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Abstract—The rising prevalence of mood disorders, including
depression and anxiety, underscores the critical state of physical
and mental health issues in contemporary society. Automatic
emotion recognition technology emerges as a potential tool
for monitoring mental health disorders, and offering valuable
guidance through human-computer interfaces. However, existing
technologies grapple with limitations, such as emotional con-
cealment, potential privacy leakage, and specific device location
restrictions. To overcome these limitations, we propose a mobile
wearable emotion recognition system called EmoTracer incor-
porating ubiquitous multi-source sensors to measure physiology
signals, and address challenges such as the intricate signal-
emotion relationship, sparse data processing, and notable dis-
parities among different subjects. We implement a real-time
prototype and carry out comprehensive experiments to evaluate
its performance. For six basic emotions, the results show that
EmoTracer can achieve 95.6% accuracy in intra-subject emotion
classification and 80.7% accuracy with 5 shots in cross-subject
emotion classification.

Index Terms—emotion recognition, wearable device, physiolog-
ical signal, cross-subject

I. INTRODUCTION

During the COVID-19 pandemic, mental health became a

focal of research, with depression ranked as the 10th most

studied topic [1]. According to the data reported by the World

Health Organization (WHO) in 2021 [2], an alarming 280

million people worldwide are grappling with depressive disor-

ders, impacting approximately 3.8% of the global population.

Emotions like joy and happiness enhance well-being, while

sadness, pain, and anxiety can negatively impact mental and

physical health, even leading to harmful behaviors. To sum

up, accurate and timely assessment of emotions is paramount.

In recent years, the field of affective computing has gained

substantial attention. Researchers [3]–[5] commonly employ

image and audio processing techniques to analyze facial

expressions, body language, or acoustic signals, aiming to

discern emotional states intuitively. However, these methods

are challenged by privacy leakage results from camera or

microphone recordings, and susceptibility to external environ-

mental interference. Additionally, the analysis of physiolog-

ical signals has been shown to closely relate to emotional

changes [6]. These physiological signals are spontaneous

reactions regulated by the nervous system that are difficult

for individuals to deliberately manipulate, thus enhancing the

accuracy and objectivity of emotion recognition. Studies [7]–

[9] have utilized physiological signals like electroencephalog-

raphy (EEG), electrocardiography (ECG), electromyography

(EMG), and blood volume pulse (BVP). Despite the high

accuracy achieved by these methodologies, they are restricted

by substantial costs and operational complexity because of the

utilization of professional devices. Other physiological signals

like respiratory (RSP), skin temperature (SKT) , and galvanic

skin response (GSR) can be captured by ubiquitous sensors in

a movable manner [10], but their emotion recognition accuracy

is often hindered by the lower sampling rates and resolution

compared to professional devices.

Based on the above issues, we propose a wearable emotion

recognition system called EmoTracer. For emotion assess-

ment, we leverage physiological signals as the foundations.

This is because emotional changes can cause variations in

adrenaline levels, adjustments in blood circulation supply and

changes in respiratory rate, altering physiological signals like

heart rate, blood oxygen, galvanic skin and temperature [11]–

[14]. Importantly, they can be continuously and conveniently

tracked by ubiquitous sensors, providing the possibility of

real-time and convenient emotion intervention. For privacy

protection and ethical consideration, our system handles sensi-

tive information, including emotional states and physiological

responses, with the utmost care. We guarantee that all users

grant their explicit informed consent before data collection,

and designs ID settings like U1 instead of collecting personal

information such as names, ages, or occupations. Any user-

provided information is treated with data masking and is not

used for commercial purposes. Nevertheless, addressing emo-

tion recognition through physiological signals is not straight-

forward. We need to tackle the following challenges. First, to

capture subtle underlying interactions between physiological

signals and emotions, robust data preprocessing and neural

network design are essential. Second, sensitivity to conditions

and individual difference makes physiological signal samples

scarce, risking overfitting and hindering neural network gen-

eralization. Third, the diversity emotional and physiological
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responses among individual complicates cross-subject emotion

categorization.

In response to the aforementioned challenges, we draw

from Long Shot-Term Memory (LSTM), proposing LSTM

Multi-source Fusion Network (LMFN) that design proprietary

feature extractors for physiological signals and then splices

them along the feature dimension into the fusion feature

extractor. This approach is targeted at minimizing redundant

information across different sources. Moreover, we combine

a few-shot learning for cross-subject emotion recognition

model, to address challenges such as sparse sample size and

low accuracy in cross-subject emotion recognition tasks. The

results show that our system optimize the performance of intra-

subject and cross-subject classification for six emotions.

