individual differences. The original MAML performs poorly due to 
the lack of pre-training. Its transformer encoder lacks prior inductive biases, contributing to infe- 
rior performance. Overall, our method achieves the best recognition performance in both 5-shot 
and 10-shot conditions, demonstrating that our proposed few-shot cross-domain approach, in- 
tegrating pre-training, meta-learning, and fine-tuning, enhances cross-domain performance, and 
outperforms other methods. 

5.6 Ablation Experiment 

As shown in Figure 14 , we conduct ablation experiments for our few-shot cross-domain strategy 
to demonstrate its effectiveness. We evaluate the effects of removing the pre-training step (-P) and 
the user domain simulation strategy in meta-learning task generation (-T). All methods undergo 
testing under 5-shot and 10-shot conditions using leave-one-user-out cross-validation. Ours(-P) 
performs similarly to MAML due to the absence of external dataset pre-training, yet shows no- 
ticeable improvement. This suggests the importance of pre-training to introduce prior knowledge 
into the transformer. Ours(-T) demonstrates that the user-domain simulation strategy can enhance 
the model’s cross-domain recognition performance. 

5.7 The Impact of Number of Shots 

In the fine-tuning phase, we provide varying samples to evaluate the impact of different target 
domain sample quantities on the model’s performance. As shown in Figure 15 , when the sam- 
ple number ranges from 1-shot to 10-shot, the model’s accuracy rapidly improves as shot counts 
increase. A clear slowdown in accuracy gains is observed between 5-shot and 10-shot. Beyond 
10-shot, accuracy saturates. Considering user costs and recognition accuracy, we select 5-shot as 
the final input quantity during fine-tuning. 

It is worth noting that the shot provided during few-shot learning is different from the original 
audio sample users provide during data collection. The shots that used for fine-tuning to enhance 
accuracy are 0.5-second segments from window splits during data preprocessing. An audio clip 
can be divided into multiple shots, reducing the required amount of user-provided audio data. In 
practice, users only need to provide about 5 seconds of data per category to achieve the enhance- 
ment effect of 10 shots. The method by which we obtain new user-labeled samples is consistent 
with the data collection approach outlined in Section 4.1 . The mobile app contains pre-recorded 
abnormal timbre samples. When obtaining new user-labeled samples, the new user plays back an 
audio sample of a certain category of abnormal timbre and, under the guidance of the app, imitates 
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the abnormal timbre to produce a labeled sample. This approach efficiently collects labeled data 
from new users with minimal effort. 

5.8 The Impact of Detecting Window Length 

We evaluate the impact of varying input data window lengths on the model’s recognition perfor- 
mance. As shown in Figure 16 , we conduct leave-one-out cross-validation experiments to analyze 
the effect of varying window lengths under the 5-shot condition. The model’s recognition accuracy 
increase with the increase in window length, reaching its peak at 0.5 seconds. Considering both 
real-time usage and recognition performance, we ultimately chose a window length of 0.5 seconds. 

5.9 The Impact of Noise 

To assess the system’s robustness to environmental factors, we perform noise impact experiments. 
We select three common types of background noise: piano accompaniment, living room environ- 
mental noise, and public environmental noise. Environmental noise is sourced from the public 
DEMAND dataset [ 36 ]. The noise volume is controlled within ranges of [45–50] and [55–65] deci- 
bels and is linearly combined with the user’s vocal data to simulate a noisy voice signal. The 
experimental results are shown in Figure 17 , where the baseline represents performance without 
added noise. Among the three different types of noise, the model performs better with piano ac- 
companiment compared to environmental noise. This is because environmental noise is typically 
wide-band random noise, which unpredictably distorts the spectral characteristics of the user’s 
singing. In contrast, piano accompaniment exists in a narrow frequency range and has a smaller 
impact on the spectral characteristics of the user’s singing. Additionally, as noise levels increase, 
the model’s recognition performance slightly decreases, though users can enhance noise resilience 
by providing more data. In summary, the model is suitable for relatively quiet environments and 
performs well in scenarios with piano accompaniments, making it applicable for bel canto singing 
practice. 

5.10 The Impact of Loudness 

Given that the average loudness of all audio samples in the dataset is approximately −15 LUFS, we 
evaluate the system’s performance at loudness levels of −5 , −10 , −15 , −20 , and −25 LUFS for both 
5-shot and 10-shot scenarios. Loudness-adjusted audio is used for both fine-tuning and testing, 
as the loudness of the same user’s pronunciation during practice in real scenarios is usually con- 
sistent. The results show that accuracy remains consistent across different loudness levels, with 
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Fig. 17. Evaluation of the robustness to noise: (a) 5-shot scenario; (b) 10-shot scenario. 

average accuracies of 76 . 3% for 5-shot and 84 . 5% for 10-shot. This occurs because adjusting the 
audio loudness essentially scales the amplitude of the signal without changing the inherent signal- 
to-noise ratio of the signal. We assume the new audio signal y(t) is a scaled version of the original 
x(t), multiplied by a constant factor α . The STFT has a linear property, meaning that if a signal x(t)
is multiplied by a constant factor α , then its Fourier transform X (f ) is also multiplied by the same 
factor α . During data preprocessing in our system, the spectrograms after global temporal pooling 
are normalized, eliminating the influence of the constant factor α . As a result, even if the au- 
dio loudness changes, the normalized spectrograms remain consistent, ensuring that the model’s 
input does not vary with loudness. This demonstrates the system’s robustness to variations in 
loudness. 

