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ABSTRACT

Nowadays, smart devices have become increasingly essential in

humans’ life. However, traditional input methods may not work

effectively due to the tiny screen of the devices. Moreover, most

learning-based gesture input schemes only perform well in terms

of certain metrics such as accuracy, without considering other

aspects like response time and user training overhead which are

essential for real-world usage scenarios. Without taking the trade-

off between different metrics into account, existing learning-based

gesture input systems suffer from severe performance degradation

in practice. In this paper, we investigate the trade-off between

evaluation metrics of mobile interaction systems and then report

our attempt towards a more practical digits input system based on

our previous work. We propose an acoustic-based device-free digits

input system named MetaDigit which achieves over 85% accuracy

of real-time digits recognition with even zero-shot from new users.
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1 INTRODUCTION

With the rising popularity of tiny smart devices such as smart-

watches and smart glasses, researchers have proposed plenty of

novel gesture-based interactionmethods to cope with the ‘fat finger’

problem on such devices. According to the signals utilized in these

methods, they can mainly be categorized into speech recognition-

based, radio-frequency (RF) signals-based [9], inertial sensors-based
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(a) With Smartwatch. (b) With Smartphone.

Figure 1: The possible scenarios of AcousDigits.
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Figure 2: The evaluation metrics of a gesture-based HCI sys-

tem

[3] and acoustic signal-based [11]. Among them, speech recogni-

tion possesses the risk of privacy leakage and social discomfort,

especially in the public. RF-based methods require expensive and

bulky signal transceivers, which makes them not appropriate for

interaction on these devices. Inertial sensors-based schemes require

users to hold the device in hand while performing actions [3]. In

contrast, acoustic-based methods stand out by the merits of sensor

pervasiveness, device-free working style and fine-grained resolu-

tion as shown in Fig. 1, due to which researchers have paid much

attention to this emerging sensing technique.

Regardless of the hardware, most of the above systems share

a similar learning-based data processing pipeline, either with ma-

chine learning algorithms or deep learning models, and report

distinctive performance mainly in terms of accuracy. Nevertheless,

we regard that there should be more considerations in evaluating
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Figure 3: The data processing workflow ofMetaDigit

a learning-based mobile interaction system except for recognition

accuracy, especially considering practical usage cases. For example,

the previous work [11] report a high accuracy of recognizing ten

basic digits, but with the requirement of a new user providing about

15 samples for each digit to train the model. When the testing envi-

ronment changes, new users need to collect much more data for

model training, which obviously causes a heavy burden for users

and degrades the user experience. This is the so-called cross-domain

problem. Even though some latest works [5] proposed some latest

deep learning [10] techniques such as transfer learning, few-shot

learning and etc. to deal with this problem, they bring about over-

head in other aspects such as collecting overwhelming training

data, much longer training time, and slower real-time response, due

to the complexity of latest techniques.

To gain more comprehensive knowledge about the evaluation

of a learning-based mobile interaction system, we summarize the

possible metrics needed to be considered as shown in Fig. 2. In the

following, we give a brief introduction to these metrics.

• Accuracy: how accurate the system can recognize gestures?

• User testing overhead: how much effort a user needs to spare

to use the system? This metric is quantified by the number

of data samples that a new user needs to provide for training

a system.

• Response time: how fast can the system give a response? This

metric is quantified by the time that a system needs to give

a response to a gesture.

• Training samples overhead: how much effort needs to be paid

to collecting training data set? It is quantified by the number

of samples that a system designer collects.

• Training time overhead: howmuch time does the model train-

ing process occupy? It is closely related to the complexity of

a model.

• Retraining time: how long does it take to retrain the model?

Retraining is a necessary process for transfer learning meth-

ods and some few-shot learning models.

Ideally, a mobile interaction system should perform well in all the

above metrics, that is, high accuracy, low user testing overhead,

short latency and little training overhead. Unfortunately, it is usu-

ally rather difficult to achieve due to the trade-off between different

metrics. For example, compared with traditional machine learning

techniques, few-shot learning can be used to reduce user testing

overhead, but at the cost of lower accuracy and longer training time.

In a nutshell, existing works usually show favorable performance in

certain aspects without considering the trade-off between different

evaluation metrics, which makes them less practical in real-world

usage cases.

The above observations motivate us to explore the question, i.e.,

can we propose a digit input system, maintaining users device-

free and requiring less training data or even no training data from

new users? In this paper, we present a digits-entry system called

MetaDigit which allows a user to input digits in the air via acoustic

signals. Different from our earlier work [11], we focus on relaxing

some constraints such as model retraining and user testing over-

head to the system’s practicability and user experience, making

it more practical in real-world usage scenarios. As a first step, we

investigate the shortcomings of existing methods in terms of the

metrics listed in Fig. 2 and consider the trade-off between them.

