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Abstract—Acoustic-based human gesture recognition (HGR) ap-
plications have drawn increasing academic attention in order to
overcome the shortcomings of conventional interaction methods on
tiny devices. Existing techniques following a learning-based routine
requires collecting massive application-specific training data. What
is worse, the cross-domain problem induces additional retraining
overhead to enable the systems recognize unseen gestures in dif-
ferent environments. This obviously decreases their scalability and
prevent them from real-world deployment. Although some recent
works propose different few-shot learning solutions to deal with the
cross-domain problem in HGR, they possess shortcomings of being
application-specific, high training overhead, and/or incapability
to recognize unseen gestures. In this paper, we propose PreGes-
Net, a few-shot acoustic gesture recognition framework based on
task-adaptive pretrained networks whose novelty lies in three as-
pects: i) leveraging pretrained feature extractor which captures
generic knowledge of our collected and open-source large-scale
gesture datasets; ii) designing task-specific parameter adaptation
mechanism to efficiently update the feature extractor to adapt the
pretrained feature extractor to each target task; iii) discovering
suitable distance metric and task generation strategy which fit
HGR application. According to the experiments, when the model is
trained with 10 digit gestures, its recognition accuracies of 26 kinds
of letter gestures and 8 kinds of other hand gestures can be up to
80.5% and 93.4% with only two shots, respectively. In addition, the
average recognition latency of PreGesNet is less than 0.4 second.

Index Terms—Gesture recognition, acoustic sensing, few-shot
learning.

I. INTRODUCTION

R ECENTLY, with the popularity of novel smart devices, re-
searchers have shown growing attention to acoustic-based
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human gesture recognition (HGR) technology for designing new
interfaces [1]. Compared with other kinds of sensing modalities
such as inertial measurement units (IMU), cameras, and radio
frequency (RF) signals, acoustic sensing possesses advantages
of robustness, pervasiveness, and/or being device-free, making
it suitable for designing interfaces on novel smart devices. From
the perspective of application, existing acoustic HGR systems
mainly include gesture control [2], [3], [4], [5], [6] and texts
entry [7], [8], [9], [10], [11], [12]. Most of them follow a
learning-based approach which relies on collecting massive
training data dependent of specific tasks. This obviously incurs
laborious work for system builders. What is worse, considering
the complexity of practical usage scenarios, the trained model
probably fails to work in the environments or settings different
from those in the training stage. This is the so-called cross-
domain problem in the area of HGR. Conventional cross-domain
problems that researchers have paid attention to mainly involve
factors such as different users, environments, devices, and the
like.

Nevertheless, existing research works have not considered
such a novel HGR problem in which the recognition task com-
pletely change in the testing stage. In other words, can we make
use of an already trained HGR model to recognize a different
set of gestures from the training set, regardless of the type and
number of gestures? This is very different from the well-studied
cross-domain problems handled by previous works [13], [14],
[15], [16], [17], [18], [19]. These works care about external
impact factors such as user, environment, and device causing
differences of data distribution between the training and testing
sets. But the recognition targets (i.e., gestures or activities)
are totally the same in both sets. They are also incapable of
classifying arbitrary unseen gestures directly without retraining
overhead. In contrast, in our work, the gestures to be recognized
can be totally different from the training ones both in terms of
type and quantity, making the problem much more challeng-
ing. Although the recent work [20] considers unseen gesture
recognition problem, it requires keeping the number of testing
gestures to be the same with the training set. When the number
of testing gestures varies, the model needs to be retrained again.
In comparison, in our problem we expect to recognize different
numbers of gestures with an identical model without retraining
model parameters. In addition, the method in OneFi [20] highly
depends on domain knowledge of WiFi which has relatively low
scalability. To the best of our knowledge, this work is the first
to consider such a different and challenging problem.
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Someone may wonder whether solving this problem has prac-
tical value in real-world scenarios. The answer is positive due to
two kinds of benefits. 1) Customizing gestures: It fulfills users’
personalized preference to customize interaction gestures con-
forming to their personal habits when they use human-computer
interfaces. This would be helpful for improving user experience
and interaction efficiency. More importantly, it enables a HGR
system already trained for a specific task to directly work well
for different tasks with minimum overhead, even though those
new tasks are more difficult. 2) High scalability: It can greatly
broaden the use of an trained model, and largely reduce labor-
intensive work of collecting task-specific data. For instance,
when we have already established large-scale acoustic-based
handwriting gesture datasets, it is possible to adapt the model
trained on it to recognize other types of gestures without much
effort. Even in the presence of variations in type of gestures,
environments, and postures, the model can still be efficiently uti-
lized for effective recognition of these acoustic-based gestures.
As a result, there is an urgent demand for few-shot (one shot
is a labeled sample per class) solutions to empowering a HGR
system to recognize unseen gestures with few target samples. In
fact, we have collected a substantial amount of acoustic-based
gesture data and have open-sourced it on the website1. To the best
of our knowledge, there are currently no large-scale open-source
datasets for acoustic-based gesture data. We hope that the data
we have collected can contribute to HGR and advancements in
mobile computing.

But it is not straightforward to deal with the above prob-
lem. The solutions to conventional cross-domain problems
can be classified into the following main categories: gener-
ative adversary learning-based [16], [17], [19], [21], meta-
learning based [15], [18], transfer learning-based [13], data
augmentation-based [20], and low-level signal processing-
based [14]. However, these methods have the following short-
comings. The methods proposed in [13], [14], [20] are
application-specific and can not be extended to other applica-
tions based on different sensing medium. Generative adversary
learning-based methods in [16], [17], [19], [21] consume mas-
sive training data and time to converge, and can not recognize
unseen gestures. At last, existing meta-learning solutions [15],
[18] can only recognize the same set of gestures. In this paper,
we propose a task-adaptive pretrained network named PreGes-
Net which can easily generalize to different few-shot acoustic
gesture recognition tasks. The model is first pretrained and meta-
trained on the basis of a dataset containing acoustic samples
of writing ten digits (denoted by digit dataset). After that, it
is evaluated on the target letter dataset containing samples of
writing basic capital letters by providing few shots (less than
three shots). In summary, our main contributions are as follows.
� We have collected and open-sourced large-scale acoustic-

based gesture datasets. By introducing a pre-training and
meta-training strategy to better leverage information from
different domains, we can achieve effective recognition of
unseen gestures and domains.

1https://github.com/ISAC-GROUP/ISAC-Gesture

� We design a task-adaptive feature extractor following the
line of conditional neural processes to incorporate task-
specific information. The task-specific parameters can be
adaptively updated to encode information of support shots
from each target task. In this way, the pretrained feature
extractor can not only maintain generic information but
also update to the target domain given few shots.

� We discover suitable distance metric (�1 distance) and a
task generation strategy to complicated real-world tasks,
both of which fit HGR application well, not only reduce
inference time but also improve accuracy.

� We conduct comprehensive evaluation of our method with
real-world experiments. The results show that PreGesNet
can recognize 26 writing gestures from ‘A’ to ‘Z’ with accu-
racies of 68.0%, 80.5%, and 82.4% with 1, 2, and 3 shots,
respectively. As for the eight self-defined hand gestures,
the corresponding accuracy can be up to 89.7%, 93.4%,
and 94.5%, respectively. In short, PreGesNet consistently
obtains the highest recognition accuracy and smallest com-
putational time among existing methods.

The remaining of this paper is organized as follows.
Section II discusses the related works. Sections III-A and IV in-
troduce problem formulation and system design respectively. In
Section V, we give details of experiments and implementation.
Following that, Section VI delivers the comparison of different
methods and deep analysis of PreGesNet. Section VII further
extends PreGesNet to recognize dramatically different new hand
gestures in a real-world experimental study. We conclude this
work in Section IX.

II. RELATED WORK

In this section, we provide a short review for acoustic HGR
and cross-domain solutions in HGR/HAR, which are most rele-
vant to this work.

A. Acoustic HGR

Due to the pervasiveness of acoustic sensors in smart devices,
researchers have shown keen interest in acoustic sensing-based
HCI applications mainly including gesture recognition [2], [3],
[4], [5], [6], text input [7], [8], [9], [10], [11], [12], motion track-
ing [22], [23], [24], [25], [26], [27], [28], and user authentica-
tion [29], [30], [31], [32], [33]. The early works [2], [3] recognize
a fixed set of hand gestures with coarse Doppler features. Their
limitations are two-fold: i) coarse recognition granularity; and
ii) being not able to handle cross-domain problem. The work [6]
proposes dynamic speed warping as a new similarity measure
that can adapt to speed variations of different users. UltraGes-
ture [4] and RobuCIR [5] utilize channel impulse response in-
formation of reflected acoustic signals for gestures recognition.
These three works achieve high recognition accuracy with a fixed
set of predefined gestures, but are not able to recognize unseen
ones. The works [8], [9], [10], [11], [12] recognize texts (i.e.,
digits, letters, and/or words) written on a surface with a finger or
pen tip in a passive way. They take advantage of acoustic signals
caused by the rubbing between a writing tool and surface. Similar
to our work, EchoWrite [7] follows an active sensing approach,
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in which words are recognized by Bayesian inference. But it can
not recognize single letters as well as unseen texts. In contrast,
our work shows two key differences: i) it can handle few-shot
arbitrary unseen gestures, which enables gesture input without
retraining overhead; ii) it recognizes fine-grained and complex
finger writing gestures with well-designed deep network.

