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Abstract—Gesture recognition has emerged recently as a promising application in our daily lives. Owing to low cost, prevalent

availability, and structural simplicity, RFID shall become a popular technology for gesture recognition. However, the performance of

existing RFID-based gesture recognition systems is constrained by unfavorable intrusiveness to users, requiring users to attach tags on

their bodies. To overcome this, we propose GRfid, a novel device-free gesture recognition system based on phase information output

by COTS RFID devices. Our work stems from the key insight that the RFID phase information is capable of capturing the spatial

features of various gestures with low-cost commodity hardware. In GRfid, after data are collected by hardware, we process the data by

a sequence of functional blocks, namely data preprocessing, gesture detection, profiles training, and gesture recognition, all of which

are well-designed to achieve high performance in gesture recognition. We have implemented GRfid with a commercial RFID reader and

multiple tags, and conducted extensive experiments in different scenarios to evaluate its performance. The results demonstrate that

GRfid can achieve an average recognition accuracy of 96:5 and 92:8 percent in the identical-position and diverse-positions scenario,

respectively. Moreover, experiment results show that GRfid is robust against environmental interference and tag orientations.

Index Terms—Gesture Recognition, COTS RFID, phase

Ç

1 INTRODUCTION

GESTURE recognition has gained substantial attention
recently for reshaping the Human-Machine Interface

(HMI). It enables convenient interaction between human
and devices via various kinds of body gestures, and has
played an increasingly significant role in our daily lives. For
example, in a smart home, gesture-based HMI provides
device-free access to remote control of various buildings
subsystems such as heating, ventilation, air-conditioning
and lighting. Another typical application of gesture-based
HMI are those interactive devices for mobile gaming, in
which users play games by simply performing gestures in
front of devices and enjoy extrication from control handles.

Existing gesture recognition systems can be categorized
by their supporting technologies. A few prominent exam-
ples include computer vision-based systems such as
Xbox [1], Leap [2], PlayStation Eye [3], PointGrab [4] and
[5], [6], sensor-based systems [7], [8], [9], [10], [11], [12], RF-
based systems [13], [14], [15], etc. However, they need to
prevail over some of the following limitations: 1) intrusive-
ness: the demand for wearing sensors [7], [8], [9], [10], [11],

[12] on the body, which undermines quality of user experi-
ence; 2) low scalability: high dependence on Line of Sight
(LOS) and light conditions for vision-based systems [1], [2],
[3], [4], which prohibits their pervasive use in certain envi-
ronments; 3) high cost: specialized or modified hardware
[13], [14], [15] for wireless signal processing, which is unfa-
vorable for our daily usage.

Fortunately, Radio Frequency IDentification (RFID)
promises an alternative prospect to satisfy our demand
with its structural simplicity and widespread availability in
smart homes, museums and art galleries [16], [17]. Except
for conventional functions, RFID has been witnessed to suc-
ceed in a wide variety of applications such as find-grained
motion tracking [18], [19], [20], indoor localization/naviga-
tion [21], [22], [23], [24], and gesture recognition [25], [26],
[27], [28]. Among these, RFID-based gesture recognition is
relatively a sunrise area which draws increasing attention
from academia and industry. Although several pioneering
work has been conducted in this area, they all either employ
complicated implementation or require users to wear tags.
To avoid these, our objective is to provide an effective, reli-
able and non-intrusive RFID-based gesture recognition sys-
tem using off-the-shelf devices, and meanwhile without
instrumenting environments too much.

In this paper, we propose GRfid, a device-free gesture
recognition system by exploiting phase information of RFID
signals with Commercial Off-The-Shelf (COTS) devices.
We argue that such a gesture recognition system pos-
sesses several advantages over other existing systems:
1) low cost and simplicity,1 since GRfid is based on COTS
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1. Considering the wide use of RFID systems, we make a reasonable
assumption that a reader is equipped in environment as a basic infra-
structure, as done in [20].
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devices and doesn’t require any hardware modifications;
2) non-intrusiveness, since users don’t need to wear tags
on their bodies any more; 3) scalability, since tags have
unique IDs and can be easily attached to devices, we can
conveniently extend the whole system by adding subsys-
tems if needed.

The key idea of GRfid is to utilize the RFID signal phase
changes to recognize different gestures. The inspiring
insights for this lie on the following two key observations.
First, when gestures are performed in front of tags deployed
in an environment, the multipath of each tag’s signal propo-
gation will be changed along with hand movements, which
can be captured by the RFID phase information. Second,
RFID phase information is demonstrated to be more robust
to environmental interference, tagged objects’ properties,
and also tag orientations, compared with Received Signal
Strength Indicator (RSSI) [29], [30]. Since different gestures
go through different spatial paths and cause distinct multi-
path effects, as a result, phase profiles of gestures differ
from one another. Moreover, current commodity RFID
products can accurately output detailed phase information
without any modification. Therefore, we envision phase
information as a potential metric for developing a gesture
recognition system.

However, developing such a system is not so straight-
forward. The first challenge is how to construct suitable
phase-based profiles of diverse gestures. Our extensive
experiments have shown that when users stand at different
locations, phase changes of one tag caused by even the
same gesture will differ so much that it fails to recognize
the gestures correctly. Second, it is non-trivial to recognize
a gesture using prestored profiles. Naive matching algo-
rithms based on simple metrics such as similarity always
fail to work, without considering high position dependency
between phase changes and gestures.

We design our system with COTS hardwares for data
collection and well-designed software for data analysis.
Specifically, we utilize a commercial reader and multiple
tags to collect data. Then, received data packets are sequen-
tially passed onto several functional blocks, namely, data
preprocessing, gesture detection, gesture profiles training
and gesture recognition. Each of them is carefully designed
in order for favorable performance of gesture recognition.
We conduct comprehensive experiments under various set-
tings to evaluate GRfid’s performance of recognizing six
gestures as shown in Fig. 1, namely, ‘PUSH’, ‘PULL’, ‘UP’,
‘DOWN’, ‘LEFT’ and ‘RIGHT’.