Then we apply some latest techniques such as few-shot learning,

which have been reported to achieve high performance in recent

works, to our task and analyze their performances. After that, we

come up with our strategy which combines training data partitions

with data augmentation, aiming to reduce training overhead of a

new user but maintain comparable even better performance in other

metrics compared to few-shot learning models. The remainder of

this paper is organized as follows. Sec. 2 introduces the system

design ofMetaDigit. Sec. 3 demonstrates the experiments and eval-

uation. In Sec. 4, we discuss the future work towards designing a

practical mobile interaction system. At last, we conclude this work

in Sec. 5.

2 SYSTEM DESIGN

2.1 Sensing Signal

As mentioned above, in order to satisfy two requirements (i.e.,

device-free and privacy protection), we make use of 19 kHz near

ultrasonic signals to avoid annoying disturbing. Besides, since a

speaker and a microphone exist in almost all smart devices, our

system could achieve the former requirement. To capture samples

properly, we set the sampling rate to 44.1 kHz. Fig. 3 shows the

data processing flowchart ofMetaDigit.
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Figure 4: The spectrograms of writing ten basic digits with the device placed vertically (upper) and horizontally (lower)

2.2 Assumptions

• Motion Continuity

Based on the observation of users’ motions, we assume that users

perform a digit continuously, that is, there is no obvious interval

during an input motion. Besides, velocities of finger writing are

relatively consistent in different parts of a digit motion.

• Extracted Digits Completeness

In this paper, we don’t focus on how to segment valid motions in

the signal stream accurately. Thus, we assume that the frequency

shifts caused by the users are properly segmented from the raw au-

dio signals as shown in Fig. 4. Further consideration about removing

these assumptions would be in our future work.

2.3 Preprocessing

In the preprocessing stage, we filter the obtained raw acoustic

signals and then convert them into time-frequency domain by short-

time Fourier transform (STFT), making the data more suitable for

deep learning algorithms.

2.3.1 Signal Filtering. After capturing echoeswith amicrophone,

the raw data are fed into filters to reduce noise and boost SNR. Since

the frequencies of target signals vary around 19 kHz, we only need

to focus on a certain frequency band of received signals, which

not only reduces the interference of out-band components but also

decreases the computation overhead in the following steps. There-

fore, we make use of a band-pass filter to remove unwanted signal

components. To determine filter parameters, we have to quantize

the frequency shifts due to the performed gesture. Considering that

the finger moves at most 2.6 m/s velocity and the velocity of acous-

tic signal in the air is 340 m/s, the consequent maximal frequency

shift is about 292 Hz (rounded to 300 Hz) which is determined by

Doppler effect.

Δ𝑓 = 𝑓𝑜 × |1 −
𝑣𝑠 ± 𝑣𝑡

𝑣𝑠 ∓ 𝑣𝑡
| (1)

where 𝑓𝑜 , 𝑣𝑠 , and 𝑣𝑡 represent the frequency of original emitted

signals, sound speed in the air, and the gesture velocity, respec-

tively. Based on this, we employ a 6-order Butterworth band-pass

filter with a passing band of [18700, 19300] Hz. We then use a 3-

order Butterworth band-stop filter to remove the bands near central

frequency ([18985, 19015] Hz) to further enhance signals.

2.3.2 Signal Transformation. After filtering, we transform the

one-dimension sequence into two-dimension spectrogram by STFT,

in order to reveal the Doppler shifts caused by gestures. In detail,

we perform STFT on each signal sequence with the frame length

of 8192 data points (corresponding to 0.186 s) and the overlapping

length of 7168 data points (corresponding to 0.163 s). These two key

parameters are determined by considering the trade-off between

time and frequency resolution. The combination of them provides

a frequency resolution of 5.38 Hz and a time resolution of 23 ms

to track Doppler shifts. We limit the frequency range between

[18700, 19300] Hz and then save it as an image. The final input

signal data of one user is shown in Fig. 4.

2.4 Few-shot Learning Based Classification

As mentioned above, performance degradation might appear when

we test a new user’s data which are not in the training set. Further,

due to a small amount of testing data, the model tends to overfit

the testing data if we try to transfer or retrain on the new user’s

data.

To mitigate the issue, we are motivated by few-shot learning

insights. A typical dataset of a few-shot learning method is divided

into two major parts. One is training set, the other is testing set.