B. Cross-Domain Solutions in HGR/HAR

Due to the diversity of environments, users, and other do-
mains, conventional machine learning-based HGR/HAR meth-
ods can not work effectively without explicit retraining efforts to
new domains. To tackle this problem, researchers have proposed
different methods on basis of advanced deep learning (DL)
models or algorithms such as meta learning [34], few-shot
learning [35], and generative adversarial networks (GANs) [36]
for HGR/HAR with different sensing modalities such as RF
signals [13], [14], [15], [16], [17], [20], IMU [18], [19], [37],
and multi-modal signals [21]. Widar3.0 [14] derives a domain-
independent feature at the lower signal level representing unique
kinetic characteristics of gestures to enable gesture recogni-
tion in new data domains without model retraining. Never-
theless, this feature can be only extracted for large-scale arm
gestures with WiFi setups. The works [16], [17], [19], [21]
introduce generative adversarial networks to gesture/activity
recognition. Among them, RFree-GR [17] and EI [21] train
feature extractor, gesture/activity recognizer, and domain dis-
criminator in a GAN-based model simultaneously, in order
to learn environment/subject-independent representations. The
work [19] utilizes GAN-based style transformer to synthesize
gesture samples in the target domain. The work [16] aligns distri-
butions of source and target datasets via an adversarial approach.
But these GAN-based methods need massive training data and
time for the model to converge. They do not handle unseen
gestures in complex settings either. More related works such as
MetaSense [18] and RF-Net [15] propose meta-learning based
methods: one employs MAML as its basic framework; the other
adopts a metric-based meta-learning framework. OneFi [20] pro-
poses a virtual gesture generation mechanism and employs trans-
ductive fine-tuning to eliminate model re-training. Although it
can recognize unseen gestures with high accuracy, it has the
following shortcomings compared with our work: i) its core
component-data augmentation technique relies on modelling of
WiFi signals, and can not be applied to other sensing modalities
such as acoustic signals. In comparison, our work proposes a
novel gesture recognition framework whose core component
does not rely on specific sensing signals. ii) its recognition model
utilizes a softmax classifier which requires the number of gesture
classes in training and testing stages to be the same. Once the
task changes, the model needs to be retrained; otherwise, it fails
to work. In contrast, our method does not have this limitation. iii)
Under the same setting, our method achieves higher recognition
accuracy than previous works.

III. SYSTEM OVERVIEW

In this section, we first give formal definition of our gesture
recognition problem, and then describe the overview of our
system design.

Fig. 1. The system overview of PreGesNet.

A. Problem Formulation

In the following, we denote scalar by lowercase, vectors by
lowercase boldface, matrices by uppercase boldface, and sets by
uppercase calligraphic font. For a vector x, [x]i denotes the ith
element of x. For a matrix X, [X]ij denotes the (i, j)th entry of
X.

We formulate the few-shot gesture recognition problem as a
N -way K-shot task, where N is randomly sampled from Ntrain

training classes and K labeled gestures are provided per class.
Within T t, a support set St = {(xi, yi)}N ·K

i=1 containing a small
number of K labeled gestures per class is provided for training.
And a query set Qt = {(xj , yj)}Mj=1 containing M unlabeled
gestures is used to evaluate the model performance. Each (xi, yi)
consists of a gesture xi and its corresponding label yi belong to
one of the N letters. The target is to learn a predictive model
from a set of training tasks {T 1, T 2, . . . }, which can generalize
to a new task T ′ containing a few labeled gestures from Ntest

new letters that are unseen during training.

B. Overview of Architecture

Fig. 1 displays the overall architecture of PreGesNet system.
It mainly consists of four stages including data preprocessing,
pre-training feature extractor, meta-training, and meta-testing.

To be specific, a speaker in a mobile device emits high-
frequency signals to capture the movements of a finger or hand.
At the same time, a microphone receives reflected echoes from
the finger or hand and nearby obstacles. After that, PreGesNet
first filters out-band noises, transforms a time-domain signal
sequence into a spectrogram via short-time Fourier transform
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Fig. 2. Illustrations of spectrograms and writing activity detection. In each
spectrogram, the colour bar indicates the intensity of signals; the red dashed
lines represent the detected starting and ending positions with our method.

Fig. 3. A ResNet basic block with FiLM layers, which is key component of
the task-adaptive feature extractor.

(STFT). Based on the obtained spectrograms, gestures are de-
tected according to Doppler shifts and corresponding frames are
extracted from the whole stream. Data preprocessing is a basic
step for the remaining stages.

Following that, we make use of our digit gestures dataset to
train a deep feature extractor in the pre-training stage. The goal of
this stage is to obtain a powerful feature extractor that can capture
generic information from datasets. The meta-training stage is
a core part of PreGesNet which enables the recognition model
adapt its parameters according to specific tasks automatically.
To accomplish this, we design an adaptation network that takes
advantage of digit dataset of another domain (differing from the
pre-training dataset) to learn task-specific parameters of FiLM
layers. These parameters are incorporated in the feature extractor
as shown in Fig. 3 and used for performing transformation on
outputs of each layer. In this way, the model learns to adapt
itself according to specific recognition tasks. In the meta-testing
stage, users are free to design gestures according to their habits
and preference. These gestures can be very different from those
in the training stage both in types and numbers. Users only need
to provide few samples to calculate prototypes (i.e., gesture
templates) which are used for comparing similarities in the
nearest neighbour classifier.

IV. SYSTEM DESIGN

In this section, we present the details of the proposed PreGes-
Net. First, we give introduction to data preprocessing which
transforms time-domain audio signals into spectrograms as in-
puts of the feature extractor (Section IV-A). Next, we introduce

the task-adaptive feature extractor (Section IV-B). Then, we
show how to classify gesture based on the task-specific features
(Section IV-C). Finally, we summarize the model training and
inference procedures (Section IV-D).

A. Data Preprocessing

To avoid disturbance, we control a speaker in a mobile de-
vice to emit inaudible acoustic signals with a frequency of
19 KHz. Simultaneously, a microphone in the same device
receives echoes bounced off the writing finger and other objects.
The received signals are first denoised by a 3-order band stop
filter with a stop band [18985, 19015] Hz in order to remove
static components at central frequency (i.e., 19 KHz). Following
that, the STFT combined with a sliding Hamming window is
conducted on the signal sequence, which transforms signals in
time domain to spectrograms. In a detail, the width and step
size of the above sliding window are set to be 8192 and 1024
sample points which are equivalent to about 0.1858 and 0.023
seconds, respectively. As a result, for a signal sequence with
x sample points in total, the corresponding spectrogram has
�(x− 8192)/1024� time bins and 4097 frequency bins with a
resolution of 5.38 Hz. Moreover, according to Doppler effect,
the frequency shift induced by a writing finger can be roughly
estimated by (1).

Δf = f0 ·
∣∣∣∣1−

vs ± vf
vs ∓ vf

∣∣∣∣ (1)

where f0, vs and vf represent the frequency of emitted
signals, the speed of sound and the velocity of finger motion,
respectively. As the writing speed is less than 1 m/s, the resultant
frequency shift is about 112 Hz. Then the frequencies of received
signals belong to [18700, 19300] Hz. Therefore, we can cut off
other parts of a spectrogram beyond this frequency range to
reduce computational cost.

When collecting training data, we can manually label starting
and ending time spots of a writing event. But it requires to detect
such time spots and extract corresponding active segments in
real time when the system is put into use. To achieve this, we
scan frequency shifts of each frame in a spectrogram at different
frequencies. When there exists a threshold number (α) of con-
tinuous frequency shifts with high power, the frame is asserted
to be active; otherwise, it is regarded as an inactive frame. As a
general stroke writing time is about 450 ms [8] (about 3 bins),
we set the above threshold α to be 4. However, frequency shifts
may also be caused by irrelevant random movements. Hence, we
empirically set a power threshold β to be −80 dB to filter out
random interference with low energy. The results of detecting
writing digits and letters based on spectrograms are shown in
Fig. 2. Note that when writing ‘0’, a user sweeps her finger
through the microphone and back, which induces sine wave-like
Doppler frequency shifts. As for digit ‘1’, a user writes it with fin-
ger going away from microphone directly. So a ‘valley’ appears
in the spectrogram. After extracting spectrograms of writing
gestures, we resize them to be a uniform size of224× 224before
feeding into the feature extractor network.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 04,2024 at 03:23:18 UTC from IEEE Xplore.  Restrictions apply. 



