
TagFree: Passive Object Differentiation via Physical
Layer Radiometric Signatures

Yongpan Zou§, Yuxi Wang§, Shufeng Ye†, Kaishun Wu† and Lionel M. Ni‡
§Department of Computer Science and Engineering, Hong Kong University of Science and Technology

†College of Computer Science and Software Engineering, Shenzhen University
‡Department of Computer and Information Science, University of Macau

{yzouad, katywang}@cse.ust.hk, wo2lifeng@gmail.com, wu@szu.edu.cn, ni@umac.mo

Abstract—Object differentiation plays a vital role in our daily
life and such systems are widely deployed with RFID tags or bar
codes attached on goods. In certain scenarios, however, attaching
tags to objects may be impractical due to cost and protection
issues. In this paper, we propose TagFree, a novel object differ-
entiation scheme without attaching tags. Instead of relying on
external tags, we exploit the inherent radiometric properties of
different objects as their signatures. To improve the robustness
and efficiency of TagFree, we empirically determine a spatial safe
zone and harness successive cancellation to distinguish multiple
objects simultaneously. We prototype TagFree on commercial
WiFi infrastructure and evaluate its performance in various
indoor scenarios. Experimental results demonstrate that TagFree
achieves single object distinguishing accuracy of 96% measured
at the same location, and over 80% within the safe zone range
of up to 3m along a 7m link. TagFree can also differentiate up
to 3 objects with acceptable accuracy.

I. INTRODUCTION

Object distinction plays a central role in supply-chain
management, asset tracking, automatic tolling, security access
control, etc. Mainstream distinction schemes include bar code
and RFID systems, where a unique tag is attached to each ob-
ject beforehand, and a reader distinguishes one specific object
by scanning the information stored in the tag [1], [2]. However,
tag-attached objects may sometimes be impractical. For in-
stance, it would impair the overall appearance of artworks such
as paintings and sculptures by attaching tags, while ancient
crafts and fossils are too fragile and precious to be pasted tags
on. Although it is common to label such items by placing
tags around them, it incurs extra care when moving these
items to avoid tag missing. It is therefore highly desirable to
leverage intrinsic characteristics of objects, rather than external
tags, to identify objects passively and unobtrusively. While
radio frequency tomography or visual recognition can serve
for this purpose, they often involve dedicated infrastructure
or sophisticated computation, thus impeding pervasive and
real-time adoption. In this paper, we ask the question: can
we exploit the ubiquitous WLAN signals such as WiFi to
identify objects without attaching tags? If this comes true,
many amazing applications can be accomplished. For another
example, it can be potentially applied to detect whether a
passenger carries common dangerous goods in security check
in occasions such as airports. With this unnoticeable check, we
envision that it reduces the equipment cost and labor resources.

The past decade has witnessed vast innovations in WLAN
device-free applications ranging from motion detection [3], [4],
[5], [6], indoor localization [7], [8], [9], to gesture recognition
[10], [11], where the target (often a person) carries no wireless
enabled devices or tags. The physical underpinning is that

target presence or motion affects wireless propagation, and
thus received signals. These systems mostly target at humans,
and assume identical radiometric properties of individuals.
Therefore they correlate different received signals to different
locations or motion patterns. For object distinction, in contrast,
we exploit the fact that objects of different material, shapes
and sizes exhibit distinctive reflection, refraction and scattering
properties [12], and explore to utilize radio signal patterns as
signatures for different objects.

Leveraging radiometric characteristics as an object’s sig-
nature, however, entails numerous challenges. Although text-
books offer various tables enumerating radiometric parameters
of typical material and objects [12], it is non-trivial to build
precise radiometric models for all objects of various material,
shapes and sizes. A more practical approach is to measure
and store the radiometric signatures of objects on demand,
with off-the-shelf infrastructure. Commercial WiFi devices,
unfortunately, provide only single-valued MAC layer signal
strength, which is too coarse-grained to extract distinctive
radiometric signatures of different objects. We take advantage
of the recently exposed fine-grained PHY layer information
available on commodity WiFi network cards with modified
firmware [13], and strive to extract distinctive radiometric
features harnessing both frequency and spatial diversity.

However, radio propagation in typical indoor environments
tends to be complex and site-specific. Since the received
signals involve both the impact of the target object and
background environment (e.g., multipaths induced by walls
and furniture), it is possible for the radiometric signatures of
one object measured at two locations to differ, thus degrading
distinguishing accuracy. It also poses cumbersome overhead
to measure and store the signatures for each object at every
location. To make it robust to environmental interference and
reduce the efforts to build large site-specific signature database,
we empirically identify a safe zone, within which the target
object, rather than site-specific environments, dominates the
radiometric impact on received signals.

The ability to identify multiple objects simultaneously
is crucial for fast and energy-efficient applications. To ac-
complish this, we utilize successive cancellation techniques
[15][16] to identify multiple objects at one time. More specif-
ically, we iteratively search for the best matched radiometric
signature in the pre-stored database and subtract its impact
from the current received signal signature, until no more
objects can be identified. To cope with collaborate fading
where impacts of multiple objects superpose nonlinearly [16],
we introduce correlation coefficient. By training signal data of
single object, we adjust the correlation coefficient to cancel out
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Fig. 2. The pictorial illustration of the concept
of safe zone in 1D and 2D scenarios.