The training set aims to provide enough prior knowledge, and the

testing set provides 𝑘 shots while we evaluate the model. These

𝑘 shots are called a support set, which literally means it serves as

additional data to support the model to be adaptive to a new user’s

domain. Thus, typical and notable support 𝑘 shots are essential

with these methods.

To confirm how much the few-shot learning methods outper-

form the traditional CNN model, we evaluate the following three

models, including MobileNet [6], RelationNet [8], MetaSense [5].

The MobileNet is a model designed for mobile devices, which are

lack of computing capacity, and speeds up inference on edge de-

vices. RelationNet is an embedding-learning based model, which

uses a CNN module as a feature extractor, and is expected to learn

the relation scores between support samples and query samples.

A higher score of a support class means the test sample is more

similar to that class. MetaSense is a MAML-based algorithm [4],

which is an adaptive model and would retrain on only a few data in-

stances from a target user and then rapidly adapt to this new user’s

condition/domain. The experiment and evaluation are discussed in

Sec. 3.1 and Sec. 3.2.

2.5 Zero Testing Shot Learning Strategy

Instead of using few-shot learning models which require some

new user’s samples or using a deeper MobileNet which inferences
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not really responsible and requires more data to train, we propose

to use a LeNet [7] trained with acoustic signals collected from

one user under our redesigned scenarios. To further illustrate that,

we have done an experiment on a desktop using data from No.10

user in Online Experiments. Done with 10-fold cross-validation

but without data augmentation, the comparison of using a simpler

model and Mobilenet is shown in Table 1, which indicates that

Lenet is more responsible and suitable to the data than Mobilenet

while maintaining acceptable accuracy.

Table 1: The comparison of Mobilenet- and Lenet-based

models

Number of parameters Training Time (s)

Input Size Mobilenet Lenet-based Mobilenet Lenet-based

32*32 3239114 62006 66.92 30.76

56*56 3239114 246326 58.11 40.21

84*84 3239114 636086 111.35 74.65

112*112 3239114 1213006 186.85 66.62

140*140 3239114 1980086 277.82 112.67

168*168 3239114 2934326 347.33 198.28

196*196 3239114 4076726 432.85 174.82

224*224 3239114 5407286 484.48 271.79

Average Accuracy Inference Time (ms)

Input Size Mobilenet Lenet-based Mobilenet Lenet-based

56*56 7.44% 83.88% 22.0 3.6

There are two key insights in data. First, when users get used to

performing the digits in a slow manner, due to the intrinsic limits

of STFT and doppler effect, the doppler shifts of the input image are

too unobvious to be correctly recognized. Second, the subjects are

likely to perform the same trajectory after several records because

of muscle memory. Even though we collect 100 times per digit from

one user, the doppler shifts are similar except the occurrence time

in an input image.

Based on the above observations, we redesign data collection

scenarios to cover more practical situations of unseen users. To be

more specific, we roughly divide the writing area into three scales

(i.e., small, normal, large) and three velocities (i.e., slow, normal,

fast), that is, there are nine scenarios to collect data. Furthermore,

we apply some data augmentation strategy (i.e., time-axis shifts)

to further improve the generalization of the model. In this way,

our model could predict an unseen user’s input in an acceptable

accuracy while only trained on one user’s data. Noticing that the

velocity is the core of Doppler effect, we divide the 10 digits into

30 classes according to three velocity levels. We make a sum of

different speeds to make the final classification as Eq.(2) below.

𝐶 = 𝐴𝑟𝑔𝑚𝑎𝑥 (𝑃 (𝑖)), 𝑤ℎ𝑒𝑟𝑒 𝑃 (𝑖) =

𝑎𝑙𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦∑

𝑗

𝑃 (𝑖, 𝑗),

𝑖 ∈ [0, 9] 𝑎𝑛𝑑 𝑗 ∈ {𝑠𝑙𝑜𝑤, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑓 𝑎𝑠𝑡}

(2)

where 𝐶 is the predicted digit and 𝑃 (𝑖, 𝑗) is the probability of digit

𝑖 with velocity 𝑗 .
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Figure 5: The accuracies over different testing support shots

in leave-one-user-out scenarios
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3 EXPERIMENTS AND EVALUATION

3.1 Experiment Setup

We implement the prototype on an Android platform (Samsung

Galaxy Tab S2) for transmitting and receiving data or even executes

inferences in Online Experiments. To relieve the burden of deploy-

ment, this project [2] enables android apps to run python codes,

which helps to ensure the preprocessing outputs on the desktop

and the mobile phones are identical.