ZOU et al.: PREGESNET: FEW-SHOT ACOUSTIC GESTURE RECOGNITION BASED ON TASK-ADAPTIVE PRETRAINED NETWORKS 12815

B. Task-Adaptive Feature Extractor

We design our feature extractor following the line of con-
ditional neural processes [38], [39]. In particular, we design
a feature extractor f t

ada(·) which simultaneously maintains the
generic visual information captured by a pretrained ResNet [40]
and task-specific parameters which encode information with
respect to St. Thus, each xi from T t will be eventually rep-
resented as f t

ada(xi). Next, we first present the overview of the
task-adaptive feature extractor, then introduce how to obtain
task-specific parameters.

1) Pretrained Feature Extractor: Although the number of
labeled samples of the target gesture types is limited, we assume
easy access to a large-scale dataset of digit gestures (i.e., writing
digits) which are collected in the same environment. Although
the specific tasks are different, these digit gestures and letter
gestures (i.e., writing letters) are from the same feature space.
Hence, learning to represent digit gestures well is beneficial to
discover latent concepts which then helps represent letter gesture
appropriately. Thus, we first pretrain a ResNet (fpre(·)) to solve
multi-class (i.e., 10 classes) classification on the large-scale digit
gesture dataset to capture common semantic clues of gestures.
Nevertheless, as the pretrained ResNet is not optimized for target
letter gestures recognition tasks, directly taking the pretrained
ResNet as the feature extractor is not suitable.

To solve this problem, we manage to adapt this pretrained fea-
ture extractor to our tasks via learned task-specific parameters.
As shown in Fig. 3, we insert a Feature-wise Linear Modulation
(FiLM) layer [41] after each convolutional layer in the pretrained
ResNet. Provided with the cth feature map fi,c of the xi which
is the output of the lth convolutional layer in the bth block of
ResNet, a FiLM layer applies feature-wise affine transformation
which shifts and scales the feature map as

f ti,c = γt
b,l(c) · fi,c + βt

b,l(c), (2)

where γt
b,l(c) and βt

b,l(c) correspond to the cth element of
γt
b,l and βt

b,l respectively. These {(γt
b,l,β

t
b,l)} are task-specific

parameters and are learned by PreGesNet.
Task-specific parameters are actually represented by a set

encoder which encodes the conditioning information of St,
i.e., the information of different classes or domains, applies it
to the feature extractor, and thus modulates the features linearly.
The specific operation will be detailed in Section IV-B2. It is
also feasible to introduce class conditioning information into
the network through other methods such as conditional biasing
and conditional scaling. The FiLM layer essentially combines
both of them.

Conditional biasing refers to first mapping the conditional
representation to a bias vector, and then adding the bias vector
directly to the input as shown in Fig. 4(a). Conditional scaling
refers to adjusting the input by taking the dot product of the bias
vector with the input as shown in Fig. 4(b). A special instance
of conditional scaling is feature-wise sigmoidal gating: scaling
the features to a value between 0 and 1. As both addition and
multiplication interactions are natural and intuitive, we combine
them into conditional affine transformation which is the core
operation principle of FiLM. As for the feature-wise operation,

Fig. 4. Integrate class information into network through conditional biasing or
scaling. If the input is a feature map, biasing or scaling will be applied globally
to it, treating it as one element according to the corresponding channel.

Fig. 5. Task-specific parameter generator which consists of (a) set encoder
and (b) parameter generator.

we mean that scaling and shifting are applied element-wise,
or feature map-wise in the case of convolutional networks. We
apply FiLM at the feature level, effectively utilizing class infor-
mation to adjust the feature extractor, making it more flexible in
learning.

2) Task-Specific Parameter Generation: To generate the
task-specific parameters {(γt

b,l,β
t
b,l)} using the provided St of

T t, we first design a set encoder (Fig. 5(a)) to summarize the
information of St into a single task representation zt. Formally,
this can be written as:

zt = aggregate({g(xi) : (xi, yi) ∈ St}), (3)

where aggregate(·) is an aggregation function to aggregate the
sample representations into a the task representation, and g(·)
is an encoder which maps each image to a vectorized represen-
tation. As there is no order in St, we wish aggregate(·) to be
permutation-invariant. In our work, we instantiate (3) as (4):

zt =
1

|St|
∑

(xi,yi)∈St
CNN(xi), (4)

where we set aggregate(·) as average pooling and realize g(·) as
a convolutional neural networks (CNN) which consists of five
convolutional layers followed by an average pooling layers. |St|
denotes the number of samples in St.

We then use a parameter generator h(·) (Fig. 5(b)) to generate
parameters {(γt

b,l,β
t
b,l)}2l=1 for the two FiLM layers to be

inserted into each block j in the ResNet. We realize h(·) as
below:

γt
b,l = MLPγ

b,l(z
t) (5)

βt
b,l = MLPβ

b,l(z
t) (6)
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where MLP denotes the multilayer perceptron (MLP), and
MLPγ

b,l (MLPβ
b,l) is the MLP to learn parameter of FiLM layers

in the bth block. We use the same structure of the MLP used
in [38], which consists of one fully connected layer with ReLU,
two fully connected layers with residual skip connections and
ReLU, and a fully connected layer with residual skip connections
as the last layer.

For brevity, we use Φ to collectively denote the learnable
parameters of CNN in (4), MLPs in (5) and (6). We use a L2
regularizer upon {(γt

b,l,β
t
b,l)} to reduce the risk of overfitting,

which takes the form:

r(Φ) =

Nb∑

b=1

2∑

l=1

‖γt
b,l‖22 + ‖βt

b‖22. (7)

Nb is the number of blocks (e.g., 4 in ResNet18).

C. Classifier

Our ultimate goal is to determine the category of user-input
gestures and provide timely feedback. Traditional deep learning
models typically add fully connected layers after convolutional
layers and output classification results through softmax. The role
of the fully connected layer is to integrate and map the distributed
feature representations learned in the convolutional layers to
the label space of the samples. However, in our cross-domain
gesture recognition tasks, the number of gesture types that users
need to classify is not fixed. Changes in the number of types
make the existing fully connected layer ineffective and require
the initialization of new parameters. Therefore, we choose the
metric-based classifier, which is based on the idea that after
the data undergoes the same mapping function, it will be in
the same feature space. Thus, predicting the category of the
target data only requires determining which class of sample
data is closest to the target data in this space. Metric-based
classifiers eliminate the cost of retraining. Additionally, changes
in the number of gesture types only affect the number of sample
vectors in the feature space, which does not impact the distance
measurement itself. Therefore, it can adapt to different numbers
of classification types. We proceed to predict the class for each
xj in Qt. Following [42], we first calculate the class prototype
pc of class c as

pc =
1

|St
c|
∑

xi∈St
c

f t
ada(xi), (8)

where St
c is a subset of queries in St belong to class c.

The core issue in designing a metric-based classifier is choos-
ing an appropriate metric. Prototypical networks [42] opts for the
common �2 distance (euclidean distance); CNAPs [38] chooses
to use an additional neural network to measure distance; Simple
CNAPs [39] uses the Mahalanobis distance [43] as the metric. In
our early feasibility study, we experiment with the Mahalanobis
distance, which is a distance based on the sample distribution.
Its physical meaning is the euclidean distance in the normalized
principal component space. This allows some characteristic
relationships in the data to be considered in the distance metric.

Fig. 6. Diagram of decision boundaries and the covariance matrix of our data.
While Mahalanobis distance better accounts for covariance, results indicate that
the distribution in feature space is close to a unit normal distribution, allowing
for the adoption of simple distance metrics.

Fig. 6(a) provides an intuitive perspective on the difference
between �2 distance and Mahalanobis distance. The use of �2 dis-
tance implicitly assumes that each cluster follows a unit normal
distribution, while Mahalanobis distance takes into account the
cluster covariance when calculating the distance to the cluster
center. The Mahalanobis distance is calculated by

dk(x, y) =
1

2
(x− y)T (Qτ

k)(x− y) (9)

The term (Qτ
k) represents the task-specific covariance matrix,

and we attempt its usage on our data as implemented in Simple
CNAPs [39]. In theory, Mahalanobis distance considers the co-
variance of samples when computing distances to cluster centers,
offering a more precise classifier. However, our experimental
results as shown in Fig. 6(b) indicate that the covariance matrix
computed for Mahalanobis distance is very close to an identity
matrix. This suggests that the gesture category space in feature
space approximates a unit normal distribution, rendering the
computation of the covariance matrix unnecessary. Removing
the calculation of the covariance matrix makes the Mahalanobis
distance equivalent to the �2 distance. Inspired by this, we
conjecture that the gesture recognition task itself may not contain
overly complex or correlated information, and a simple distance
metric might yield better results. Therefore, we directly employ
the �1 distance metric as defined by (10).

dk(x, y) = ‖x− y‖1 =
∑

i
|xi − yi| (10)

where x = [x1, x2, . . . , xn], y = [y1, y2, . . . , yn].
To the best of our knowledge, this is the first work in exist-

ing research to utilize the �1 distance metric for classification.
This choice also reflects our emphasis on optimizing real-time
performance in mobile systems. The possibility of xj ∈ Qt over
class c is estimated as

p(c|f t
ada(xj)) =

exp(‖ f t
ada(xj)− pc ‖1)∑N

c′=1 exp(‖ f t
ada(xj)− pc′ ‖1)

, (11)
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Fig. 7. An illustration of our pre-training and meta-training task generation
strategy. Different from MetaSense [18] that different individuals can be ex-
tracted from one task, We find that maintaining consistent user throughout the
meta-training task is advantageous for recognition.

where we use �1 distance to measure the distance between each
sample xj and class prototype. Our results show that using �1
distance metric not only significantly reduces the inference time
but also leads to a slight improvement in accuracy. This approach
better ensures real-time performance and inference accuracy.
Detailed experimental results will be presented in Section VI-I3.