Contributions. In summary, our main contributions can be
concluded as follows:

� To the best of our knowledge, this is the first attempt
to design a device-free gesture recognition system
based on RFID phase information, which is available
from COTS devices and proved to be accurate and
robust against external interference such as multi-
path, environmental dynamics and tag orientation.

� Second, we propose two algorithms for gesture pro-
files training and gesture recognition, respectively.
Conjunctive use of these two algorithms can effec-
tively handle diversities in gestures performed at
different positions. As a result, gestures can be accu-
rately recognized even at diverse sites different from
where the profiles are constructed.

� Third, we implement GRfid system with commodity
devices in three diverse indoor scenarios. Experi-
mental results demonstrate that GRfid can effectively
recognize six predefined gestures with average accu-
racy of 96.5 percent in the identical-position scenario
and 92:8 percent in the diverse-positions scenario.
Experiments also demonstrate that GRfid possesses
robustness to both environmental interference and
tag orientations.

The remainders of this paper are organized as follows.
Section 2 presents the related work. Section 3 describes the
overview of the system. Section 4 shows the methodology
of GRfid. In Section 5, we present the system implementa-
tion and performance evaluation. Section 7 conducts a dis-
cussion of this work and future directions. In Section 8, we
conclude this paper.

2 RELATED WORK

This section surveys the state-of-the-art work that deals with
subjects of RF-based gesture recognition and RFID-based
indoor localization, which aremost relevant to our work.

RF-based gesture recognition. Recently, RF-based gesture
recognition systems have attracted intensive research inter-
est. Most of them are based on Wi-Fi or RFID, owing to the
shared merits of non-intrusiveness and pervasiveness. The
examples of Wi-Fi-based gesture recognition mainly include
Wisee [14], WiVi [13], Witrack [15].2 They succeed in distin-
guishing various kinds of gestures at the cost of sophisti-
cated system implementation, and/or specialized and
modified hardware. Another example is proposed in [31],
which leverages Channel State Information (CSI) and signal
phase as metrics to distinguish fine-grained gestures. How-
ever, the system works in a relatively short range (within
80 cm) and is highly position-dependent because of the
utilization of directional antennas. RFID is an alternative
promising technology for gesture recognition. For example,
Allsee [32] leverages RFID backscatter signals to recognize
signals. However, the tag used by Allsee should be connected
to a logical computation unit which is unavailable on most
low-cost commodity tags. Authors in [26] leverage the ges-
tures recognized by RFID readers to identify a pair of RFID
toys, yet requiring much computational processing. RF-
IDraw [19], Tagoram [18] and Tagball [20] can trace a tag’s

Fig. 1. Gestures that can be recognized by GRfid.

2. To be strict, WiTrack utilizes RF signals that partially cover Wi-Fi
frequency band (5G) in a different modulation scheme. We classify it
into Wi-Fi-based systems for the sake of clearness in the recital.
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spatial trajectory at a granularity of centimeters, while they all
require attaching a tag(s) to the tracked object. Consequently,
our work is different from all those above in that we concen-
trate on building up a device-free gesture recognition system
with RFID phase information, which owns the capability of
capturing the diverse features of gestures for distinction.

RFID-based indoor localization. There have been a large
amount of research on RFID-based indoor localization.
LANDMARC [21] is a pioneering positioning system rely-
ing on RFID with RSSI which suffers from severe multipath
problems in indoor environments. PinIt [23] resolves both
multipath and NLOS by employing adaptive dynamic time
warping technique. VIRE [22] introduces the concept of vir-
tual tags to improve precision as well as to reduce deploy-
ment cost. Our design is inspired by the most recent
work [18] that utilizes phase value of the backscattered sig-
nal to build a virtual antenna array for real-time localiza-
tion. Instead of acquiring the absolute location like the
above systems, GRfid aims to detect and identify the more
subtle gestures.

3 AN OVERVIEW OF GRFID SYSTEM

In this section, we first briefly present the background
knowledge of an Ultra-High-Frequency (UHF) RFID system
and its signal propagation, with a special focus on the phase
property, which lays the foundation of our work. Next, we
conduct two sets of preliminary experiments using a COTS
ImpinJ reader and commercial tags to demonstrate key
issues relevant to our system. Finally, we introduce the
architectural framework of the GRfid system, consisting of
four functional blocks: 1) signal processing, 2) gesture detec-
tion, 3) profiles training and 4) gesture recognition.

3.1 Background

A UHF RFID system typically operates on frequency band
between 902 and 928 MHz using backscatter links. During a
whole communication process, a reader transmits a high-
power RF signal to interrogate tags. Then, nearby tags
within range make responses by modulating the transmit-
ted signal from the the reader, using On-Off keying modula-
tion by changing the impedance on their antennas. By doing
so, passive tags can accomplish data transmission purely by
harvesting energy from the backscattered signals. A COTS
RFID system usually consists of commercial UHF readers,
which can interrogate tags within a range from several to a
few dozen meters, depending on the power of reader’s
antennas. Present COTS RFID readers such as Impinj Speed-
way can output rich signal information such as signal
phase, RSSI and Doppler shifts [33], which provide poten-
tial for gesture recognition.

For an RFID communication system, when taking into
account the Multipath Components (MPCs), the receieved
signal can be modeled as:

sðtÞ ¼
XN
i¼1

bipðt� tiÞejfi ; (1)

where pðtÞ is the pulse from the transmitter. bi, ti and fi

stand for the complex magnitude, the Time of Arrival (ToA)
and phase of the ith arriving path, respectively. This signal

propagation model considers the multipath effect, in which
MPCs arrive at the receiever via different propagation
mechanisms (i.e., reflection, transmission or scattering).