1) Offline Experiments.

Preliminarily, we implement preprocessing and models on a desk-

top in this experiment. We conduct the experiment in an indoor

and quiet environment. More specifically, we recruit 6 volunteers,

including 5 males and 1 female. Our subjects are between 22 and

25 years old and not familiar to perform gestures, so we instruct

them to follow the predefined path of all digits without restricting

the speed and range (depends on users themselves) of their ges-

tures. Every subject performs 100 times per digit. As a result, we
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Table 2: The digits recognition times with vertical placed de-

vice.

without multi-labels strategy

User# 0 1 2 3 4 5 6 7 8 9 Avg

No.2 3 0 2 3 6 10 3 1 8 7 4.3
No.10* 9 8 8 10 5 10 5 6 8 8 7.8

Avg 6 5 2 6.5 6.5 10 3 4 9 8.5 6.1

with multi-labels strategy

User# 0 1 2 3 4 5 6 7 8 9 Avg

No.1 9 6 7 10 8 9 8 10 10 10 8.7
No.2 8 7 8 9 9 10 6 10 9 10 8.6
No.3 9 9 9 10 7 9 7 10 6 9 8.5
No.4 9 10 9 9 9 7 7 10 6 9 8.5
No.5 10 8 6 8 10 7 9 10 6 10 8.4
No.6 8 10 9 7 8 8 8 10 4/8 9 8.1/8.5
No.7 10 7 10 10 10 5/10 9 10 8 10 8.9/9.4
No.8 10 10 7 5/8 10 7 10 10 10 10 8.9/9.2
No.9 9 10 9 8 10 10 5 10 10 8 8.9
No.10* 9 10 6 10 9 10 10 8 10 10 9.2
No.11 5/10 10 10 10 9 10 10 9 9 9 9.1/9.6
No.12 7 8 8 10 10 10 4/9 10 10 9 8.6/9.1

Avg 8.6 8.8 8.2 8.8 9.1 8.5 7.8 9.8 8.2 9.4 8.7
Avg / 9 8.8 8.2 9.1 9.1 8.9 8.2 9.8 8.5 9.4 8.9

∗This user provides the training data of nine scenarios.

obtain a dataset with 6000 digits samples. More importantly, data

are collected from 2 different device orientations of the device

(horizontal from 4 subjects and vertical from 2 subjects), which

means our dataset contains 6 different users’ domains with 2

different orientation domains.

2) Online Experiments.

First, we collect data from a user and then train our model on the

data. Then, we implement preprocessing and models on a real-

world device using TensorFlow [1] in this experiment, getting

metrics directly on prototype with all the users. To be more

specific, as mentioned in Sec. 2.5, we recruit one user (denoted as

No.10) to perform 5 times per digit under nine different scenarios

with vertically and horizontally placed devices separately. As a

result, we obtain a dataset with 900 digits while 450 in vertical

and 450 in horizontal placements respectively, which is smaller

but more general than the dataset of Offline Experiments.

3.2 Evaluation

In this work, we focus on how to reduce the samples from new

users and mitigate performance degradation while transferring to

new users. Therefore, We choose to test three scenarios, including

offline evaluation (part.1 and part.2) and online evaluation (part.3):

1) Leave-One-User-Out Scenario.We train on 5 users’ data and

test on the other user’s data, evaluating the few-shot methods and

MobileNet. We set the training shots number to 5 and 2 in Rela-

tionNet and MetaSense in the training phrase respectively. After

the model is trained, we test the accuracy with different numbers

of testing support shots. Fig. 5 indicates that MobileNet performs

better as the test shot number increases. MetaSense converges

rapidly after several testing support shots while RelationNet is

sensitive to the number of training shots, that is, RelationNet

performs well around 5 testing support shots. Training data are

mixed with the testing support set while training MobileNet. If

MobileNet tunes parameters directly on target support set, it

would achieve better performance just like in previous work [5].

In this scenario, few-shot methods don’t essentially outperform

MobileNet with different testing support shot numbers, especially

when the testing shot number is 1 or 10. The results indicate that

Table 3: The digits recognition times with horizontally

placed device.

without multi-labels strategy
User# 0 1 2 3 4 5 6 7 8 9 Avg
No.2 6 9 8 10 10 10 5 9 10 10 8.7
No.10* 8 5 9 10 9 10 6 10 10 9 8.6
Avg. 7 7 8.5 10 9.5 10 5.5 9.5 10 9.5 8.65

∗This user provides the training data of nine scenarios.

the trained few-shot methods suit for several testing support

samples rather than larger testing support shot numbers, which

motivates us to improve the data quality based on internal physics

properties rather than using sophisticated models which are hard

to deploy.