In summary, the contributions of our research are summa-

rized as follows:

• We design an intelligent wristband embedded with mul-

tiple ubiquitous sensors and a mobile application to track

emotional states, offering a portable and unobtrusive tool

that seamlessly integrated into daily life.

• We propose LMFN to uncover the intricate correlations

between diverse sources, achieving an accuracy of 95.6%

in intra-subject emotion recognition.

• We combine a few-shot learning on cross-subject emotion

recognition, allowing new users to provide sparse shots

without retraining the model. The evaluation results indi-

cate that its accuracies of 80.7% with 5 shots per class,

meeting the real-life requirement of emotion recognition.

II. RELATED WORK

A. Emotion recognition based on external traits

Visual technology is widely studied in emotion recognition,

where Convolutional Neural Networks (CNNs) stand out as

pivotal for image processing. For instance, Mehendale et al.

[15] introduce a dual-component CNN to isolate facial features

from their background and distills expression vectors. And

Cui et al. [16] employs CNN classifier to deduce emotional

states based on human posture and form. These CNNs excel at

learning spatial details but struggle with dynamic changes in

image, leading us to consider the temporal aspect, crucial for

fully expressing human emotions. Subsequently, researchers

turn to the acquisition of vocal signals. The Recurrent Neural

Networks (RNNs) and their variants, such as LSTM and Gated

Recurrent Units (GRUs), are skilled in analyzing sequential

signals. Wang et al. [17] proposed a dual-sequence LSTM to

capture temporal and frame-level emotional cues. However,

this model might be less effective in data-scarce scenarios,

potentially reducing prediction accuracy. Furthermore, it raises

privacy concerns due to reliance on camera or audio data, and

can be challenged by individuals concealing their true emotion.

B. Emotion recognition based on internal indicators

The generation and fluctuation of internal indicators like

physiological signals can not be deliberately controlled by

individuals, gaining traction in affective computing. Technol-

ogy of multi-modal data fusion have marked a significant

trend. Physiological signals, uncontrollable by individuals, are

, where multi-modal data fusion have marked a significant

trend. The study [18] apply stacked autoencoders to combine

EEG, pulse, and blood oxygen signals, achieving an increasing

accuracy from 53.8% to 73.5% in emotion recognition. The

1D-CNN-SVM emotion recognition model [19], exemplifies

the power of multi-level fusion, realizing a 7% enhancement

in accuracy through the integration of EEG with peripheral

physiology signals. Advanced method [20], based on CNN and

LSTM, have achieved high accuracies with individual signals,

but decision-level fusion through majority voting can push

these to an impressive 99.0%. Despite these advantages, chal-

lenges remain, including the potential for lost information in

the final feature extraction layer and the influence of individual

physiological signal variability. Additionally, the significant

variability in physiological signals across individuals presents

a challenge for model tuning.

III. SYSTEM DESIGN

A. Overview

Considering the limited API interfaces of commercial wear-

able devices, which restrict deep analysis and personalized

data processing, we design EmoTracer , a wearable emotion

recognition system. This system integrates multiple ubiquitous

sensors into wearable device, aiming to capture physiological

signals like heart rate, blood oxygen level, galvanic skin and

temperature. When monitoring physical states, EmoTracer
explores the correlation between physiological signals and

emotion, thereby achieving emotion recognition. This process

can be further divided into four parts: data collection, data

preprocessing, multi-source fusion, and emotion recognition

models. In the emotion recognition task, EmoTracer can

effectively identify six types of emotions: neutral, sad, happy,

angry, disgusted, fear, to deliver meaningful emotion recogni-

tion feedback to users.

B. Data Preprocessing

Upon receiving continuous data at the software point, we

identify emotion-inducing segments using timestamps and

segment signals into 1-second windows. To effectively extract

features from the data, we utilize different preprocessing meth-

ods on the different characteristics of physiological signal.

1) Heart Rate Signal: Over extended periods, data collec-

tion might experience trend drifts due to factors such as system

bias or varying ambient light intensity. Such drifts might

appear as a slow-changing trend in the photoplethysmogram

signal, inconsistent with normal heart rate characteristics.