D. Training and Inference

We train the proposed PreGesNet via episodic training. The
learnable parameter Φ is optimized with respect to a set of tasks
{T t}Ntrain

t=1 :

min
Φ

Ntrain∑

t=1

∑

(xj ,yj)∈Qt

∑

(xi,yi)∈St

−log p(yi|xj)+αr(Φ), (12)

where α is a hyperparameter used to adjust the level of reg-
ularization. In our subsequent tests with different α values,
ranging from 10−4 to 10−1, the maximum accuracy difference
on recognition performance is 1.1%. This value has minimal
impact on the system’s performance within a broad range, and
we set its default value to 0.001.

In Section III-A, we introduce the concepts of task, support
set and query set. Fig. 7 provides a more detailed explanation
of our training and task generation strategy. Specifically, in pre-
training, we utilize a dataset collected with the device in a vertical
orientation (detailed explanation in Section V-A) and obtain a
pre-trained model following the standard training procedure.
Subsequently, the pre-trained model has its fully connected lay-
ers removed to serve as a feature extractor. During meta-training,
the dataset is collected with the device in a horizontal orientation.
Our task generation strategy involves extracting tasks in a way
that the data belonged to the same user, identified by UserID, for
each task. This simulates the scenario in actual testing where the
support set is provided by users themselves. Our experimental

Algorithm 1: Training Procedure for PreGesNet.
Require:a large-scale digit gesture dataset, divided into
pre-training dataset and meta-training dataset;

1: randomly initialize the parameter Φ of PreGesNet and
the parameter of a ResNet;

2: pretrain ResNet on the pre-training dataset;
3: while not converged do
4: randomly sample N classes from Ntrain classes of the

meta-training dataset;
5: following the task generation strategy, randomly

sample K and M samples from each of the N classes
as the support set St and query set Qt respectively;

6: use the support set St to generate the task-specific
FiLM parameters {(γt

b,l,β
t
b,l)} by (4), (5) and (6);

7: transform the features extracted by the pretrained
ResNet to be task-specific via (2);

8: calculate prediction by (11) for each testing xj in Qt;
9: update Φ by optimizing (12);

10: end while
11: returnoptimized Φ∗.

results also indicate that this approach enhances recognition
accuracy.

Integrating our task generation strategy (i.e., the approach to
extracting the support set St and query set Qt, the training pro-
cedure is shown in Algorithm 1. During inference, PreGesNet
with the optimized Φ∗ can be directly applied on new task T ′

which contains a few labeled gestures from Ntest classes that are
unseen during training. In detail, we first feed the support set
S′ to (4), (5) and (6) in turn to obtain {(γ ′

b,l,β
′
b,l)}. With these

task-specific FiLM parameters, each xi in T ′ will be encoded
as f ′

ada(xi) by (2), and then be classified as described in Section
IV-C.

V. EXPERIMENTS AND IMPLEMENTATION

A. Datasets

1) Data Collection: To construct a training dataset, i.e.,
acoustic samples of writing ten digits, we first develop an
Android mobile application on Samsung Galaxy Tab S2 (S2
for short) which controls a speaker to emit 19 KHz sinusoidal
modulated audio signals. Simultaneously, a microphone in S2 is
controlled to receive echoes bounced off by a writing finger and
other nearby objects at a sampling rate of 44.1 KHz. Then we
recruit 10 participants (6 males and 4 females, 25 ∼ 35 years
old) to participate in the experiments. All of them have sound
upper limbs and forearms which are capable of performing hand-
or finger-level gestures. To make the evaluation more practical,
we take the following conditions into account and classify all
possible experimental settings based on different combinations
of them as shown in Fig. 8. Fig. 9 provides a simple illustration
of writing trajectory. Along with Fig. 8, it demonstrates how we
perform in-air gesture.
� Orientation: It represents the relative orientation between

the device and a writing finger. We consider three different
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Fig. 8. The scenarios of data collection experiments.

Fig. 9. The sketch maps of writing trajectories of ten basic digits.

orientations including 0◦, 90◦, and 135◦ by rotating the
device along Y axis in the X-Z plane.

� Environment: We collect data in two typical environments:
an office room with a noise level from 45 dB to 55 dB (in-
room), and a public resting zone with a noise level higher
than 60 dB and other people walking around (out-room).

� Posture: It means how the device is carried when a user
performs gestures. We consider two most common carrying
ways: on a table (on-table), and carrying in a hand (in-
hand).

As for the digit gesture dataset, we request participants to
write each digit from 0 to 9 for 20 times at three orientations
(i.e., 0◦, 90◦, and 135◦), in an office room (i.e., in-room), and
with the device placed on a table (i.e., on-table). Therefore, we
collect data in 3 experimental settings containing 6000 (i.e.,
3× 20× 10× 10) samples of writing digits. During experi-
ments, we only ask participants to follow uniform writing trajec-
tories, and do not impose any other restrictions on their writing
ways.

The procedure of collecting letter dataset is similar to the
above except two differences. First, we collect data under
different settings. For one thing, we do not differentiate the
orientation between a device and writing finger; instead, we
let participants to choose an orientation that is appropriate for
themselves. As nearly all of them write letters within about
±10◦, we classify these cases into the same orientation condition

(i.e., 0◦). This is reasonable in practice since such an orientation
makes it comfortable and convenient for people to do ges-
tures. For another thing, we consider all possible combinations
of another two conditions, namely, environment and posture.
Hence, we have finally collected 20,800 (i.e., 4× 20× 10× 26)
samples of writing letters under 4 (i.e., 1× 2× 2) experimen-
tal settings. Second, we do not require participants to follow
uniform writing trajectories of letters. Instead, they can ar-
bitrarily customize trajectories of letter gestures, unless they
differ from each other. This is very practical since different
persons have distinct behavioural habits and usually keep con-
sistent for a long time. Note that the digit dataset is used for
training the system; while the letter dataset acts as a testing
set.

We have open-sourced our extensively collected dataset
on https://github.com/ISAC-GROUP/ISAC-Gesture. This open
dataset actually includes more data than described above. For
instance, we collect data at 45◦ orientation, as well as 0 to 9
digits from out-room and in-hand scenarios, although they are
not utilized in the training and testing in this work. Additionally,
there is a portion of data involving various distance positions
and angular offsets, which will be introduced in Sections VI-G
and VI-H. Besides, it includes some data with smaller volumes
collected using Oppo smartwatches and Xiaomi smartphones.
To our knowledge, there is currently no similar large-scale open
dataset for acoustic gesture recognition. The dataset we have
open-sourced comprises a total of 86,752 spectrograms. We
hope that the dataset we have collected can contribute to HGR
study and mobile computing.

2) Specification of Datasets: As introduced in Section IV-D,
the complete working pipeline of PreGesNet includes pre-
training, meta-training, meta-validation, and testing. The dataset
of each stage is specified as follows.
� Pre-training: a total number of 2000 samples of writing

digits collected in the conditions of ‘on-table’, ‘in-room’,
and ‘0◦’.

� Meta-training: a total number of 2000 samples of writing
digits collected in the conditions of ‘on-table’, ‘in-room’,
and ‘90◦’.

� Meta-validation: a total number of 2000 samples of writing
digits collected in the conditions of ‘on-table’, ‘in-room’,
and ‘135◦’.

� Testing: According to the number of conditions taken into
account, our evaluation can be divided into two parts. In
the main part (from Sections VI-B to VI-C), we make use
of all the participants’ samples of writing letters collected
in the conditions of ‘on-table’ and ‘in-room’. Therefore,
the total number of samples used for this part of evalua-
tion is 5200. In the other part, we evaluate PreGesNet in
different cross-condition cases such as cross-person and
cross-environment. Since the settings of this part of eval-
uation are more complex, we shall give details in Section
VI-F.