We expand Eq. (1) by applying Euler formula so as to
obtain the following:

sðtÞ ¼
XN
i¼1

bipðt� tiÞ cosfi þ j
XN
i¼1

bipðt� tiÞ sinfi: (2)

The phaseF of received signal can therefore be presented by:

FðtÞ ¼ arctan

PN
i¼1 bipðt� tiÞ cosfiPN
i¼1 bipðt� tiÞ sinfi

 !
: (3)

From Eq. (3), it is obvious that the received phase infor-
mation is a complex combination of all MCPs. As for RFID
phase-based localization or motion tracking systems, sup-
pressing the phase shifts caused by multipath needs to be
emphasized in order to make the LOS component the domi-
nant part. However, this requirement is always violated
because of the rich multipath in indoor environments. For-
tunately, in our case, LOS is no longer the necessary condi-
tion. On the contrary, multipath which is intentionally
produced by our gestures are fully utilized for gesture rec-
ognition. As a hand moves in front of tags, the propagation
paths of each tag’s backscatter link will be altered, which
brings in phase changes for each tag’s backscattered signal.
Diverse gestures induce unique profiles of phase changes,
which can be used for gesture recognition.

3.2 Preliminary Experiments

In this part, we conduct two sets of preliminary experiments
using a COTS Impinj reader and 16 commercial tags, to
demonstrate the following two observations before design-
ing our system, covering what information and how many
tags we will utilize for our application.

Observation 1. Phase information is a more favorable met-
ric for gesture recognition, compared with two other
kinds of outputs, namely, RSSI and Doppler shifts.

As previously mentioned, present COTS RFID readers
can output RSSI, phase and Doppler shifts. In order to select
the best metric for gesture recognition, we conduct experi-
ments to examine their characteristics in three different sce-
narios. In the first experiment, all 16 tags are placed in a
relatively static and open space, that is, less multipath and
no dynamic interference. In the second scenario, environ-
mental interference are produced by placing a metallic
board nearby and volunteers’ walking around. In the third
experiment, we place each tag in diverse orientations at the
same position. For each setting, we collect phase, RSSI and
Doppler shifts and calculate their standard deviation,
respectively. The results are shown in Fig. 2, illustrating
that the standard deviation of phase is much smaller than
that of RSSI and Doppler shift in all of the above scenarios.
It demonstrates that phase information is more stable and
robust than RSSI and Doppler shifts, especially under envi-
ronmental interference and diverse orientations. As a result,
we select signal phase as indicator of gesture recognition in
our system.
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Observation 2. In one-tag scheme, signal profiles of ges-
tures are highly positon-dependent, which puts strong
constraints on this scheme and makes it fail to work
practically.

The number of tags used in GRfid system is sure to have
an effect on the final performance of gesture recognition and
amultiple-tags system is expected to outperform a single-tag
one. The insight behind this is similar to a multi-antennas RF
system, in which multiple antennas provide spatial diversity
and is beneficial for gesture recognition [14]. However, our
preliminary experiments are merely conducted to justify the
failure of single-tag scheme due to its high sensitivity to the
positions of performing gestures. Specifically, we perform
the same gesture (‘Down’ as shown in Fig. 1) at three differ-
ent positions, namely in the directly front, left diagonal front
and right diagonal front of a tag as is shown in Fig. 3. Col-
lected phase data are processed to extract corresponding sig-
nal segments. For simplicity, we only show typical signal
segments when ‘Down’ is performed in the directly front
and right diagonal front of a tag respectively in Fig. 4. Simi-
larity calculation via cross-correlation indicates that these
two segments share little similarity. This observation implies
that when designing a gesture recognition system, a single-
tag scheme is not a preferable choice. Inspired by the princi-
ple of a multi-antennas system design, we utilize multiple
tags for the exploration of an accurate and robust gesture rec-
ognition system. Detailed evaluation of choosing the number
of tags is conducted in Section 5.

3.3 System Overview

From the application level perspective, GRfid is a wireless
system that enables a device-free interactive interface for
people to interact with other devices using gestures. Overall
speaking, GRfid consists of hardware acting as gesture sens-
ing and softwares performing data analysis. As for hardware
components, as is shown in Fig. 3, GRfid mainly contains
one PC, multiple tags and an RFID reader with a directional
antenna, all of which are COTS devices. The tags are attached

to objects and spatially separated. The directional antenna is
mounted with a motor and fixed at a certain distance from
tags. The antenna is connected to the reader, which in turn is
connected with the PC. When a person performs gestures in
front of tags, the reader will receive data packets and trans-
mit them to the PC for further analysis.

Fig. 5 demonstrates the schematic digram of GRfid from
a perspective of data flow. Upon receiving data packets, the
reader feeds them into the software part for data analysis,
including four functional blocks, i.e., signal preprocessing,
gesture detection, gesture profiles training and gesture rec-
ognition. The signal preprocessing block fulfills phase
unwrapping, smoothing and normalization in sequence.
Next, GRfid performs automatic gesture detection so as to
extract signal segments corresponding to gestures and
ignore those perturbed signals induced by environmental
noise. In the following, the obtained segments are transfered
into gesture profiles training block, which calibrates seg-
ments, trains gesture profiles and builds gesture files farm.
Finally, an weighted matching algorithm is applied for an
unknown gesture to be recognized, to find a optimal match
within the predefined gestures. In the following section, we
focus on exploring specific methodologies of each part.

4 METHODOLOGY

In this section, we give a detailed demonstration of the
methodology of GRfid, based on the aforementioned four
basic functional blocks: signal preprocessing, gesture
detection, profiles training and gesture recognizing, as
shown in Fig. 5. For each functional block, we give an
introduction to specific techniques we applied and state
the insights behind them.