 Link distance (m)
5 7 10

 A
ve

ra
ge

 a
cc

ur
ac

y 
(%

)

0

20

40

60

80

100

 1.25m
 1.5m
 2m
 3m
 4m
 5m

Fig. 3. Average distinguishing accuracy with
different object distances and link distances.

purer influence of objects already identified from the mixed
signal signature of multiple objects, thus achieving higher
accuracy.

Following the above the ideas, we design, implement and
evaluate TagFree, a device-free object differentiation system
via PHY layer radiometric signature with commodity WiFi
infrastructure. Extensive evaluations in two typical indoor
scenarios demonstrate that TagFree can achieve up to 96%
distinguishing accuracy for each object placed at the same
location, and 80% for 3m Safe Zone range along a 7m
link. Further, TagFree is able to distinguish up to 3 objects
concurrently with Successive Cancellation. In a nutshell, the
main contributions can be concluded as follows:

• We exploit the intrinsic radiometric characteristics of
heterogeneous objects to differentiate different objects
in a device-free manner. To the best of our knowledge,
this is the first effort in distinguishing objects via PHY
layer information on commodity WLAN infrastruc-
ture.

• We empirically determine a spatial safe zone, where
the impact of objects, rather than locations, dominates
in determining the received signal properties, making
our object differentiation scheme robust to environ-
mental interference.

• We propose to differentiate multiple objects simul-
taneously via Successive Cancellation, which makes
TagFree differentiate up to 3 objects at a time with
acceptable accuracy and dramatically boosts object
distinction efficiency.

In the rest of this paper, we first provide a preliminary
introduction on PHY layer information as well as the key
measurements and observations in Section II, followed by
detailed design of TagFree in Section III. Section IV presents
the implementation and comprehensive performance evaluation
of TagFree in typical indoor scenarios. We summarize related
work in Section VI and conclude in Section VII.

II. BACKGROUND AND MEASUREMENTS

This section demonstrates the feasibility of distinguishing
objects via radiometric signatures through measurements. We
start with a brief introduction on PHY layer CSI, followed
by the essential properties that CSI must hold as radiometric
signatures.

A. Channel State Information

In typical cluttered indoor environments, signals often
propagate to the receiver via multiple paths. Such multipath
effect creates varying path loss across frequencies, known
as frequency diversity [12]. Conventional MAC layer RSSI
provides only a single-valued signal strength indicator. Modern
multi-carrier radio such as OFDM measures frequency diver-
sity at the granularity of subcarrier, and stores the information
in the form of Channel State Information (CSI). Each CSI
depicts the amplitude and phase of a subcarrier:

H(fk) = ‖H(fk)‖ej sin(∠H) (1)

where H(fk) is the CSI at the subcarrier with central frequency
of fk, and ∠H denotes its phase. Leveraging the off-the-shelf
Intel 5300 network card with a publicly available driver [13],
a group of CSIs H(f) of K = 30 subcarriers are exported to
upper layers.

H(f) = [H(f1), H(f2), . . . , H(fK)] (2)

As an illustration, Fig. 1 plots the CSIs measured along the
same link with three different objects (an iPad, a chassis and
a cabinet) placed at the same location.

Recent WLAN standards (e.g. 802.11n/ac) also exploit
MIMO techniques to boost capacity via spatial diversity.
We thus involve spatial diversity to further enrich channel
measurements. Given M receiver antennas and N transmitter
antennas, we obtain an M×N matrix of CSIs {Hmn(f)}M×N ,
where each element Hmn(f) is defined as Equation 2. In
a nutshell, PHY layer CSI portrays finer-grained spectral
structure of wireless channels. Spatial diversity provided by
multiple antennas further expands the dimensions of channel
measurements. As a result, TagFree utilizes the rich feature
space of CSI to identify different objects with only a single
AP. However, to identify objects robustly and efficiently, two
issues are of particular interest in TagFree.

• CSI reflects both the impact of the target object along
the link and background environment. It is unclear
how these site-specific uncertainties would affect the
CSI based radiometric signatures of different objects.

• Simultaneous object identification would dramatically
improve identification efficiency. Yet it is unknown
whether the impact of multiple closely placed objects
is separable.

To study these issues, we design measurements as follows.
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Fig. 4. The illustration of recognizing multiple objects simultaneously with successive cancellation techniques.
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Fig. 5. The results of differentiating
objects in different orientations.

B. Measurements and Observations

This section provides preliminary measurements and ob-
servations in two aspects, i.e., identifying a Safe Zone and
exploring Multi-Signature Separation, respectively.

1) Safe Zone: Due to site-specific propagation, the CSI
based signatures of the same object may differ when measured
at different locations, leading to erroneous classification. To
quantify the impact of such environmental interference, we
empirically define a Safe Zone which is a certain region
with fixed size along the LOS (Line-Of-Sight) as shown in
Fig. 2. Within a safe zone, object diversity, rather than site-
specific propagation, dominates the impact on the channel and
radiometric signatures of a same object at different locations
share much similarity. Thus, even though the signatures of an
object are collected at different locations in a safe zone, it
can be recognized with high accuracy. Fig. 2 gives a pictorial
illustration of Safe Zone.