For the sake of convenience, we denote the digit ges-
tures datasets used for pre-training, meta-training, and meta-
validation as base datasets, and the obtained model as a base
model.
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B. Baselines

We compare the proposed PreGesNet with the following
baseline methods.
� Src+Tgt: Source plus target (Src+Tgt) uses both the source

dataset (i.e., training set) and the target domain’s few shots
for training a deep neural network. This baseline leverages
the source data to learn general representations and the
target domain’s data for adaptation.

� ProtoNet: Prototypical Network (ProtoNet) [42] is one of
the state-of-the-art few-shot learning algorithms based on
meta learning. Given a few training data, PN generates
prototypes in embedding space and each prototype is the
representative of each class. In inference, PN uses the
euclidean distance metric to classify the closest prototype
(i.e., class).

� MAML: Model-agnostic meta-learning (MAML) [34] is
a popular few-shot learning model. The performance dif-
ference between PN and MAML would indicate which
method is more effective in deep mobile sensing.

� ANIL: Almost No Inner Loop (ANIL) [44] simplifies
MAML by removing the inner loop for all but the task-
specific head of the underlying neural network.

� MetaSense: MetaSense [18] is an adaptive deep mobile
sensing system which employs meta learning that learns
how to adapt to the target user’s condition.

� RF-Net: RF-Net [15] is a meta learning-based approach
for one-shot human activity recognition with RF signals.
It aims at delivering the the capability of rapid adaptation
to new environments with very few labeled data.

� OneFi: OneFi [20] is a one-shot human gesture recognition
system which only requires a small base dataset to learn a
representative feature of WiFi data.

� CNAPS: Conditional Neural Adaptive Processes (CNA-
PS) [38] is a few-shot adaptive classifier based on con-
ditional neural processes, which is developed for image
classification tasks.

� S-CNAPS: Simple CNAPS (S-CNAPS) [39] differs from
original CNAPS architecture by replacing the linear clas-
sifier by a NN classifier using Mahalanobis distance with
estimated covariance.

C. Implementation

All the experiments are implemented by PyTorch 1.8.1, and
evaluated on a remote server with one NVIDIA RTX A6000
GPU with CUDA11.1 framework, 48 GB memory and Intel
Xeon E5-2686 v4 2.30 GHz CPU processors. MetaSense [18],
RF-Net [15], and OneFi [20] are reproduced by the open-source
codes provided by the authors.

Here, we must note that, while relevant, these works utilize
information media different from ours, and there are significant
differences in the processing methods and dimensions of the
input signals. Our comparison involves applying the network
architectures or methods used in these works directly to our
dataset. The resulting accuracies are not indicative of the per-
formance of the efforts themselves. The difficulty of achiev-
ing fair comparative performance arises from the differences

Fig. 10. Performance of PreGesNet with different feature extractors.

in signals. We use ResNet18 as the backbone network, and
the input still consists of spectrograms. We do not perform
additional adaptation or processing. The experimental results
also indicate that simply applying framework of other works
without processing different signals may not yield satisfactory
classification performance. These explorations will be left for
future work.

As for the other baselines originally developed for image
classification tasks (i.e., Src+Tgt, CNAPS, and S-CNAPS), we
replace their feature extractor to the one (i.e., ResNet18) adopted
by us. We use Adam optimizer with a learning rate of 5× 10−4

for all the methods, and Rectified Linear Unit (ReLU) for
activation function. In addition, we also make use of batch
normalization to prevent overfitting. For MAML and ANIL, we
take one gradient descent step for training the base model and
one hundred steps for adaptation.

VI. PERFORMANCE EVALUATION

In this section, we evaluate PreGesNet comprehensively with
a key metric of micro-averaging accuracy over different letters,
random seeds, and/or participants. It represents the probability
of recognizing an unseen letter correctly which can be calculated
by Ncorrect

Nall
.Ncorrect andNall are the number of correctly recognized

samples and all testing samples, respectively. In the following,
we run each evaluation experiment with five random seeds.

A. Choices of Backbone

In this part, we equip the proposed PreGesNet with different
numbers of layers of the backbone network (i.e., ResNet) by
considering ResNet10, ResNet18, and ResNet34. Apart from
recognition accuracy, we also report training and inference time
in evaluation which are important to implement a real-time
mobile application. It is noted that the inference time represents
the total time needed for classifying 5200 samples of writing
letters. As can be seen from Fig. 10(a), the average recognition
accuracy over different support sets for ResNet10, ResNet18,
and ResNet34 are 70.3%, 80.5%, and 81.8%, respectively. This
indicates that the performance increases with the number of
layers on the whole. But when the depth of a feature extractor
exceeds a certain threshold (i.e., 18 layers), there is no accuracy
gain any more. A possible explanation is that ResNet18 is
powerful enough to extract intrinsic features here. Meanwhile,
we notice that the testing time increases along with the depth
of a feature extractor from Fig. 10(b), which is in line with
intuitive understanding. Taking the trade-off between accuracy
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Fig. 11. Recognition accuracy of PreGesNet obtained for each person.

and latency into account, we choose ResNet18 as the feature
extractor in the following evaluation. In addition, we can observe
that the recognition accuracy varies from 68.0% to 85.9% with 1
to 6 shots. This means that when more support samples provided,
our method can achieve better performance.

B. Overall Performance

In this section, we display the overall recognition performance
obtained by PreGesNet. Fig. 11 shows the average accuracy over
different letters for each participant. We can see that different
participants have recognition accuracy ranging from 73.7% (P4)
to 86.0% (P8) with an average value of 80.5% and a standard
deviation of 4.3% when two shots are provided to fine tune the
model. It demonstrates that, with only less than three samples of
each unseen gesture, our method can guarantee relatively stable
performance across different users even though they differ in
writing habits, which proves its practicality.

Additionally, regarding the influence of gender, we have
known that among the participants P1, P3, P9, and P10 are
female. Typically, a male has wider fingers and faster writing
speed, leading to more noticeable frequency shifts in spectro-
grams. However, there are no significant differences in the recog-
nition results between male and female participants. According
to Fig. 11, the 2-shot recognition accuracies of the female
participants are 78.2%, 83.2%, 80.9%, and 81.8%, respectively.
Their average performance is very close to that of the male
ones. This is probably due to the fact that the females perform
gestures with more stable magnitude and speed, which results in
more similar spectrograms for the same gestures. In conclusion,
although gender may have certain impact on writing behavior, it
does not significantly affect the final recognition performance.

We also calculate the confusion matrices of letter gestures
with different number of shots to show how they can be rec-
ognized. Limited by the page space, we only show the 2-shot
confusion matrix in Fig. 12. With two shots, the recognition
accuracy of letter gestures vary from 48.0% (‘D’) to 97.0%
(‘L’) with an average and standard deviation of 80.5% and
12.8% respectively according to our experiments. The reason
is that the writing trajectories of these letters are very similar
to others, which makes them hard to classify. For example, ‘V’
is much similar to ‘X’ and their Doppler spectrograms share
similar patterns. As a result, nearly half of ‘V’ samples are
misclassified as ‘X’ according to the confusion matrix. Similarly,
the writing trajectories of ‘D’ and ‘K’ resemble those of ‘P’ and
‘R’, respectively.

Note that although the average recognition accuracy of letter
gestures is not very high, our work still holds significant value

Fig. 12. Confusion matrix of PreGesNet obtained for 2-shot.

considering the following reasons. First, such performance is
adequate for designing high-accuracy text-entry interfaces as
lexical rules and Bayesian inference can be utilized, which
is already proved by previous works [9], [11]. For example,
UbiWriter [9] achieves a recognition accuracy of only 69.23%
for writing 26 letters. However, the words’ recognition accuracy
can be up to 91.8% with Bayesian inference. As a result, we
believe that our system can be extended to text-input applications
with good performance as well. Second, reducing the kinds
of testing gestures can significantly improve the recognition
performance as demonstrated in Section VI-D. When the number
of testing gestures is reduced to 10, the accuracy increases
to more than 90% with 2 shots. In addition, according to our
extending case study in Section VII, as for eight common hand
gestures, PreGesNet achieves high recognition accuracy up to
89.7%, 93.4%, and 94.5% with 1, 2, and 3 shots, respectively.

C. Baseline Comparison

In this part, we compare the performance of PreGesNet with
other baseline methods as described in Section V-B on our
acoustic-based texts entry dataset. Except for the dominant
evaluation metric, i.e., accuracy, we also consider the total
testing time using different methods since it reflects the real-time
running performance to certain degree. Fig. 13(a) shows the
average recognition accuracy with different methods. We can
see that PreGesNet outperforms all the other methods in spite
of the number of support shot, especially compared with PN,
MAML, ANIL, MetaSense, RF-net and OneFi. Actually, given
two shots, the accuracy of these methods are all lower than
40%; In contrast, our method achieves a recognition accuracy
of 80.5% under the same condition. More interestingly, the
three latest works dealing with cross-domain gesture/activity
recognition-MetaSense, RF-net, and OneFi perform obviously
worse than our method. The reason is that these methods use
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Fig. 13. The comparison of different methods in terms of accuracy and testing
time.

softmax classifiers and can only recognize the same number of
gesture classes in testing stage. In contrast, our method (includ-
ing CNAPS and S-CNAPS) is more powerful to handle the case
of varying gesture classes without retraining and fine-tuning the
model. This enables users to define gestures by themselves and
greatly improves the scalability of a human-computer interac-
tion system. Moreover, compared with S-CNAPS, our method
achieves higher recognition accuracy by 6.7%, which validates
our choices of NN classifier with �1 distance.