2) Cross-Orientation Scenarios.We train on one orientation (e.g.,

vertical) and test on the other orientation (e.g., horizontal). Fig. 6

shows that while transferring to a new orientation scenario, few-

shot based algorithms perform better in several testing support

shots, especially for MetaSense. However, the results are not

acceptable while testing under cross-orientation scenarios. The

reasons could be visually shown in Fig. 4. The distributions of

digits between two orientations are quite different, which means

if we train models purely on data of one orientation and test

with the other orientation, the system can’t work properly. Thus,

providing balanced and just enough scenarios data to the model

would be a more promising way to mitigate this challenge, which

would be in our future work.

3) Real Deployment Usage Scenarios.We train the model with

No.12 user and then deploy the model directly to the device, and

then recruit 12 users (including the training user) to perform 10

times per digit with the deployed device. The results are shown

in Table 2. Due to the unfamiliarity of performing digits, we ask

the users whether the recognition accuracy is acceptable (lower

than 6). If so, they perform another 10 times to confirm they

are familiar with digits input (bold data after the slash). What’s

more, we test on the training user with different classification

strategies. Results indicate that our strategy improves accuracy.

The overall accuracy of the users, whose data are not in the

training set, achieves over 85%. Compared with few-shot learning,

our strategy requires zero support shot from new users, which

relieves the data collecting effort from unseen users.

As shown in the upper part of Fig. 4, due to the similar patterns

of frequency shifts, some digits would get misclassified easily.

For example, if we want to input a digit ‘6’, we may get a clas-

sification of digit ‘0’ because of the common parts of frequency

shifts. Similarly, digits ‘2’ and ‘8’ have slight degradations on

classification accuracy.

In general, few-shot learning methods provide some insights to

reduce the user’s training effort and mitigate the cross-orientation

degradation issue, utilizing only a few testing support shots, but

hard to deploy. To be specific, some methods like meta-learning

require "retraining" to some extent. Some methods like few-shot

learning require users to provide some kind of support set. However,

the distribution is quite different to transfer. We propose a strategy

based on the intrinsic observation of data, which leverages zero-shot

of unseen users. The strategy could be applied to the horizontally

placed device scenario, but transferring to other orientation and
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still maintaining the accuracy remains a challenge. The mixed-

orientation scenarios and full-English letters input scenarios would

be in our future work.

4 DISCUSSION AND OPEN ISSUES

4.1 The Placement Orientation

In this work, we have considered the cross-user usage scenarios,

in which various writing patterns of different users are taken into

account. However, besides this, the cross-orientation problem has

also be considered since the placement orientation of a device

may vary during usage. We have done a preliminary experiment

about extending our method to the other orientation. As shown

in Table 3, the accuracies are exceeding 85% with nine scenarios

strategy but without multi-label strategy. However, the challenge

becomes how to maintain the ability to classify original orientation

while transferring to target orientation successfully. As shown in

Fig. 4, different orientations come with different distributions. Thus,

it would be a challenging part of our future work.

4.2 English Letters Input

In this work, we only focus on studying the challenges of pushing

a prototype of digits input system into practice. However, this is

far from the goal of designing a practical texts-input system, since

English texts have not been taken into account yet. To accomplish

this, we plan to extend our method to recognizing basic English

letters first, and then combine with language models to infer words

and sentences. Nevertheless, this is not a straightforward task as

expected. An obvious challenge is that since the number of basic

letters is much more than that of basic digits, the problem of pattern

ambiguity is probably more serious. That is, the Doppler shifts

patterns of basic letters share more similarity, which makes it more

challenging to recognize them with high accuracy. Our following

work is to first apply our strategy to recognize letters and investigate

the possible problems. A good point about English texts recognition

is that we can introduce word-formation rules and language models

to perform error correction to boost recognition accuracy.

5 CONCLUSION

Motivated by designing a practical digit-input system, we have care-

fully explored the shortcomings of existing machine learning-based

schemes in terms of six different metrics including recognition

accuracy, response time, training data and time overhead, model

training time, and user overhead. Although existing methods show

distinctive performance in certain metrics especially accuracy, the

shortcomings in other aspects hinder their deployment in real-

world scenarios. Consequently, we make an attempt towards the

goal by designing MetaDigit which can recognize all digits with

acceptable accuracies in real time, with nearly zero effort from a

new user.
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