Measurement Setup: We deploy one AP (Access Point)
and one MP (Monitoring Point) in a typical lobby en-
vironment, and test 6 categories of objects: a book (pa-
per, 260×185mm), an iPad (magnalium, 240×169.5×7.5mm),
a cotton doll (plush, D200mm×500mm), a desktop chas-
sis (iron, 150×400×100mm), a wooden cabinet (wood,
300×300×300mm), and a barrel of water (plastic&water
D280mm×400mm). The reason why we choose these objects
is based on the following considerations: 1) Objects should
differ in material or/and size. Otherwise, it is not feasible
to differentiate different objects via RF signature; 2) Objects
should be common in our daily life. In this paper, we mainly
focus on LOS condition and leave the thorough scrutiny on
NLOS for future work. Consequently, a safe zone can be
reduced to a 1D distance interval along the LOS as shown
in Fig. 2(b). We place each object at various positions along
the LOS link and collect CSI data from the MP. We pick data
measured at one location for training, while those at another
location for testing. Since a safe zone in this case is one-
dimensional, we focus on two factors that potentially affect
the boundary of safe zone: (1) link distance: the distance
between the AP and the MP. We measure link distance of 5m,
7m and 10m, respectively. (2) object distance: the distance
between training data and testing data. We evaluate the object
differentiation performance with object distance of 1.25m,
1.5m, 2m, 3m, and 4m, respectively.

Observations: After collecting the CSI data, we extract
proper features (detailed in Section III-B) and evaluate the
distinguishing accuracy of the above 6 objects measured at
different locations. Fig. 3 illustrates the overall distinguishing

performance1. In general, the overall accuracy degrades with
both link distance and object distance. However, with a 5m link
and objects placed 3m away, the overall accuracy retains above
85%, and even with object distance of 4m along a 7m link,
the distinguishing accuracy is still significantly higher than
a random guess. We make two observations herein: i) Link
distance deteriorates object differentiation performance more
severely than object distance due to more environmental uncer-
tainties involved along signal propagation; ii) Object accuracy
dramatically decreases on long links even with short object
distance. Therefore, we define safe zone of common objects
as a range of at most 3-4m along a 7m link. Additionally,
when the link distance is less than 5m, the safe zone is highly
reliable. We defer comprehensive evaluations of safe zone and
discussions on its scalability to Section IV-B.

2) Multi-Signature Separation: To distinguish multiple ob-
jects simultaneously, we try to resolve the radiometric impact
of one dominant object from that of a mixture of objects,
subtract it, and continue to decode the impact of the second
dominant object from the remaining, until no object can be
detected. As a preliminary verification this idea, we conduct
the following measurements.

Measurement Setup: We deploy one AP and one MP
separated by 3m in a laboratory, which guarantees the im-
pact of objects dominates over environmental uncertainties as
discussed in Section II-B1. As a primary study, we test the
combination of a large cotton doll and a book. We first place
the doll and the book together at the middle point of the link,
and then put each of them separately at the same location.

Observations: For ease of illustration, we only demon-
strate the CSIs from one channel out of the 3× 3 = 9 in our
MIMO system. Fig. 4(a) plots the mixed radiometric signature
of the doll and the book (labeled as BookDoll) and the
signature of the doll. Due to the relatively large size of the doll,
the impact of the doll dominates the superposed radiometric
impact and consequently, the mixed signature and the signature
of the doll roughly share a similar shape over frequency. We
are thus able to compare the similarity between the mixed
signature and those of each single object, and match that of
the doll. After that, we cancel the impact of the doll from the
mixed signature and search for the best match between the
residual signature and the signatures of individual objects.

One crucial observation is that we cannot subtract the

1It is noted that some cases such as 1.25m, 1.5m and 2m object distances for
7m and 10m links are not tested as demonstrated in IV-B3, the corresponding
results are not shown in the figure which does not mean they are equal to
zeros.
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impact of the doll directly due to correlated fading [16].
Therefore we first multiply the signature of the doll by a cor-
relation coefficient α before subtracting it from the superposed
signature. This parameter represents the weight of radiometric
signature of a certain object in the composition of multiple
objects. The rationale of introducing correlation coefficient lies
in the fact that the composite radiometric signature of multiple
objects is composed of weighted signature of each single object
due to the channel fading effect. Fig. 4(b) depicts the residual
signature BookDoll−α ∗Doll as well as the signature of the
book. Since the residual and the book signature again resemble
in shape, we would be able to match the residue with the
book signature, which is previously buried in the impact of
the doll. To check whether there are other objects remaining,
we also cancel the impact of the book in the same way, yet
with a book related correlation coefficient β. As shown in
Fig. 4(c), as we fail to find any signature match for the residue
BookDoll − α ∗ Doll − β ∗ Book, the process terminates
and thus we distinguish a doll and a book simultaneously by
only one mixed measurement. The measurements demonstrate
two key insights: i) Within the safe zone, the superposed
impact of multiple objects can be separated and resolved by
iteratively cancelling the impact of the dominant object; ii)
Due to the correlated shading effect [16], we need to identify
an object-specific correlation coefficient when subtracting the
impact of one object from the mixed signature. As a result,
we elaborate our iterative object differentiation scheme based
on these insights in Section III-D and evaluate its performance
for multi-object identification in Section IV-C.