As for the running efficiency, we can see from Fig. 13(b) that
our method occupies 456 seconds in total for about 3000 testing
samples with 0.15 second for each one. Compared with other
methods, although Src+Tgt, PN, MAML, ANIL and RF-Net
need obviously less inference time, their recognition accuracies
are notably lower than PreGesNet by more than 31% in the
2-shot setting. Except them, compared with MetaSense, OneFi,
CNAPS and S-CNAPS, PreGesNet not only has higher recogni-
tion accuracy, but also occupies less testing time. In particular,
although the accuracy of S-CNAPS is close, its testing time is
nearly twice as much as that of PreGesNet’s. This is because
S-CNAPS requires estimating the covariance matrix, which is
rather computationally costly. In comparison, we design our
model with �1 distance to eliminate the above estimation as we
notice that the covariance matrix remains nearly constant in our
problem.

D. Impact of Meta-Testing Gestures

Considering the scalability of real-world deployment, it is
important for our system to perform still well when the number
of unseen gesture types becomes large. As a result, we want
to explore the impact of different number of unseen gestures.
We vary this parameter from 6 to 26 with a step size of 2. For
each case, we randomly select a fixed number of gesture types
from the whole set of letter gestures, use their samples to test the
base model with 1 to 6 support shots, and finally calculate the
average recognition accuracies over five repetitions. The results
are shown in Fig. 14(a). We can see that the recognition accuracy
decreases with the number of unseen gestures. It is easy to

Fig. 14. Recognition accuracy varies with number of testing and training
gesture types.

understand that more letter gestures indicate higher probability
of similar writing trajectories, and is likely to cause confusion.

Although we default to using 26 letter gestures for testing
PreGesNet, in reality, 26 exceeds the typical number of cus-
tom gestures needed. In Fig. 14(a), we specifically highlight
the accuracy corresponding to 1–6 shot when the number of
unseen gesture types is 10. It represents the performance of
PreGesNet when the number of trained categories equals the
number of test categories. This is a common evaluation criterion
in few-shot learning, where the model’s performance is assessed
when train-way equals test-way. It can be observed that with
unseen gesture types = 10, the 2-shot accuracy exceeds 90%,
and the accuracy of 5-shot is more than 94%. This implies that
in most cases, users can freely design new gestures with high
recognition performance, requiring only a few labeled samples.

E. Impact of Meta-Training Gestures

We also evaluate the impact of number of gesture classes used
for meta training. The reason why we consider meta training
instead of pre-training stage is that it enables the network adapt
to different tasks and is more significant than pre-training. To
do this, we randomly select 2 to 10 classes of digit gestures
from the meta-training dataset to fine tune the network after
the pre-training stage, and test its performance with the whole
meta-testing dataset (i.e., 26 letter gestures) by providing dif-
ferent number of shots. The results are shown in Fig. 14(b). We
can see that the accuracy increases with the number of gesture
types, since more kinds of gestures is beneficial for ‘teaching’
the network to learn how to adapt to different tasks quickly.
With only four kinds of digit gestures (i.e., 800 samples) used
for meta-training, PreGesNet can recognize 26 letter gestures
with accuracies of 70.4% and 77.9% when two and six shots
are provided, respectively. This indicates that our adaptation
network can effectively learn how to adapt parameters of feature
extractor. The number of training gesture types is set to be 10
by default in the evaluation.

F. Cross-Condition Performance

During data collection, we have considered several key con-
ditions that may have impact on PreGesNet’s performance in-
cluding user, environment, and posture as described in Sec-
tion V-A1. To evaluate the performance of our framework in
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Fig. 15. Cross-condition performance in different cases.

cross-condition cases, we have conducted the following eval-
uation experiments considering nine common combinations of
conditions. In these cross-condition evaluation cases, we adopt
‘leave-one-condition-out’ strategy to assess the impact of dif-
ferent conditions. Except the Case-1 and Case-4 as follows, we
directly test the base model as described in Section V-A2 without
retraining other models. The rationale is that the base model is
trained with data collected in a common and practical setting
which is convenient to construct the datasets. In the following,
we give necessary details of each cross-condition evaluation
experiment.
� Case-1 Cross-person: We adopt ‘leave-one-user-out’ strat-

egy to train models with nine participants’ digit datasets,
and make use of the remaining one’s letters datasets for
evaluation.

� Case-2 Cross-environment: We test the base model with
letter dataset collected in the out-room environment.

� Case-3 Cross-posture: We test the base model with letter
dataset collected by a device carrying in a hand (in-hand).

� Case-4 Cross-person plus environment: We test the models
in Case-1 with the remaining one’s letters datasets collected
in out-room environment.

� Case-5 Cross-posture plus environment: We test the base
model with letter dataset collected by the same device
carrying in a hand (in-hand) in the out-room environment.

� Case-6 Identical-condition: We test the base model with
letter dataset collected under the same conditions with the
training procedure.

The results are shown in Fig. 15. Similar to Case-6, PreGes-
Net’s performance in different cross-condition cases also in-
creases with the number of support shots. In the first four cases,
PreGesNet performs best in Case-1 and Case-2 with accuracies
of 78.4% and 77.2% with two support shots, which are slightly
lower than that in Case-6 by 1.1% and 2.3%, respectively. This
proves that PreGesNet can achieve good performance in both
cross-person and cross-environment cases. Besides the power-
ful generalization ability of PreGesNet, we envision that it is
also because of the following reasons. First, although different
participants behave with certain variance due to personal habits,
they share many similarities in writing letters such as writing
trajectory, speed, and relative orientation. Second, the consid-
ered two environments mainly differ in external interference
caused by background noises and moving people. Owing to
signal preprocessing techniques, the interference causes limited
distortions to spectrograms. With the adaptation ability, our
method can easily overcome dissimilarities and transfer to target
settings. In addition, the accuracy obtained in Case-3 is 67%,

Fig. 16. The impact of relative distance.

which indicates that PreGesNet is more sensitive to the holding
posture. As for those cross multiple conditions cases, we can
find very similar trends as in the first three cases. In a detail,
PreGesNet performs the best in Case-4 with an accuracy of
74.5%, higher than the performance in Case-5 by 1.1%. In a
nutshell, PreGesNet possesses good robustness to user diversity
and environment variance, relatively higher sensitivity to the
holding way of a device. We leave further optimization in this
aspect as our future work.

G. Impact of Distance

The power of acoustic signals decays with propagation dis-
tance. Hence, it is intuitive that the relative distance between
the writing finger and device has impact on gesture recognition.
To evaluate it clearly, we request participants to write letters at
another two distances except for the basic setting used in Section
V-A1, As the distance varies during performing gestures and is
hard to be measured precisely, we divide the writing area into
three ranges by distance including near (i.e., [0,30] cm, basic
setting), middle (i.e., [15,45] cm), and far (i.e., [30,60] cm) as
shown in Fig. 16(a). Within each range, participants start writing
gestures from the center, and perform each letter gesture for 20
repetitions. All the collected data are used to test the base model.
The evaluation results are shown in Fig. 16(b). As expected, the
recognition accuracys decrease with the distance owing to degra-
dation of signal to noise ratio, which makes Doppler patterns
unnoticeable and more difficult to be recognized. Nevertheless,
PreGesNet can still maintain relatively high accuracies of 71.4%
and 77.7% at a moderate distance (i.e., middle range) with two
and three shots, respectively. In practice, people tend to interact
with mobile devices such as smartwatches and smartphones by
gestures with a short distance near devices for better experience.
As for other devices like smart speakers, their transmission
power is much stronger and supports longer-distance interaction.

H. Impact of Angle

The angle between a finger and device affects Doppler pat-
terns of gestures, and thus has impact on the recognition results.
Consequently, we evaluate this factor with an experimental
setting as shown in Fig. 17(a). We consider an angle range of
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Fig. 17. The impact of relative angle.

−45◦ to 45◦ with a step of 22.5◦. Similar to the above, we request
each participant to perform letter gestures for 20 times at each
angle, and finally obtain the evaluation results of PreGesNet
with the base model as shown in Fig. 17(b). We can notice
that the average accuracies decrease by 5.6%, 4.0%, and 5.6%
compared with the default setting (denoted by 0◦) with 1, 2, and
3 shots respectively when the relative angle is 22.5◦. With the
angle enlarging, the performance decreases. This is because that
Doppler shifts not only depend on writing speed but also are
closely related with relative angle. Since our system is trained
in the default setting, when writing angle changes, the Doppler
shift patterns become different, which makes it more difficult to
recognize them correctly.