To mitigate this, Detrended Fluctuation Analysis (DFA) is

employed to filter out the trend component in the raw PPG

signal, using a time window length of 20. Further signal

processing utilizes a Butterworth bandpass filter to remove

high-frequency noise and motion artifacts, with a pass-band

cutoff frequency of 4 Hz and a stop-band cutoff frequency of

0.05 Hz. The signal is then normalized for consistency.
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Fig. 1. LMFN network structure.

2) Blood Oxygen Signal: To minimize the data drift caused

by skin surface factors such as stains and sweat, we apply a

short-time Fourier transform on the collected red light signal

and infrared light signal. Based on the signal distribution

characteristics, we utilize a Butterworth bandpass filter to

truncate frequencies below 0.5 Hz, with a pass-band cutoff

frequency of 4 Hz and a stop-band cutoff frequency of 0.1 Hz.

To eliminate outliers, soft normalization is applied using the

5th and 95th percentiles.

3) Galvanic Skin Signal: We regard the average galvanic

skin signal under neutral emotional state as a reference and

normalize the data from other emotional states accordingly,

to mitigate skin differences among users. Considering that

the primary frequency band of galvanic skin signals is below

0.2 Hz, we utilize a second-order Butterworth filter with a

cutoff frequency of 0.3 Hz to minimize artifact interference.

4) Temperature Signal: To mitigate interference from ex-

ternal temperature on temperature signals, we employ a three-

point moving average algorithm with weights (0.8, 0.1, 0.1).

Furthermore, to achieve noise reduction and smoothing, we

utilize a Savitzky-Golay filter with a window size of 99 and

a polynomial fitting order of 1, which preserve the shape of

data across varying time series effectively.

C. Multi-source Fusion

Existing multi-source fusion techniques often prioritize the

fusion of the highest-level source information, leading to the

neglect of the correlation between higher and lower layers. In

order to better achieve the fusion of multi-source physiological

signals, we design the LMFN. The LMFN consists of a single-

source extraction layer and a multi-source fusion layer, whose

structure is shown in Fig. 1.
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Fig. 2. Prototype network design.

1) single-source extraction layer: We take the feature input

X of each mode at time t as the combination of C at

previous time t − 1 and X at current time t for the four

basic physiological signals. In this way, the information will

be gradually propagated and updated through time steps. The

feature input X at time t is calculated by the Eq(1).

hk
t = xk

t + ckt−1 (1)

where k = h, b, g, t, represents the heart rate, blood oxy-

gen, galvanic skin and temperature signal, respectively. xk
t

represents the feature input of physiological signal at time t.
ckt−1 represents the memory unit information at time t − 1.

Ultimately, we get the output value hk
t , which integrates both

the previous historical information and the current information.

2) multi-source fusion layer: In the multi-source fusion

layer, we not only fuse the single-source signals, but also

further integrate the amalgamation of multi-source signals.

It is mainly because that the fusion of single-source signals

may provide a partial information of the data, accompanied

by inherent limitations such as missing information, noise

interference, or data biases. By integrating information from

multi-source signals, we can compensate for the shortcomings

of each source and overcome the incompleteness of data, re-

sulting in improved fusion quality and accuracy. Consequently,

the output of multi-source fusion layer fuses both single-source

and multi-source signals, which is calculated by Eq(2).

Ot =
∑

kεN

hk
t (2)

where N = h, b, g, t, (h, b, g, t), Ot is the fusion of single-

source and multi-source signals. Furthermore, we make the Ot

as input to the gated memory network.

D. Intra-subject Emotion Recognition

In a straightforward manner, we employ the output of the

LMFN network to perform intra-subject emotion recognition.

Through feature extraction within and between sources, we

observe that the final recognition results are correlated with

the outputs of each signal and the gating memory network.

We can calculate the final recognition results by Eq(3).

P = D(hh
t + ht

t + hg
t + ho

t + ut) (3)

By passing through neural network D(), we obtain probabil-

ity values P for 6 types of emotion, and the emotion category
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result is determined based on the magnitude of the probability

values. In addition, we apply cross-entropy as the loss function

to continuously optimize the model.

E. Cross-subject Emotion Recognition

According to the temporal features of physiological signals,

we design a few-shot cross-subject emotion recognition model

inspired by the prototype network. This model not only

achieves fast and accurate classification of few shots but also

addresses the issues of over-fitting and limited information

exchange between distant features that are common in the

prototype network. The network design is shown in Fig. 2.