In a nutshell, the above measurements and observations
validate the feasibility of CSI as robust and effective radiomet-
ric signatures to distinguish objects. The subsequent sections
strive to extract informative and representative features from
CSI, and design a systematic scheme for object differentiation.

III. TAGFREE DESIGN

In this section, we detail our design of TagFree by first
providing an overview and then detailed descriptions on the
main modules.

A. Overview

TagFree builds upon off-the-shelf WLAN infrastructure, a
laptop equipped with Intel 5300 network card as MP, and a
wireless router as AP. TagFree works in two stages: training
and operating. During the training stage, different objects are
placed along the AP-MP link to build up a signature database
for all target objects. For each object, the MP receives packets
from the AP and extracts CSI from each packet. Representative
features are then extracted from the CSI data and stored for
each object as its radiometric signature in the database stored
either in the MP or uploaded to a central server. The training
data is then utilized to train an ensemble classifier. During the
operating stage, when multiple objects are placed within a safe
zone, the MP measures the CSI data from the received packets
from the AP, extracts features, and iteratively retrieves the
object with the best match signature in the database, cancels
its impact, and performs another round of signature matching
using the residue, until no object matches the residue. Fig. 6
outlines the data processing flow of TagFree, and in what
follows, we mainly elaborate on feature extraction, training
and classification, as well as the iterative signature matching
scheme, respectively.

B. Feature Extraction and Signature Representation

As discussed in Section II-A, a set of 30 CSI is exposed
for each channel, each representing the amplitude and phase
of an OFDM subcarrier. Together with the 3 × 3 MIMO
system, we obtain a 270-dimension vector from each received
packet. To avoid the well-known “dimensionality curse”, and
mitigate the irrelevant environmental interference, we exploit
a Multi-Cluster/Class Feature Selection (MCFS) scheme [17].
Compared with other feature selection methods, MCFS can
produce an optimal feature subset by considering possible
correlations between different features, which better conforms
to the characteristics of the dataset. Indeed, the input am-
plitudes within the 270-dimension CSI vector are correlated
in two aspects: 1) the dimensions corresponding to the same
channel are correlated because they experience similar radio
propagation environment; and 2) the dimensions corresponding
to neighbor subcarriers are correlated as they are close in fre-
quency. Therefore, by harnessing the MCFS feature selection
scheme, we efficiently reduce the dimensions of the feature
space, and retain the distinctive radiometric impact of objects
at the same time. In addition, feature selection also improves
prediction performance and reduces computational cost [18].

For a set of N CSI data points P = [p1, p2, ...pN ] where
pi ∈ R

M , and M = 270 in our case, MCFS works as
follows. Firstly, a m-nearest neighbor graph is constructed
from the original dataset P . More concretely, a graph of N
vertices is constructed, where each vertex corresponds to a CSI
data point pi. For each pi, once its m nearest neighbors are
determined, weighted edges are assigned between pi and each
of its neighbors, respectively. We define the weight matrix W
for the edge connecting node i and node j as:

Wi,j = e−
‖pi−pj‖2

ε (3)

where ε is a constant adjusting the weight assignment. Sec-
ondly, MCFS solves the following generalized eigen-problem:

Lv = λAv (4)
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where A is a diagonal matrix and Aii =
∑

j Wij . The graph
Laplacian L is defined as L = A −W . And V is defined as
V = [v1, v2, ...vK ], in which all the vk are the eigenvectors
of Equation 4 with respect to the smallest eigenvalue. Thirdly,
given vk, a column of V , MCFS searches for a relevant feature
subset by minimizing fitting errors:

min
αk

‖vk − PTαk‖2 + γ|αk| (5)

where αk is a M -dimensional vector and |αk| =
∑M

j=1|αk,j |
represents the L1-norm of αk. Finally, for every feature j,
MCFS defines the MCFS score for the feature as:

Score(j) = max
k

|αk,j | (6)

where αk,j is the j-th element of vector αk and all the features
are sorted by their MCFS scores in descending order and
the top d features are chosen as the selected features. In our
implementation, we empirically select the top 30 features as
signatures for different objects, and remove the redundant and
irrelevant features in the original CSI data vector.

C. Training and Classification

Since indoor environments often involve multipath prop-
agation and irrelevant dynamics, e.g., occasional pedestrian
passing-by, the received CSI measurements sightly fluctuate.
Due to the high dimensionality of CSI data even after feature
selection, though, even small signal perturbation might lead
to a single classifier with poorly estimated parameters [19].
Therefore, we construct an ensemble classifier via ensemble
learning methods to deal with the noisy high dimensional
CSI data. Bagging, Boost, and Random Subspace Method
(RSM) are classical schemes for ensemble learning and we
choose RSM for the following reasons. On one hand, RSM
modifies the training dataset in the feature space rather than
the original sample space [20]. On the other hand, RSM
outperforms bagging and boost schemes in general [19]. To
obtain better object differentiation performance, we explore a
more sophisticated scheme: Spectral Regression Discriminant
Analysis (SRDA) [21] which is based on the popular Linear
Discriminant Analysis (LDA) yet mitigates computational re-
dundancy.