4.1 Signal Preprocessing

When raw phase data has been collected, the primary task is
to unwrap the phase. This is because the signal phase is a
periodic function, which is also termed as a wrapped phase.
To be specific, in order to differentiate between each packet,
we need to consider all possible times of 2p, known as
phase unwrapping. To achieve accurate phase differentia-
tion, we adopt the commonly used One-Dimensional Phase
Unwrapping method [34].

Fig. 2. Standard deviation of phase, RSSI, and doppler shifts in three different scenarios.

Fig. 3. The hardware components of GRfid. Fig. 4. One-tag scheme may fail to work at different locations.
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After the phase-unwrapping stage, we apply a Savitzky-
Golay filter to remove any random noise and smooth the
data. The Savitzky-Golay filter is defined as a weighted
moving average with weights given as a polynomial of spe-
cific degree, which serves as a powerful tool for smoothing
signals and tends to preserve features of the distribution
such as relative maxima and minima [35], making it more
suitable than other filtering methods for our case.

After filtering, we then proceed to the normalization of
phase data, which rules out unwanted effects resulting
from the variance of absolute magnitude while keeping
track of patterns of the signals. This will ultimately benefit
the gesture recognition at a later stage, as gestures sharing
similar patterns could differ in magnitude when performed
by different people. In our work, we accomplish normaliza-
tion by:

xi
�

xi�
PN

k¼1
xk

N
argmaxxk;k21;...;N ; xk � 0

xi�
PN

k¼1
xk

N
� argminxk;k21;...;N ; xk < 0;

8>>><
>>>:

(4)

where xi
�
, xi and N represent the normalized signal, the

original signal and the total number of signals, respectively.

4.2 Gesture Detection

Once cleaned signal sequences are obtained, we come to the
gesture detection stage at which segments corresponding to
gestures need to be extracted. This task is rather important as
well as challenging considering the following two points.
First, it is required to extract segments corresponding to ges-
tures exactly. Otherwise, noise will be introduced or useful
information shall be lost, both degrading the final perfor-
mance of gesture recognition. Another fundamental chal-
lenge is that patterns of gestures are not so stable, when
taking diversities of gestures, variance for performing even
the same gesture into consideration. For example, signal
sequences of the same gesture present much difference,
whenperformed at different speeds even by the same person.

To respond to the challenges, we apply a segmentation
method called the Modified Varri Method, combined with
Savitzky-Golay filter described above [36]. This method is
based on the combination of a frequency measure and an
amplitude measure of the signal in the relevant windows.
Specifically, when applying this segmentation method to a
signal, there are two windows moving along the signal in

charge of calculating two parameters: 1) amplitude measure
Adiff ; and 2) frequency measure Fdiff that are defined as fol-
lows, respectively:

Adiff ¼
Xl
k¼1

xkj j (5)

Fdiff ¼
Xl
k¼1

xk � xk�1j j; (6)

where l and xk represent the length of the sliding windows
and the kth data point, respectively. Based on Eqs. (5)
and (6), the measure difference function (G) is defined to
determine the boundaries of segments:

Gm ¼ A1 Adiffmþ1 �Adiffm

�� ��þ F1 Fdiffmþ1 � Fdiffm

�� ��; (7)

wherem is the index of sliding window.
Those local maximums in the G function being above a

threshold, which is empirically defined, indicate the bound-
aries of each segment. It should be noted that parameters of
A1, F1 and the window length l should be precisely tuned in
order for better accuracy of segmentation. However, auto-
matic segmentation utilizing the Modified Varri Method
without tuning parameters manually can be accomplished
by applying a Genetic Algorithm, which also achieves better
performance [37]. Since genetic algorithms (GAs) are meta-
heuristic and as such there is no general complexity analysis
that applies to all genetic algorithms at once. As a result, the
term ‘convergence time’ is usually used for evaluating the
complexity of GAs which depends on the number of itera-
tions and population size. In our experiments, the average
convergence time in different settings is about 100 ms. For
more details about the tuning process, please refer to the
corresponding references.

Fig. 6 verifies the feasibility and efficiency of gesture
detection, in which each subgraph corresponds to a prede-
fined gesture experiment. In such an experiment, volunteers
are required to perform gestures in the experimental scenar-
ios shown in Fig. 3 and received phase data (with time-
stamp) are then fed into the signal preprocessing block.
Considering the limited space here, only part of results are
shown in this figure. In each subplot, the blue line repre-
sents preprocessed phase, and signals encompassed by the
red rectangles represent segments extracted. Experimental
results of six gestures indicate that this method can work
well in different scenarios for different gestures.

After gestures can be correctly detected, i.e., signal seg-
ments corresponding to gestures processes can be extracted,
they will be delivered to the next stage, namely, profile
training stage when the system is under training, or gesture
recognizing stage when gestures need to be recognized.

4.3 Gesture Profiles Training

In order to recognize various types of gestures, GRfid
requires the user to perform each predefined gesture as
shown in Fig. 1 for multiple times (assume N), providing
inputs for the gesture profiles training process. It is noted
that since GRfid utilizes M tags, the total number of
obtained signal sequences should be M for each gesture.
Then, the system perform signal preprocessing and gesture

Fig. 5. GRfid system architecture.
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detection described above on raw signal sequences. For the
sake of making each gesture profile reliable and self-consis-
tent, we propose to carry out calibrations on segments set,
that is, we select a subset of representative segments (exem-
plars) to be signal profiles of each gesture, instead of utiliz-
ing all of them.

To do this, we borrow the concept of proximity-based
outlier detection [38], in which an object (a point or vector)
is considered to be an outlier if it is far away from the
remaining objects. Specifically, for the N segments, i.e., N
vectors T1; T2; . . . ; TN of each gesture from each tag to be cal-
ibrated, a proximity matrix AN�N is constructed in which
element Ai;j represents the normalized DTW distance

(NDTW) which is defined in Section 4.4 between any pair of
signal segments Ti and Tj. For any segment Ti, its proximity

score can be denoted by the summation of NDTWDs to
other N � 1 segments. Finally, we pick out the top K seg-
ments with the lowest proximity scores as exemplars. Simi-
larly, for other tags, the exemplars can be selected in the
same way. As a result, for each gesture, we can get a total
number of K �M signal segments and each tag occupies K
segments as gesture profiles. For each gesture, the selected
exemplars are attached with the gesture’s label, i.e., the
index among f1; 2; . . . ; Pg, where P is the total number of
gestures to be recognized. Selected exemplars of all gestures
are stored as a gesture profiles pool.