5.11 Running Performance on Mobile Devices 

Real-time singing detection is of importance as it allows users to promptly assess the quality of 
their vocal performance. Consequently, the system’s response time becomes a critical factor im- 
pacting the overall user experience. To thoroughly evaluate the system’s response time, we divide 
the processing flow into four distinct stages: 

—Model loading: loading the deep learning model into memory to create a runnable classifier. 
This step is only executed once, and the model’s parameter size directly affects loading 
speed. 

—Signal processing: pre-processing of the input raw audio stream, including signal process- 
ing operations such as singing event detection and time-frequency feature extraction. 

—Model inference: the deep learning classifier processes input spectrogram features to pro- 
duce prediction results. 

—Result presentation: the time for model prediction results to be converted into visualized 
user feedback. 

A series of experiments measure the response time of real-time singing voice input on four 
devices. To ensure accuracy, multiple trials are conducted, with each trial involving opening the 
main interface, waiting for approximately 3 seconds after activating the recording button, singing 
for around 7 seconds, and finally stopping the recording and exiting the main interface. This pro- 
cess is repeated 10 times, and the average response time is calculated. As shown in Figure 18 , 
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the response time for the model on mobile devices consists of several stages. The maximum re- 
sponse time for all devices is 215.2 ms, while the minimum is 95.6 ms. The average response 
time is 147.6 ms. Samsung S20 and RedMi K30s perform better due to their higher CPU frequen- 
cies. Overall, the model deployed on mobile devices, from loading to outputting the audio ab- 
normal timbre result, requires less than 250 ms, which meets the real-time requirements for user 
usage. 

We also evaluate the power consumption, CPU usage, and memory usage at different stages 
of the app’s operation. We conduct evaluations during several app operation stages, including the 
initialization (init) phase, standby phase, and model inference (run) phase. During the initialization 
phase, the device initializes the environment and loads the local model. In the standby phase, the 
app activates the recording function, but the user is not singing. During this phase, the app executes 
the VAD algorithm to detect singing events, and if no singing is detected, then it does not perform 

model inference. In the model inference phase, the app records while the user continues singing. At 
this point, the VAD algorithm detects the singing event, initiates data processing, performs model 
inference, and ultimately returns the abnormal timbre result. As shown in Figure 19 , memory 
usage across all devices stays under 400 MB in all phases. As shown in Figure 20 and Figure 21 , the 
system’s CPU usage during the standby phase is at most 6% , and the maximum power consumption 
rate is only 0.595 mAh/minute. This occurs because, in standby mode, singing event detection 
removes invalid audio, avoiding unnecessary data processing and inference. In the model inference 
phase, the model’s CPU usage reaches a maximum of 52 . 4% , and the maximum power consumption 
rate is 9.24 mAh/minute. 
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6 Discussion 

This article proposes a system for detecting timbre abnormalities in bel canto singing. However, 
the system has limitations. First, user diversity presents a challenge. In cross-user recognition, 
significant differences in vocal organs lead to a notable drop in model performance (from 95 . 8% 

in non-cross-user scenarios to 43 . 1% in cross-user Src scenarios). To address this, we propose that 
users imitate the atypical vocal tones generated by the app, providing the model with a few sam- 
ples for few-shot learning to improve performance. In the future, we will reduce the cost for users 
by minimizing the required sample size. Second, this work focuses on timbre abnormalities during 
student practice sessions. However, other vocal issues, such as inaccurate pitch and lack of emo- 
tional expression, arise during practice. Pitch representation on a spectrogram is straightforward, 
as different pitches correspond to distinct fundamental frequencies and harmonic distributions, 
remaining consistent across individuals. Pitch evaluation in bel canto practice can be performed 
using Fourier transforms or deep learning models. Vocal emotions are primarily conveyed through 
tone, style, timbre, changes in strength, and rhythm [ 35 ]. These features can be effectively cap- 
tured in audio spectrograms. In Reference [ 35 ], spectrograms and various low-level machine learn- 
ing features serve as audio features, while a deep learning model classifies musical emotions. This 
work utilizes spectrograms of vocal audio as features for classifying abnormal timbres, which also 
include other vocal characteristics such as pitch, changes in strength, and style. Thus, additional 
practice content can be integrated based on these audio features, creating a comprehensive train- 
ing system for bel canto. In the future, we will continue to enhance the system’s capabilities. 

7 Conclusion 

This article presents a timbre abnormality detection system specifically designed for trainees in 
bel canto practice. Our system achieves real-time performance and high generalization capabilities 
by incorporating temporal average pooling and a transformer encoder to capture essential corre- 
lations and semantic features of overtones. Furthermore, we apply a few-shot learning approach, 
which combines pre-training, meta-learning, and fine-tuning, to enhance the system’s generaliza- 
tion performance. Experimental results demonstrate promising cross-user recognition accuracies 
of 76 . 3% and 84 . 5% under 5-shot and 10-shot conditions, respectively. Remarkably, the average 
system response latency is 147.6 ms, satisfying practical usage requirements. Moving forward, our 
future endeavors will focus on further improving the system’s recognition performance and noise 
robustness, as well as exploring additional application scenarios for its utilization. 
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