D. Iterative Object Identification

As shown in Section II-B2, TagFree explores to distinguish
multiple objects simultaneously from their mixed radiometric
signatures to improve differentiation efficiency. To achieve
such capability, however, is non-trivial. It is shown in [16] that
the impact of multiple objects on received signals is non-linear.
Therefore it is infeasible to remove the impact of one object
from the mixed signatures by subtracting the corresponding
signature stored in the database. The non-linear impact also
leads to the possibility that the impact of one group of objects
resembles that of another group. Thus it is more challenging
to figure out the correct object combination.

To address the above issues, we propose a multi-signature
separation scheme leveraging successive cancellation. As de-
scribed in the illustrative example in Section II-B2, we itera-
tively process two steps:

• Step 1: Retrieve in the signature database and return
the one that best matches the current residual (mixed)
signature.

• Step 2: Remove the impact of the matched signature
by deducing it from the current mixed signature. To
cope with the non-linear impact, the matched signa-
ture is multiplied by a correlation coefficient from
a pre-measured correlation coefficient matrix before
subtracting it from the mixed signature.

The process terminates when no more matching can be found
in the residual signature, i.e. a matching failure. We empirically
define a matching failure as the case when the maximum
correlation between the test signature and all the signatures
stored in the database is no more than 50%. To determine the
correlation coefficient matrix C, we resort to the following
minimization problem:

min
M∑

i=1

‖Ci,j ×Hi,j −Hi‖2
Ni

(7)

Subject to ∀Hi �= 0 , Ci,j �= 0

where Ci,j and Hi,j denote the correlation coefficient and the
CSI signature of object j in link i, respectively. i is the index
of links and 1 ≤ i ≤ M , where M is the number of links and
M = 3 × 3 = 9 in our case. Ni stands for the quantity of
subcarriers that are chosen into the signature in the ith link,
which varies from 0 to 30. Hi refers to the current mixed CSI
signature of multiple objects in link i.

IV. PERFORMANCE

This section presents the implementation and performance
evaluation of TagFree in different scenarios.

A. Experimental Setup

1) Implementation: We implement the proposed TagFree
system with a TP-LINK TL-WDR4300 wireless router as the
transmitter, and a 3.20GHz Intel(R) Pentium 4 CPU 2GB RAM
desktop equipped with Intel 5300 NIC as the receiver. The
transmitter possesses 3 detectable antennas and operates in
IEEE 802.11n AP mode at 5GHz. The receiver has 3 working
antennas and the firmware is modified as in [13] to report
CSI to upper layers. During the measurement campaign, the
receiver continuously pings packets from the AP at the rate
of 100 packets per second and we collect CSIs for 1 minute
during each measurement. The collected CSIs are then stored
and processed at the receiver to differentiate different objects.

2) Experimental Scenarios: We conduct the measurement
campaign in 3 typical indoor environments in the campus and
test 6 objects of different materials, shapes and sizes, including
a book, an iPad, a cotton doll, a desktop chassis, a wooden
cabinet, and a barrel of water. In each scenario, we first collect
data when no object is present along the link, and then place
the testing objects at different locations along the link. The
detailed experimental scenarios are as follows.

• Chamber. We first measure CSIs of the 6 objects in
a 3m×4m chamber to collect radiometric signatures
without multipath and external interference (Fig. 7a).
Each object is placed in the midpoint of a 2m link.
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Fig. 7. Illustration of experimental scenarios: (a) Chamber environment; (b) Relatively short test links in a typical multipath-rich research laboratory; (c) Test
links in a relatively open lobby area with long links.

• Laboratory. We then deploy TagFree in a multipath-
rich 5m×8m laboratory where there exist desks,
chairs, desktops, humans and some other objects com-
mon in a lab. Moreover, there also exists RF interfer-
ence in the lab. In this scenario, we test relatively
short link distance of 2m to 4m (Link 1 to Link
3 in Fig. 7b). For each link, we collect CSIs for
multiple objects. Specifically, we test combinations of
2, 3, and 4 objects. For each combination, we fix the
locations of the objects, and measure CSIs for both
the combination and each single object.

• Lobby. Finally, we conduct measurements in a rela-
tively open lobby area covering 9m×16m. Compared
with the lab, the lobby is empty without any objects
except RF inference. As a result, the multipath effect
in the lobby is relatively minute. As illustrated in
Fig. 7c, we collect CSIs for the 6 test objects with
relatively long link distance of 5m (Link 4 to Link 7),
7m (Link 8) and 10m (Link 9), respectively.

It is noted that without special declaration, in Lab and
Lobby scenarios, there are two persons walking around the
experimental setup with a distance of 2m away from the AP-
MP link in each set of experiments, in order to evaluate the
robustness of TagFree in realistic settings.