4.4 Gesture Recognition

The training process provides a set of reference templates
for each gesture. When an unknown gesture is performed
and the corresponding signal sequences are obtained, it is
required to find the most likely gesture match among the
predefined gestures, which is essentially a time series
matching problem. In this section, we first give an brief
introduction to the metric for measuring the similarity
between two time series, i.e., normalized dynamic time
wrapping (DTW) distance denoted by NDTW. Based on
this, we then propose an adaptive weighting algorithm
focusing on finding the optimal match for gestures to be
recognized.

4.4.1 Normalized Dynamic Time Wrapping Distance

Dynamic time wrapping is an efficient technique for mea-
suring the similarity between two time series by finding the
optimal alignment, which allows for elastic shifting in the

time domain and matches sequences that are similar but out
of phase. A well-known application of DTW has been auto-
matic speech recognition, to cope with varied speeds of
speech. Formally, in the context of gesture matching for our
application, given two gesture profiles Pi ¼ Pið1Þ; Pið2Þ; . . . ;
PiðaÞ; . . . ; PiðMÞ and Pj ¼ Pjð1Þ; Pjð2Þ; . . . ; PjðbÞ; . . . ; PjðNÞ,
the cost of mapping any pair of points PiðaÞ and PjðbÞ to
each other is defined as the euclidean distance between
them, that is:

da;b ¼ kPiðaÞ � PjðbÞk; (8)

where a and b are the indexes in the two sequences Pi and
Pj. Based on this, DTW searches a wrapping path W ¼
w1; w2; . . . ; wK , where wk ¼ ða;bÞ, between Pi and Pj that
can minimize the total cost, i.e.,

DTWðPi; PjÞ ¼ minimize
left

XL
k¼1

dwk
; (9)

where D is a matrix of size M �N whose elements
are wi; i ¼ 1; 2; . . . ;M �N , namely, ða1;b1Þ, ða1;b2Þ; . . . ;
ðaM;bNÞ. DTWðPi; PjÞ represents the dynamic time wrap-
ping distance, i.e., the optimal total cost of wrapping
between gesture sequence Pi and Pj, which is a metric of
similarity of any two time series. However, it should be
pointed out that directly using DTW as a similarity metric
will be biased by two factors: differences in amplitudes of
time series and variable lengths of comparing sequences
[39]. The former problem can be effectively handled by
amplitude normalization described in Section 4.1. As for the
latter, longer sequences are obviously expected to be further
apart than short sequences. As a result, we apply another
normalization method as:

NDTWðPi; PjÞ ¼ DTWðPi; PjÞ
M þN

: (10)

Compared with the widely used distance measurement
such as Euclidean distance, Cosine similarity, DTW has
taken into account the stretching or shrinking effect of
data sequences along the time axis, making it a powerful
tool to cope with varying speeds even for the same ges-
ture. It is noted that the problem of finding the optimal
wrapping path can be solved by dynamic programming
in OðnÞ time [40].

Fig. 6. Segmentation accomplished by modified varri method: each subplots show phase change of a single tag caused by the predefined gesture.
The blue curve represents normalized phase and the red rectangles represent the segments corresponding to various gestures.
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4.4.2 Weighted Matching Algorithm

Gesture profiles training process provides signal templates
for each gesture and similarity metric-NDTW for time series
matching has been introduced in Section 4.4.1. Then, when
a user performs gestures intending to interact with other
devices, GRfid processes collected data via preprocessing
and segmentation, and then is required to compare those
segments with the prestored templates and determine the
optimal match, which is essentially an exemplar-based
matching process.

Before formally formulating the matching problem in
GRfid, for the sake of convenience, we concludes the nota-
tions in Table 1, which will be adopted in our later problem
formulation and algorithm design.

Formally, for gesture recognition in GRfid, the problem
formulation can be given as follows:

Problem Formulation. Given profiles of P predefined gestures,
namely, T i

k;j, where k ¼ 1; . . . ; K; i ¼ 1; . . . ; P ; j ¼ 1; . . . ;

M. For an unknown signal segment Sl
j, where j ¼ 1; . . . ;M

and l 2 f1; 2; . . . ; Pg, it is required to identify the exact value
of l, such that the cost for classifying this unknown gesture to
a certain class is minimized.

The key point of this problem is to define the overall cost
of classifying a gesture into a certain class. A straightfor-
ward idea is to minimize the overall NDTWwhen matching
with templates in this gesture class, that is:

l ¼ argmin
l2f1;...;Pg

XK
k¼1

XM
j¼1

NDTWðT l
k;j; S

l
jÞ: (11)

Essentially, the key idea indicated by Eq. (11) is the
same as the Nearest Neighbors algorithm, which is a naive
classification method in data mining. Ideally, it will work
well when we ignore the noise caused by environmental

variance, gesture diversity performed even by the same per-
son, and especially position diversities even for the same
gesture. However, this naive matching algorithm fails when
these considerations are taken into account in practice. The
reasons behind this can be concluded in two aspects: 1) noise
caused by environmental variance presents distinct interfer-
ence on RF links between tags and the reader; 2) different
weights should be assigned to tag-reader links according to
the overall similarity calculation.