I. Model Analysis

To gain deeper understanding of the network design, we
conduct comprehensive ablation experiments to evaluate the im-
pact of each part, mainly including feature extractor, similarity
metric, and fine-tuning strategy. Through this part, we expect to
show what components can be optimized for better performance,
especially when this framework is extended to other applications
and datasets. The evaluation experiments in this part follow the
same training and testing procedure as aforementioned.

1) Visualization Analysis: In previous sections, we provide
comparisons between our work, other approaches, and some
baseline methods. Here, we aim to further visualize and analyze
the role of the FiLM layer. If we remove the FiLM layer,
i.e., no longer adjust the feature map using (2), our network
structure essentially becomes a prototypical network (ProtoNet)
that substitutes the �2 distance classifier with an �1 distance
classifier. In Section VI-C, for the 26-class, 2-shot scenario,
the baseline ProtoNet only achieves an accuracy less than 40%,
while PreGesNet achieves a recognition accuracy of 80.5%.
When reducing the number of training and testing classes to
be 10, the accuracy of the ProtoNet reaches 76.6%, whereas
PreGesNet achieves 91.0%.

Fig. 18 illustrates the t-SNE [45] three-dimensional visual-
ization results of the feature vectors extracted by ProtoNet and
PreGesNet for the recognition of letter gestures from ’A’ to
’J’ in the same batch data, which comprises 10 classes. The
corresponding recognition accuracies for two models are 77.8%
and 92.4% in this batch, indicating a 14.6% improvement. It is
evident that the FiLM layer reduces the intra-class distance, re-
sulting in a more compact overall cluster structure. Specifically,

Fig. 18. t-SNE visualization: an ablation study of FiLM layer (with the
accuracy of 77.8% and 92.4% respectively shown in two subfigures). It can
be seen that the FiLM layer reduces intra-class distances and results in a more
compact cluster structure.

Fig. 19. Feature extractors.

the certain classes such as ’C’ and ’F’ are more distinct with
the presence of the FiLM layer, and the inter-class distances
for most classes such as ’B’, ’C’, ’D’, ’E’, ’I’, and ’J’ become
smaller, demonstrating the modulating effect of the FiLM layer
on feature maps. The above analysis suggests that different infor-
mation learned under90◦ orientation is helpful for distinguishing
content that is less discernible under 0◦ orientation. This assists
the feature extractor in capturing more discriminative features
for classification.

2) Feature Extractor: We consider replacing the feature
extractor with some other well-known networks of different
depths which include shallow networks, medium ones (i.e.,
ResNet18 [40], VGG19 [46]), and deep ones (i.e., Shuf-
fleNet44 [47]). Our goal is to explore whether PreGesNet is
sensitive to the feature extractor block. We obtain the results as
shown in Fig. 19. Compared with shallow and deep networks,
VGG19 and ResNet18 perform optimally with very close accu-
racy of about 68.1%, 77.4%, and 82.7% when 1, 2, and 3 shots
are provided, respectively. ResNet18 overperforms VGG19 with
minute accuracy gains of 1.3%, 1.6% and 0.3% in three cases. In
contrast, ResNet18 shows more obvious superiority to shallow
and deep networks with accuracy gaps at least 4.4%, 2.2%, and
1.9% with different shots. This indicates that for our application,
a feature extractor with medium depth is more appropriate. But
PreGesNet is not sensitive to specific architecture of a feature
extractor.

3) Similarity Metrics: In our model design, a key novelty is
replacing Mahalanobis distance used in simple CNAPS model
with �1 distance for the sake of reducing computational cost.
The results shown in Fig. 13(b) has verified that this optimization
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Fig. 20. Similarity metrics.

Fig. 21. Sensitivity analysis of the regularization hyperparameter α.

Fig. 22. W/ or w/o task generation strategy.

results in significant improvement of real-time performance. Be-
sides that, we also compare the recognition accuracy of different
similarity metrics, namely, �1, �2 and Mahalanobis. The results
are shown in Fig. 20. The average accuracy of three metrics over
different number of support shots are 76.9%, 76.2%, and 76.6%,
respectively. This indicates that �1 distance not only has the
lowest computational complexity, but also achieves the optimal
recognition performance.

4) Task Generation Strategy: Intuitively, adopting task gen-
eration strategy is beneficial to be mimic practical use scenarios.
Thus, we further evaluate the impact of whether task generation
strategy is used. Fig. 22 plots the results. As observed, using
task generation strategy consistently leads to performance gain.
Specifically, the strategy brings about accuracy improvement of
6.4%, 5.1%, and 5.5% with 1, 2, and 3 shots being provided,
respectively. As can be observed, the task generation strategy
has a significant impact on the testing accuracy, sometimes even
surpassing the influence of the network architecture.

5) Sensitivity Analysis: In the proposed network, there is
a key hyperparameter α in (12) which adjusts the level of
regularization. To gain better knowledge of its impact, we test
it by setting its value from 10−7 to 0.5, where 10−7 indicates
essentially no regularization constraint. The evaluation results
are obtained by averaging over five random seeds with two shots
provided. As shown in Fig. 21, different values of α affect the

Fig. 23. Training overhead.

Fig. 24. The sketch of new hand gestures.

recognition performance with a maximum accuracy variation of
1.1%. Specifically, the accuracy is 79.3% when essentially no
constraint is applied and 80.5% whenα equals 0.001. The results
indicate that within a relatively wide range, the hyperparameter
α has minute impact on the system performance, but applying
regularization constraints is indeed helpful for enhancing the
model’s performance.

6) Training Time: In this experiment, we investigate how
much time is needed for PreGesNet to converge to its best
performance (with respect to validation) on the base dataset.
We compare our system with other three latest closely related
works including OneFi, RF-Net, and MetaSense. Fig. 23 plots
how the accuracy changes with training time for four methods.
We can see that training PreGesNet with about 4 seconds results
in a higher accuracy than training other three methods for over
600 seconds. This proves that PreGesNet has significantly lower
overhead than them.

VII. EXTENDING CASE STUDY

To verify the high scalability of PreGesNet to different kinds
of gestures, we conduct a real-world case study experiment in
which we recruit additional seven volunteers to use our system to
recognize seven different hand gestures. Note that the volunteers
do not participate in the data collection described in Section
V-A1, which means that this part of evaluation is conducted
in the cross-person setting. They include pushing and pulling,
sweeping, sliding, clapping, drawing triangle, pentagram, heart-
shape, and circle denoted by G1 ∼ G8 for short as shown in
Fig. 24.

There are two-fold considerations for using these gestures
in case study. On one hand, they are much different from
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Fig. 25. The recognition accuracy of hand gestures.

digit and letter gestures in granularity and trajectories, which is
more convincing to show PreGesNet’s scalability. In addition,
these gestures are diverse in complexity with simple ones like
sweeping, and complex ones such as drawing pentagram. On
the other hand, they are commonly used in HCI applications
and have been used for system evaluation in related works [14],
[20].

We first develop an Android application on a Samsung Galaxy
Tab S2 responsible for emitting and receiving acoustic signals,
preprocessing signals, transmitting spectrograms to a server, and
displaying results. We also implement the base model obtained
in Section V-A1 with pytorch 1.10.2 on a Lenovo laptop acting as
a server which is equipped with a Intel i7-11800H CPU, a 6 GB
RTX3060 GPU, and 16 GB RAM. The laptop is responsible
for forward inference with received spectrograms and returning
back recognition results to the mobile end. The communica-
tion between the mobile device and laptop is through HTTP
protocol. After building the real-time prototype, we request
each volunteer to perform every hand gesture shown in Fig. 24
for 20 times. Consequently, the volunteers have accomplished
a total number of 1120 (i.e., 7(volunteers)× 8(gestures)
× 20(repetitions)) testing samples.

A. Accuracy of New Hand Gestures

We calculate the recognition accuracies of eight hand gestures
when different number of support shots are provided. The results
are shown in Fig. 25. With the shot number being 1, 2, and
3, the average accuracy reaches 89.7%, 93.4%, and 94.5%,
respectively. Compared with the results shown in Fig. 14(a),
the performance of hand gesture recognition is slightly better
than that of recognizing eight letter gestures by 4.8%, 1.4%, and
1.2%, even though it is evaluated in the cross-person setting. We
think that there are two possible reasons. For one thing, hand
gestures are of larger scale than writing letters with a finger,
and thus induce more notable Doppler shifts. For another thing,
the trajectories of these hand gestures are more distinct from
each other than writing letters, and are easier to be recognized
correctly. What is more, sliding and clapping have lower accura-
cies than others. It is because both gestures share a part of hand
movement which induces similar Doppler shifts. In a whole,
the above results verify that our system has high scalability to
different kinds of unseen gestures.