B. Performance of Single Object Differentiation

This section presents the performance of single object dif-
ferentiation with different object orientations, object distances,
link distances and number of training samples, as well as
a brief discussion on the scalability of TagFree to long link
distance scenarios.

1) Impact of Different Orientations: Since objects can be
placed in various orientations at a position, we evaluate the
impact of orientation on distinguishing objects by spinning
them every ninety degrees around their vertical axises at a same
location. Specially, the objects are placed in the middle point
of a AP-MP link with a moderate length (5m) in the lobby as
shown in Fig. 7c. As shown in Fig. 5, the accuracy of distin-
guishing objects varies with object orientations, especially for
’Book’ and ’iPad’. For other objects, the orientation has minor
influence on their differentiation accuracies. The reason is that
there is little cylindrical symmetry around the vertical axis
for ’Book’ and ’iPad’, while other objects have approximate

cylindrical symmetry around their vertical axises. As a result,
when ’Book’ and ’iPad’ are placed in different orientations,
their accuracies varies much from about 90% to 60%. For
other objects, due to their approximate cylindrical symmetry,
the accuracies can maintain relatively stable with a variation
of about 2%. As a result, for ’Book’ and ’iPad’, we only
test the sole case of 0◦ orientation and consider the average
performance in different orientations for other objects in the
following experiments. Discussion about impact of orientation
is detailed in Section V.

2) Performance at the Same Location: We first evaluate the
effectiveness of TagFree when the training data and the testing
data are measured from the same position, i.e. with object
distance of zero. Under such a condition, we place objects at
different locations with equal interval along the link, obtain
the distinguishing results in each location and finally average
them as the overall performance in the case of same-location
distinguishing. For each link, the number of locations equals
to the link length. Fig. 8 demonstrates the overall confusion
matrices of the 6 objects described in Section IV-A2 with link
distance of 5m, 7m and 10m, respectively (Fig. 7c). As shown
in Fig. 8a, the average distinguishing accuracy of single object
distinction of all the 6 objects is above 96% for the 5m link
(false positive rate, FPR=0.8%; false negative rate, FNR=3%),
and the differentiation performance only experiences a slight
degradation for the 7m link, with average distinguishing accu-
racy still above 90% (FPR=1.8%; FNR=9%) in Fig. 8b. How-
ever, the average distinguishing accuracy drops moderately to
about 72% (FPR=5.8%; FNR=29%) for the 10m link in Fig. 8c
partially due to more environmental uncertainties along long
links.

Moreover, as we can see from the figure, the distinguishing
accuracy of different objects also varies. For instance, the dis-
tinguishing accuracy of book remains high compared with that
of the other 5 objects. This is because when the training data
and the testing data are measured at the same location, only the
size, shape and material of the object will affect the channel.
Therefore, due to its comparatively small size and little signal
attenuation, the book tends to be more distinguishable than the
other objects (e.g. the iPad is of small size but made of metal,
while the doll induces less attenuation yet is large in size).

3) Impact of Locations: As discussed in Section II-B,
locations affect the performance of TagFree from two aspects:
(1) object distance (the physical distance between the location
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Fig. 8. Confusion matrices for single object differentiation with object at the same location of link distance of (a) 5m (b) 7m and (c) 10m.
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Fig. 9. Average distinguishing accuracy with different link distance and object distance: (a)-(b) 5m link; (c)-(d) 7m link; (e)-(f) 10m link.

of the data collected for training and that of the data collected
for testing) and (2) link distance (the physical distance between
the AP and the MP). The previous subsection focuses on
performance with object distance of zero, and we extend to
evaluate the performance with object distance up to 5m herein.
Fig. 9 plots the average distinguishing accuracy of the 6 objects
with various object distance and link distance.

Impact of Object Distance. As shown in Fig. 7c, we
evaluate the performance of object distance of 1.25m (Link7),
1.5m (Link4), 2m (Link5) and 3m (Link6) for the 5m link,
and 2m, 3m, 4m, and 5m for the 7m and 10m links (Link8
and Link9, respectively), respectively. It is noted that we have
tested four combinations of object distances in Link8 and
Link9 as shown Fig. 7c. For each link length, we collect data at
locations shown in the figure, train the system with data in one
location and test its performance with data in another location
with a certain object distance away from the training location.
As shown in Fig. 9a, the distinguishing accuracy stays above
95% on average when the object distance is within the range
of 1.5m on the 5m link, which is almost as high as that of the

same location (i.e. object distance of zero). For object distance
of 2m and 3m, the distinguishing accuracy is still reasonably
high. Although the performance of 3m range is worse than that
of 2m range, the performance degradation is modest, with a
drop of around 5% for the 5m link (Fig. 9b), 6% for the 7m link
(Fig. 9c) and 13% for the 10m link (Fig. 9e), respectively. For
longer object distance (e.g. 4m and 5m), the overall accuracy
decreases by over 16% for the 7m link and 8% for the 10m
link, compared with that of object distance of 2m and 3m
for the corresponding link distance. The lower performance
degradation for the 10m link is because the change of object
distance from 2m (or 3m) to 4m (or 5m) induces less impact
compared with the change of link distance from 7 m to 10 m.
In summary, the distinguishing accuracy of TagFree remains
satisfactory when the object distance is within 1m to 2m, which
accords with the preliminary study in Section II-B.