Different from the above, we propose a gesture recogni-
tion scheme in which different scores are assigned to each
gesture class, according to the corresponding distance. Spe-
cifically, for a certain gesture to be recognized represented
by Sl, the distance between it and the kth exemplars of
ith gesture will be calculated as:

NDTWðSl;Ti
kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
j¼1

wðjÞ �NDTWðSl
j; T

i
k;jÞ

vuut ; (12)

where wðjÞ is a normalized Variance-based Weighting func-
tion, that is:

wðjÞ ¼ varðNDTWðSl
j; T

i
k;jÞÞðk¼1;2;...;KÞPM

j¼1 varðNDTWðSl
j; T

i
k;jÞÞðk¼1;2;...;KÞ

: (13)

The key insight of this weighting scheme is that a tag pos-
sessing higher variance indicates less certainty in recogniz-
ing a gesture. After this step, for each gesture class, we can
obtain K distance values and thus a total number of K � P
distance values can be obtained when an unknown gesture

Sl is matched with all predefined gestures.
Next, we propose such a weighted voting scheme for mak-

ing the final decision. We select the top k nearest neighbors,
that is, select the top k smallest values among the obtained
K � P values, suppose to be sorted as d1 < d2 < � � � < dk,
with each labeled by a corresponding gesture index li 2
f1; 2; . . . ; Pg. By assigningweight to each of themas follows:

wdi ¼
dk�di
dk�d1

; dk 6¼ d1
1; dk ¼ d1:

�
(14)

Based on this, the final gesture recognition result can be
acquired by the majority weighted voting:

l ¼ argmin
l

X
T

wdi � dðl ¼ liÞ; (15)

where T ¼ fl1; l2; . . . ; lkg and dðl ¼ liÞ represents the Dirac
delta function. This weighted matching algorithm for ges-
ture recognition can be concluded as Algorithm 1.

Another subtle information that can be utilized to assist
gesture recognition is timestamps contained in signal
sequences, which implies moving directions of certain ges-
tures (like ‘Left’, ‘Right’, ‘Up’ and ‘Down’). Since multiple
tags are placed on a plane with certain distance between
them, it is understandable that different tag-reader links
will encounter obvious interference, when certain gestures
are performed. For example, when a ‘Right’ gesture is per-
formed, tags on the left side will be influenced earlier,
compared with the right-side ones, as shown in Fig. 7. By
pinpointing the corresponding timestamps, we can estimate
the direction of a gesture.

TABLE 1
Notations and Corresponding Meaning

Notations Meaning

N the number of repetitions per-
formed for each gesture in profiles
training stage

P the number of gestures to be
recognized by GRfid

M the number of tags used in GRfid
K the number of exemplars selected

for each gesture from each tag
T i
k;j

the kth representative segment for
the ith gesture from the jth tag,
where k ¼ 1; . . . ;K, i ¼ 1; . . . ; P ,
j ¼ 1; . . . ;M

Ti
k ¼ hT i

k;1; T
i
k;2; . . . ; T

i
k;Mi the kth exemplars of the ith

gesture
Sl
j

a signal segment corresponding to
an unknown gesture from the jth
tag, where l 2 f1; 2; . . . ; Pg to be
identified

Sl ¼ hSl
1; S

l
2; . . . ; S

l
Mi tuple of signal segments repre-

senting a gesture
NDTW(Sl

j,T
i
k;j) normalized dynamic time wrap-

ping distance between two
sequences T i

k;j and Sl
j
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Algorithm 1.Weighted Matching Algorithm

Input:
Gesture templates:
fTi

k ¼ hT i
k;1; T

i
k;2; . . . ; T

i
k;Mi; i ¼ 1; . . . ;M; k ¼ 1; . . . ;Kg;

Unkonwn gesture:

Sl ¼ hSl
1; S

l
2; . . . ; S

l
Mi;

Output: Identified gesture index: l 2 f1; . . . ; Pg
1: for each gesture i ¼ 1 to P do
2: for each tag j ¼ 1 toM do
3: Calculate each NDTW ðSl

j; T
i
k;jÞ for k ¼ 1; 2; . . . ;K;

4: end for
5: Calculate wðjÞ by Eq. (13);

6: CalculateNDTW ðSl;Ti
kÞ for k ¼ 1; 2; . . . ;K, by Eq. (12);

7: end for
8: Select top k smallest value among K � P and assign weight

wdi to each of them;

9: Output the value of l by weighted majority voting, by
Eq. (15);

5 SYSTEM IMPLEMENTATION AND EXPERIMENT

SETTINGS

In this section, we first present the prototype implementa-
tion of GRfid, which includes both hardware and software
implementations. Afterwards, we describe several basic
experiment scenarios, through which the performance of
GRfid will be evaluated.

5.1 System Implementation

1) Hardware. As for hardwares in our system, GRfid
mainly includes a commodity RFID reader (Impinj R420)
and off-the-shelf UHF passive tags from two mainstream
manufactures, i.e., Alien and Impinj. The Impinj reader,
equipped with a directional antenna (Laird A9028R30NF
with 8dbi gain), operates at a fixed working frequency
of 924:375 MHz. The antenna is mounted on the cell of a
lab by a rotating motor, such that we can control the
antenna to circularly spin around for direction adjust-
ment. The tags are attached to paper cartons, with a
center distance of 20�30 cm between each other. The dis-
tance between geometric centers of tags and the reader
antenna is about 200 cm.

2) Software. On the other hand, to accomplish the task of
data collection and analysis, we implement software on the
PC tailored for two purposes. one of the purposes is to
extract low-level signal information from the reader. For
this purpose, we integrate Octane SDK, an extension of the
LLRP Toolkit with our software, which supports the collec-
tion and analysis of signal phase, RSSI and Doppler shifts.
The other one is for data analysis as described above in the
form of functional blocks, which are implemented with
Matlab programming.