B. Real-Time Performance

During experiments, we also monitor the latency of gesture
recognition which is defined as the time needed for getting

TABLE I
RECOGNITION LATENCY (SECONDS)

Fig. 26. Performance over 5 weeks.

result after performing a gesture. As aforementioned, a whole
process mainly include the following four steps, namely, prepro-
cessing signals, transmitting spectrograms, forward inference,
and returning back the result. We calculate time consumption
of each step for different gestures and obtain corresponding
results as shown in Table I. On the whole, the latency varies
from 0.345 second to 0.448 second with an average value
of 0.395 second. This shows that our prototype system has
favourable real-time performance and satisfies the requirement
of gesture-based HCI applications. Moreover, we can also notice
that preprocessing and inference cause largest latency due to
STFT and deep feature extraction (ResNet18), respectively.

C. Long-Term Performance

1) Performance Over Five Weeks: Assessing long-term per-
formance provides a more comprehensive understanding of the
system’s stability. We newly recruit 4 participants (3 males, 1
female) to supplement a five-week experiment. Each participant
performs about 15 repetitions of each gesture shown in Fig. 24 in
each week. After that, we consider the following two evaluation
cases. In the first case, we randomly select two samples at each
week as prototypes and other samples as testing instances. Due
to updating gesture templates every week, this case is denoted
by ‘with update’. In the other case, we consistently use two
samples collected in the first week as prototypes and test other
samples in different weeks. This case does not update the gesture
templates and is denoted by ‘without update’. The experimental
results are shown in Fig. 26. We can see that if the prototypes are
updated weekly, the recognition accuracy remains above 95% at
different weeks. In contrast, in the second case, the accuracies
from the second week onwards are 91.0%, 89.2%, 87.6%, and
88.4%, respectively. The results indicate that the variation of
users’ behavior indeed has negative impact on the stability of
PreGesNet. But we can also notice that its performance remains
relatively stable after the third week. A possible approach to
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Fig. 27. Performance after one year.

improve the stability is to automatically update the prototypes
with active learning algorithms, which is left as future work.

2) Performance After One Year: We have conducted a long-
term tracking study as well in which three former participants
(i.e.,P2,P5, andP9) test the system after one year by performing
each gesture shown in Fig. 24 for 25 times. During the gap
period, they have not tried the system any more. We also consider
two different evaluation cases. In the first case, we randomly
choose two samples of each gesture newly collected in this
supplemental experiment as prototypes. We denote this case as
‘at the moment’. In the second case, we make use of two samples
of each gesture collected in the previous experiments one year
ago as prototypes. We denote this case as ‘for the past year’.

The experimental results are shown in Fig. 27. We can see that
the accuracies of the three participants are 94.5%, 96.5%, and
96% in the first case, respectively. However, the corresponding
recognition accuracies drop to only 73%, 81.5%, and 75% in
the other case. There are two main underlying reasons. First,
the participants have almost forgotten how to different gestures
correctly as muscle memory has decayed after such a long time
without practice. For example, P2 and P9 forget whether certain
gestures should be performed with one finger, two fingers side
by side, or the whole palm. Second, the experimental conditions
such as device, noise, and posture have totally changed, which
makes the task more challenging without calibration. The results
suggest that it requires to continually update prototypes and re-
fine users’ gesture features to improve recognition accuracy [48].

D. User Study

In order to gain a better understanding of the potential target
users of PreGesNet, we have conducted a questionnaire survey
both in our campus and subway stations where we deliver
questionnaires to volunteers of different ages from 15 to 60 years
old. According to our survey, volunteers that are willing to use
this are mainly with ages from about 20 to 40 years old. As for
those younger and older ones, they either have limited access to
smart devices due to family or school regulations, or show little
demand or interest in gesture interaction. In the following, we
further invite those volunteers interested in PreGesNet to use
it and then fill out the questionnaires. To simplify the survey,
we select four statements (i.e., S1∼S4) from the Standard Us-
ability Scale (SUS) [49] for overall evaluation, and summarize
additional four statements (i.e., S5∼S8) based on the analysis
of PreGesNet’s advantages for specific system evaluation. The

Fig. 28. Histograms of scores for each statement and mean value. S1–S4
represent the overall evaluation of the system, while S5–S8 pertain to specific
inquiries about the system. Scored from 1 (stands for ‘strongly disagree’) to 5
(5 stands for ‘strongly agree’).

contents and statistical results of the questionnaires are shown
in Fig. 28.

As for the added four statements, S5 examines whether the
model structure allowing customizing gestures is important. S6
examines whether the �1 distance used for optimizing real-time
performance is important. S7 examines specific algorithmic
components such as FiLM layer, task-adaptive feature extractor,
and task generation strategy play significant roles. At last, S8
examines whether users prefer character writing functionality
or custom gesture control functionality. We limit participants
to giving at most two ratings of 5 in statements S5, S6, and
S7, to observe which part users are most concerned about. The
results show that participants generally hold a positive attitude
towards PreGesNet. The only negative feedback is that some
volunteers think that this interface may not be used frequently.
But they also express willingness to recommend PreGesNet to
others. What is more, users generally consider that our system
is easy to use and do not require extensive learning overhand.
Regarding the specific evaluation, volunteers generally think the
ability to customize gestures to be significant, with an average
rating score of 4.3. The average rating scores for S6 and S7 are
4.5 and 4.2, respectively. The volunteers attach great importance
to response latency and think that PreGesNet needs to further
reduce response time. Finally, volunteers hold a neutral attitude
towards functionalities of gesture interaction and character writ-
ing.

VIII. DISCUSSION AND FUTURE WORK

There remain some open issues to deal with in order to
unlock PreGesNet’s potential for wider applications in the field
of HGR/HAR.

A. Generalizability for Other Datasets

In this work, we evaluate our proposed framework with acous-
tic samples of writing digits and letters for model training and
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testing, respectively. In theory, our framework is not limited
to recognizing writing gestures, but capable of extending to
other kinds of human gestures and activities. That is to say, we
envision that PreGesNet can recognize acoustic sensing-based
arbitrary self-defined different gestures. Due to the lack of such
open-source datasets, we shall verify this point in our future
work by adding other kinds of gestures and supplementing the
dataset. In addition, we shall also explore the generalizability of
our framework to HAR/HGR applications based on different
sensing modalities such as WiFi and IMU. Although there
exist some WiFi- and IMU-based open-source datasets, it needs
optimizations in signal preprocessing and feature extractor due
to their different signal forms. We leave this as part of our future
work. In addition, we only use 10 digits as training types. To
enhance scalability, we can include both digits and letters as
training types to improve the generalization capability of the
feature extractor, enabling it to recognize a broader range of
user-definable gestures. We also hope that other researchers will
further explore our dataset for additional insights and advance-
ments.

B. Cross-Condition Optimization

Our evaluation results in Section VI-F show that PreGesNet
encounters different levels of performance degradation in cross-
condition cases. To improve its robustness, a possible approach
is to take advantage of data augmentation techniques to boost the
diversity of datasets. For example, we can add different levels of
fake noises to the received acoustic signals of training datasets
in order to simulate different environments and sensor hardware.
We can also add fluctuations to spectrograms of training samples
to simulate dynamic interference. By generating such samples,
we can improve the system’s generalization ability. What is
more, we can also replace the meta-training dataset with samples
collected in cross-condition settings. We leave this part of work
as our future work as well.

C. Deployment on Mobile Devices

We shall also explore optimization techniques to implement
the whole system on mobile devices. In fact, as for the net-
work design, the recognition latency mainly comes from the
adopted feature extractor. The results displayed in Fig. 10(b)
indicate that reducing the complexity of a feature extractor
can effectively boost real-time running performance, but yet
with slight accuracy decrease. Therefore, a possible way is to
use a shallower feature extractor but provide more shots to
guarantee performance. In addition, in our evaluation, support
shots are randomly selected and fed into the network along with
each query sample, which adds overhead of computing their
representations. In practice, we store representations of support
shots in the system to eliminate this part of overhead.

IX. CONCLUSION

The cross-domain problem becomes a server bottleneck for
gesture recognition systems. It induces laborious overhead of
data collection to re-train a recognition model, make it adapt

to unseen environments, users, and even gestures. Existing so-
lutions have limitations in generalizability to different datasets,
and capability to recognize unseen gestures. In this paper, we
propose PreGesNet, a few-shot gesture recognition framework
based on task-adaptive pretrained networks. PreGesNet stands
out due to three design considerations: the pre-training of feature
extractor on the large-scale acoustic-based gesture dataset that
we have collected and open-sourced; the meta-learning of task-
specific parameter adaptation; the employment of application-
specific classifier and task generation strategy. As a result, it
can take full advantage of existing data, and quickly adapt to
different tasks given only few shots. We validate its effectiveness
and superiority in acoustic-based gesture recognition applica-
tions with extensive experiments. We believe that PreGesNet
can contribute as a data-efficient, fast and flexible solution for
cross-domain HGR applications.
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