Impact of Link Length. As shown in Fig. 9b and Fig. 9c,
the average distinguishing accuracy declines nearly 11% when
link distance increases from 5m to 7m. This drop is much
more severe than the cases when object distance increases
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Fig. 10. Impact of training data quantity on average distinguishing accuracy
when objects are placed (a) at the same location and (b) within the safe zone.
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Fig. 11. Overall distinguishing accuracy of multi-object differentiation when
the single object’s training data and the test multiple objects are placed are
placed (a) at the same location and (b) within the safe zone.

an equal amount. Similarly, as shown in Fig. 9c and Fig. 9e,
the distinguishing accuracy deteriorates dramatically (with an
average decline of 29%) when link distance further increases
from 7m to 10m. Especially for the book and the doll, the
decrease is almost 34%. The substantial performance degrada-
tion is mainly due to severe and uncertain signal attenuation.
Thus the impact of objects on received signals is significantly
weaker along long links than along short links. In conclusion,
compared with object distance, the impact of link length
dominates the performance of single object differentiation, and
both long object distance and long link distance lead to sharp
decline in distinguishing accuracy (Fig. 9d and Fig. 9f).

4) Training Overhead: Intuitively, more training samples
contribute to better classifiers and thus higher distinguishing
accuracy. And we evaluate this training overhead of TagFree
in this subsection. We mainly focus on two scenarios: (1) mea-
surements of the same location and (2) measurements within
a 2m safe zone (object distance of 2m). As demonstrated in
Fig. 10, the overall distinguishing accuracy rises steadily with
more training packets. Yet we only need 100 to 200 packets
(corresponding to 1s to 2s) to train a satisfactory classifier.
The relatively low training overhead is due to the feature
selection scheme of TagFree, which efficiently captures the
most representative radiometric features from only a small
amount of samples. Comparing Fig. 10a and Fig. 10b, the
training overhead is larger for the case of a 2m safe zone
than for the case of the same location. For instance, it needs
about 1000 training packets for the former case to achieve
similar accuracy while 100 packets for the latter case. This is
because within the safe zone, more training packets are needed
to extract coherent features of objects and eliminate the impact
of locations.

5) Scalability of Safe Zone with Long Link Distance:
As demonstrated in previous subsections, the differentiation
performance is far from satisfactory for link distance more
than 10m. A natural question is how to improve distinguishing
accuracy for long links. A general design is to exploit multiple
link pairs to compensate for the environmental interference
induced by long links. For instance, when placing one more
link pair perpendicular to the original pair, we expand our
measurements by one fold. With more information (largely
uncorrelated due to spatial diversity), we can combine more
features to enhance differentiation performance. We extend
our experimental platform into 2 link pairs that are mutually
vertical. For each measurement, we move one pair of AP-
MP link simultaneously with the object, so that the object
is always on the cross of two LOS paths. According to our
measurements, for link distance of no more than 7m , the

accuracy improvement is marginal (0.67% on average for 5m
and 2.31% for 7m). The reason for this phenomenon might
be that the accuracy for a single link pair is already close to
the upper bound. Thus more information do not contribute to
substantial gain. For the 10m link, in contrast, the accuracy im-
provement is relatively significant after our 2-link expansion.
The average accuracy improvement is 13.47%. More precisely,
the accuracy improvement is 9.73% for object distance of
2m, 18.49% for object distance of 3m and 12.19% for object
distance of 4m, respectively. Due to current infrastructure limit,
however, we leave comprehensive investigation on multi-link
fusion in future work.

C. Performance of Multiple Object Differentiation

Similar to the previous subsections, we evaluate the per-
formance of multi-object differentiation in two scenarios:
(1) successive cancellation at the same location (i.e., at the
midpoint of the link), and (2) successive cancellation within
a 1m safe zone range. To avoid the severe impact of long
link distance, we mainly evaluate the performance of multi-
object differentiation for link distance of 2m to 4m (Link 1-3 in
Fig. 7b). To eliminate the impact of multipath propagation, we
exploit the data collected in the chamber (Fig. 7a) to calculate
the correlation coefficient matrix.

As shown in Fig. 11a, with link distance of 2m to 4m,
the average accuracy is 75% and 57% for 2 and 3 objects,
respectively. The high distinguishing accuracy indicates that
TagFree can easily match the doll or cabinet remove its impact
at the first round of cancellation. This is because the size
and material of the doll or cabinet make it dominate in the
mixed radiometric impact. And with the help of the pre-
measured correlation coefficient matrix, we can deal with the
non-linear correlated fading of multiple objects and remove the
impact of the dominant object more thoroughly than simply
subtracting its impact from the mixed signature. However,
when it comes to 4 objects, the performance drops sharply,
with average accuracy of only about 30% due to interference
and noise. For the 1m safe zone range, it becomes even more
challenging to distinguish multiple objects. As depicted in
Fig. 11b, the average distinguishing rates of 2 objects and 3
objects are above 63% and 52%, respectively. The reasonably
high accuracy partially owes to the feature selection procedure
in TagFree, which assists to remove redundant information
and other interference. More concretely, after feature selection,
we remove much of the environmental effects so that the
extracted features represent the inherent radiometric impact of
the object itself rather than external impact of locations. Since
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the accuracy of distinguishing more than 4 object is pretty
low in both scenarios, it remains unsettled how to improve the
scalability of multi-object differentiation and we leave it for
future work.