5.2 Experiment Settings

5.2.1 Identical-Position Scenario

In this setting, gestures are trained and recognized at the same
position. Specifically, volunteers first perform predefined ges-
tures at a certain position. The corresponding data segments
can be obtained by feeding the raw data through functional
blocks sequentially. Later we apply Kf -fold Cross Validation
(Kf = 5 in our experiments) to test the accuracy of gesture rec-
ognition. Three different positions are tested, namely, directly
front (DF, about 75�90 cm from geometric center of tags), left
diagonal front (LDF, about 20 cm at the left of DF) and right
diagonal front (RDF, about 20 cm at the right of DF).

5.2.2 Diverse-Positions Scenario

In this scenario, gestures are trained and recognized at sepa-
rate positions. To be specific, we take data collected at one
position (like DF) as training set and data of another posi-
tion (like LDF) for testing. The recognition accuracy of each
gesture can be obtained from each set of experiments and
the average is defined as the final result. It is noted that the
number of tags when conducting experiments are varied
from 2 to 6 in both identical-position and diverse-positions
scenarios, in order to explore the effect of the number of
tags on the system’s performance.

5.2.3 Environmental Interference

Environmental interference that we consider in this paper
covers static and dynamic multipath interference, which is
be created by placing a highly reflective board nearby and
people’s walking around. Specifically, we place a metallic
board of 1.5 m � 1.0 m with high reflectivity at a distance
(around 30 cm) close to the position where gestures are
performed. In this way, complex static external multipath is
produced. Meanwhile, diverse numbers of volunteers walk
randomly around the system (about 30 cm from the proto-
type) to produce dynamic environmental interference.

5.2.4 Amplitudes of Gestures

An additional point to be noted is about the amplitudes of
gestures. In the context of this paper, the amplitude of a ges-
ture is defined as the distance between start position and
end position. It is noted that the six predefined gestures in
experiments are performed with a amplitude of about
20�30 centimeters for each. For example, when performing
a PULL gesture, the volunteer drags back his/her straight
arm with a distance of 20�30 centimeters. According to our
experiments, we find that such an amplitude can guarantee
GRfid high accuracy of recognizing gestures and doesn’t
cause unnatural feelings to users.

Fig. 7. Phase changes of two tags when performing a ‘Left’ gesture.
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6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of GRfid in var-
ious scenarios, considering the practical application of
GRfid. The main metric we adopt for performance evalua-
tion is confusion matrix. In a confusion matrix, elements in
each row represent the ratios that a performed gesture is
recognized as other gestures (including itself) respectively.
One advantage of this metric is that other evaluation metrics
such as false positive (FP) and false negative (FN) can be
directly derived by definitions.

6.1 Performance Evaluation under Different
System Parameters

6.1.1 Performance with Different Number of Tags

When designing GRfid, the number of tags (M as described
in Table 1) should be carefully considered, as there is a
trade-off between recognition accuracy and computational
overhead. As a result, we vary the number of tags and con-
duct experiments in identical-position and diverse-position
scenarios. Fig. 8b shows GRfid’s average accuracy under
different number of tags in both scenarios. It indicates that
the effect of number of tags is more obvious in diverse-posi-
tions scenario than that in identical-position scenario. This
is reasonable since more tags provide richer spatial diver-
sity which is more significant for GRfid in the diverse-posi-
tions scenario. Another point is that increasing the number
of tags indeed improves the performance, but the gain
becomes continually smaller, especially when M exceeds
four (with an increment rate less than 3 percent). Taking the
aforementioned tradeoff into account, we only evaluate the
performance of GRfid in the case where four tags are uti-
lized in the following experiments.

6.1.2 Performance with Different Number

of Training Samples

Another parameter needs to be considered when designing
GRfid is the number of training samples, specifically, the
size of K as described in Table 1. Similar to the above, we
consider both identical-position and diverse-position sce-
narios, respectively. We scale the size of K from 10 to 50,
and test the average accuracy of gesture recognition in
each case. Fig. 8 shows the results. As we can see, the
overall trends in both scenarios are the same, that is, the
accuracy increases with the size of K in the beginning,
and then converges to a constant after K exceeds a certain
threshold. In both scenarios, when the number of train-
ing samples exceeds 40, the accuracies remain consistent
with an increment rate less than 1 percent. As a result,
taking the tradeoff between accuracy and computational

overhead into consideration, we set K to be 40 in the fol-
lowing evaluation experiments.

6.2 Performance in Identical-Position Scenario

In this session, we investigate the performance of GRfid in
the identical-position scenario. We conduct experiments
and perform training-testing analysis on collected data at
three positions, namely, DF, LDF and RDF as described in
Section 5.2. The accuracy of recognizing a gesture is defined
as the average value at the above three positions. Fig. 9
shows the gesture recognition results in the form of a confu-
sion matrix. As we can see, the average recognition accuracy
of six gestures is up to 96:5 percent, which is slightly higher
than the accuracy of WiSee [14] (94 percent) and comparable
with that of AllSee [32] (97 percent). This indicates that all
predefined gestures can be recognized accurately in the
identical-position scenario. In other words, it also reveals
that gestures present stable and unique patterns which can
be extracted by phase changes.

6.3 Performance in Diverse-Positions Scenario

We also evaluate the performance in the diverse-positions
scenario. Since there are several subsets of experiments, we
average the results to obtain the accuracy of GRfid system.
Fig. 10 shows the confusion matrix of recognizing gestures
over varying sites. It can be clearly shown that the average
accuracy of gesture recognition for predefined gestures
even in such a diverse-positions scenario can remain rela-
tively high, with a mean value of 92:8 percent. In addition,
compared to the identical-position case, there is a slight per-
formance degradation of 3:7 percent. These results indicate
that by applying the four-tag scheme and the adaptive
weighting matching algorithm, dependency on a user’s
position can be effectively alleviated, which ensures the
robustness of this system.

Fig. 8. GRfid’s performance under different system parameters.

Fig. 9. Confusion matrix for the identical-position scenario.

Fig. 10. Confusion matrix for the diverse-positions scenario.
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6.4 Performance in the Presence of Environmental
Interference

6.4.1 Impact of Multipath

We first test the accuracy of our system when the metal-
lic board is placed nearby and a single volunteer is
roaming around. Since performance in both identical-
position and diverse-positions scenarios does not differ
so much when multiple tags are utilized, we only focus
on performance evaluation under different conditions in
the former scenario in the following. Fig. 11 shows the
average accuracy of gesture recognition in this case is
about 93.7 percent, with a slight decrease of 2.8 percent
compared with that in the identical-position scenario
without much environmental interference. The results
indicate that GRfid can retain robustness even under
severe environmental interference.

6.4.2 Impact of Multiple Entities

To further explore the robustness of this system against
dynamic interference, we conduct a set of experiments
with two to four volunteers walking around in each
experiment, respectively. Fig. 12 shows the performance
varying with the number of roaming entities. It is obvi-
ous that within three persons walking around while per-
forming gestures, the recognition accuracy is acceptable
and when this number further increases, the accuracy
drops a lot. Through this experiment, we can conclude
that the distance between walking persons and the pro-
totype significantly influences the overall system perfor-
mance. In particular, when the distance is larger than a
certain threshold, interference caused by entities’ move-
ment can be greatly mitigated.

6.5 Exploration of GRfid Tag’s Orientation

Thus far, GRfid has shown its success in gesture recognition
in various scenarios, even in the presence of environmental
interference. Yet it remains unclear that whether GRfid will
retain its benefits when the tags are placed with varying ori-
entations. To evaluate the effect of tag orientations on the
performance of GRfid, we rotate tags around their own cen-
ters by 30 degree each time and repeat experiments as done
in the identical-position scenario. We compute the average
recognition accuracy of each gesture at orientations between
0 to 360 degree. Fig. 13 presents the results of this set of
experiments. The accuracy of recognizing gestures in such a
setting is relatively high, with a minimum value of 92:0 per-
cent and an average of 93:1 percent. Compared with the
accuracy in identical-position scenario (an average of 96:5
percent), the performance slightly degrades, which indicates
tag orientation has slight effect on the performance of GRfid.

6.6 An Extension of GRfid-the Double-Antenna
Case

In this set of experiments, we evaluate the performance of a
kind of extension of GRfid, with a pair of Laird antennas
connected to the same reader. Two antennas are placed at
the top-left and top-right corner of tags respectively, as
shown in Fig. 3. Intuitively, more antennas are beneficial to
reduce position dependency when recognizing gestures in
the diverse-positions scenario. As a result, we solely evaluate
the performance of GRfid with multiple antennas in diverse-
position experiment scenario. For the purposes of compari-
son, we show the results of double-antenna case (repre-
sented by dark red bars) together with results of single-
antenna case (represented by blue bars) in Fig. 14. The results

Fig. 11. Confusion matrix for multipath scenario.

Fig. 12. Impact of multiple entities.

Fig. 13. Exploration of tags’ orientations.

Fig. 14. Performance with multiple antennas.

390 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 2, FEBRUARY 2017



show that with two antennas, GRfid can achieve an average
recognition accuracy of 95.9 percent, which achieves a 3.1
percent performance gain compared with the 92.8 percent
accuracy in single-antenna case. Similar to the utilization of
multiple tags, the rational of performance gain is that adding
an antenna can enhance the capability of capturing hand
movements, thus can improve gesture recognition accuracy.

7 DISCUSSION AND FUTURE WORK

In this section, we discuss several final thoughts on the
future of “GRfid”.

First, in this paper, we just take six basic representatives
of them to verify the performance of our system, namely,
‘Push’, ‘Pull’, ‘Up’, ‘Down’, ‘Left’ and ‘Right’. Fortunately,
GRfid can be easily extended to recognize C2

6 synthetic ges-
tures, which are the arbitrary combinations of six gestures
such as ‘Pull-Push’, ‘Up-Left’ and etc. To be specific, when a
composite gesture is conducted, the corresponding signal
sequence can be segmented to multiple su-segments, each
of which corresponds to a basic gesture included. However,
it should be emphasized that gestures that can be recog-
nized by GRfid are not limited to the above ones and their
combinations. Actually, more gestures with the same level
of granularity can also be recognized by this system. We
take a ‘Knock’ (that is, knocking a door or a wall) for exam-
ple. The profile constructed for this gesture is shown in
Fig. 15, which is different from profiles of the six gestures
even performed in the same position. As a result, we claim
that by various combinations of basic gestures, GRfid can
perform a large number of gesture-based commands.

Second, we have to admit that gestures recognized by
GRfid are at a relatively coarse granularity until now, com-
pared with the dramatically fine-grained gestures tracing in
RF-IDraw [19], which utilizes two readers and eight anten-
nas and requires users to attach a tag on the finger. How-
ever, since phase provides rich knowledge about location,
we envision it potentially to be an alternative choice for
device-free gesture tracing with a fine-grained granularity

by more complex system designs such as deploying multi-
ple antennas or readers. We leave this more interesting and
challenging topic as our future work.

8 CONCLUSION

In this paper, we demonstrate that phase information output
by a COTS RFID reader unfolds new possibilities for device-
free gesture recognition, without hardwaremodifications and
instrumenting the environment much. Based on the observa-
tion that gesture is closely correlated with RFID signal phase,
we propose a device-free gesture recognition system GRfid.
We describe the key motivation, objectives, and design meth-
odologies of GRfid. Extensive experiments have been con-
ducted in various settings to evaluate its performance from
different aspects, mainly covering the accuracy and robust-
ness. Our experimental results show that GRfid can recognize
gestures accurately in both identical-position and diverse-
positions scenarios, with an average accuracy of 96:5 and 92:8
percent respectively. Moreover, we demonstrate that its over-
all performance can retain high even with environmental
interference, and for diverse tag’s orientations.
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