V. REMARKS & LIMITATIONS

As the first attempt towards object distinguishing with
off-the-shelf WLAN signals, TgaFree also possesses several
limitations as follows.

LOS Requirement. In this paper, we only consider the
LOS case and leave the NLOS case as our future work as
aforementioned. It has to be admitted that LOS is a strict
assumption in most realistic applications. Considering more
robust applications in real life, the NLOS case needs to be
paid much attention. Since different objects in NLOS shall
also result in different propagation signatures, we expect that
it is also feasible to recognize objects when they are placed
in NLOS. Compared with LOS case, it is more challenging to
recognize objects in NLOS since the propagation signatures
are relatively minute. As a result, it requires more sophisticated
extension of TagFree to accomplish this in our future work.

Object Category. In the present version of TagFree, we
have only tested six categories of common objects. Consider-
ing the principle of TagFree, there exists a key restriction on
objects to be distinguished. That is, objects must be different in
at least one properties that have nonnegligible effect on signal
propagation such as material, size and shape. Consequently,
only those objects that can alter signal propagation notably
that are probably to be distinguished by TagFree. It means
that some small objects such as knife, pen and the like cannot
be identified by TagFree at present. The limited number of
objects restricts the broad application of TagFree in real life
which is an issue to be further studied.

Object Location. Although we have considered the im-
pact of location and proposed the concept of safe zone,
the objects can not be distinguished accurately out of the
safe zone centering around the location where the system is
trained, which is due to the fact that radiometric signature is
location-dependent. Moreover, for objects without approximate
cylindrical symmetry such as Book and iPad, we have only
considered its common orientation in our experiments. As a
future work, exploring a more robust distinguishing scheme
attracts our interest.

VI. RELATED WORK

TagFree is related to the following categories of research.

Wireless Object and Device Identification. RFID sys-
tems are commonly adopted for wireless object identification,
where a reader obtains information about an object via signals
backscattered from a tag attached to the object [2], [22], [23].
TagFree is based on a similar identification procedure, yet
directly differentiates objects by the signals “backscattered”
by the object itself. This would potentially simplify backscat-
ter based identification systems by eliminating the need for
external tags. Some other methods have also been proposed
for objects detection or identification using RF signals such
as [24], [25], [26]. However, these methods all require so-
phisticated, expensive and bulky hardware equipment such as

X-rays or ground penetrating radars. In terms of WiFi devices,
both transient features (e.g. the envelope of the instantaneous
amplitude [27]) and data features (e.g. modulation related fre-
quency, magnitude and phase errors [28]) have been employed
to uniquely identify WiFi network interface cards. TagFree also
leverages the features extracted during radio communication,
but identifies the objects along the propagation paths rather
than the transceivers.

Wireless Device-free Human Localization/Detection.
Device-free human localization systems locate a person by
analyzing his impact on wireless signals received on pre-
deployed monitors, while the person carries no wireless-
enabled devices [7]. The underlying wireless infrastructure
varies, including RFID [29][30], WiFi [3][7], ZigBee [31][32],
etc., and the signal metrics range from coarse signal strength
[7][32] to finer-grained PHY layer features [9][8]. Another
scope of related work covers human events detection such
as activities monitoring and gesture recognition using WiFi
signals, specifically with CSI, such as [33], [34], [35], [36],
[37]. However, TagFree leverages similar principles and also
exploits the PHY layer features available on commercial WiFi
devices [13], yet deviates from this thread of research in two
aspects. 1) Most device-free systems assume the radiometric
impact of each person is identical, while TagFree explores
differentiable radio signatures for objects of distinct material,
shapes and sizes. 2) Unlike most that correlate locations with
received signals, we empirically figure out a safe zone where
heterogeneity of objects, rather than locations, dominates the
impact on radio propagation, and thus results in different
received signal signatures.

VII. CONCLUSION

In this paper, we propose TagFree, a novel object differ-
entiation scheme that leverages the unique radiometric prop-
erties of heterogeneous objects as their signatures. We further
relax the correlation between location-dependent radiometric
impact and object-specific radiometric impact, and propose the
concept of safe zone to improve the robustness of TagFree.
In addition, TagFree is able to differentiate multiple objects
simultaneously via successive cancellation. Extensive experi-
ments demonstrate that TagFree achieves up to 96% accuracy
on distinguishing single object at the same location, and above
80% for safe zone range up to 3m along a 7m link. Moreover,
TagFree can distinguish up to 3 objects simultaneously with
reasonable accuracy. We have implemented TagFree on com-
mercial WLAN infrastructure, and envision it as a practical
solution that increases object distinguishing efficiency and
reduces cost overhead for real-world deployment.
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