1) Task Generation: To create varied and authentic personal

scenarios based on a given source dataset, we draw on the task

generation strategy of MetaSense [21] to decompose the batch

data into multiple sub-tasks, which are divided into support set

and query set during each training process. The support set

forms the prototypes, while the query set refines the position

of the prototypes. In each sub-task, following the setting of

n-way k-shot, N classes are selected from the source domain

data, and k shots are chosen as the support set S from each

selected class. For the support set S, a total of N * k shots

are selected. From the remaining shots of each class in the N
classes, b shots are chosen as the query set Q, resulting in a

total of N * b shots. In this research, the shots come from

a single user. Random sampling will be employed within the

shots of user, ensuring an equal number of shots across all

categories for this task. Specially, we generate 300 tasks for

each user data, and select 2 tasks from each batch. For six basic

emotions, the support set is constructed by the 6-way k-shot

setting, with k shots selected for each class. The remaining

shots for each class are chosen as the query set.

2) Embedded network design: In our design, the embed-

ding network is optimized by the LMFN network struc-

ture, which can extract comprehensive and valuable infor-

mation efficiently. Moreover, in order to prevent zigzagging

gradient directions during back-propagation, we employ the

LeakyReLU activation function as embedded network kernel.

After processing each channel’s physiological signal for multi-

source fusion based on LSTM, the data is then fed into

two merged convolution layers (Merged Conv1D1, Merged

Conv1D2) to further explore the inter-modality correlations.

Additionally, to mitigate over-fitting, the model is augmented

with a global average pooling layer and a Dropout layer, facili-

tating propagation of effective information between modalities

in the subsequent module for feature extraction. Furthermore,

the Batch normalization is incorporated after each convolution

layer to stabilize the network training and markedly reduce the

computational cost of the model.

3) Training process: We employ the Euclidean distance as

a metric to calculate the distance between query samples and

prototypes of different classes, enabling us to determine the

class to which a sample belongs. To address the influence of

outliers on the class mean in few-shot data, we incorporate

the Inverse Multiquadric (IMQ) function into the distance

calculation, assigning weights to each shot point accordingly.
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Fig. 3. The hardware and software of EmoTracer.

There is a severe problem in which minimal vectors possess

non-zero gradients during the parameter update process during

each training episode for few-shot tasks. Therefore, LazyAdam

optimizer is adopted in this research, which permits a more

tempered gradient update processing for sparse variables,

alleviating the severe impact of over-fitting in few-shot models

for physiological signals.

IV. IMPLEMENTATION AND EXPERIMENT

A. Implementation

For hardware configuration, We design a wristband device

for detecting physiological signals. The embedded sensors

consist of photoplethysmography (PPG), blood oxygen satura-

tion, galvanic skin response and temperature sensors, to collect

relevant signals based on different sampling rates. We chose

the STM32 as our microprocessor, specifically the F103C8T6

Cortex-M3 32-bit MCU from STMicroelectronics. This model

supports a maximum clock frequency of 72MHz and provides

a voltage of 3.3V to the microcontroller and other sensors.

Additionally, we choose the RF-Star EFR32BG22A1 as Blue-

tooth module based on BLE 5.0, to transmit the packaged

data frames to the software point for data processing. For the

power supply chip, the selected option is the SY8089 DC-

DC buck converter chip, which is characterized by ultra-low

electrostatic current. It also incorporates a TP4054 charging

circuit based on a Type-C interface and 500mA current supply,

enabling power supply functionality.

For software configuration, our EmoTracer combines soft-

ware modules for managing physiological signals, tracking

mood records, performing emotion recognition, and storing

personal information. It is integrated into a mobile app

tested on the Huawei Mate30Pro smartphone, powered by the

HUAWEI KIRIN990 processor, 4680 mAh battery, and 8 GB

of RAM. Refer to Fig. 3 for a visual representation of the

hardware and software system.

V. EVALUATION

A. Experiment

We recruit 30 participants aged between 17 and 56 years

from our campus to collect real emotional shots by watching

video clips. Before the experiment, all participants agree to

sign the Institutional Review Board (IRB) agreement [22],

and are given a 1-minute buffer to regulate their emotions

to ensure reaching a calm state. Aiming to acquire diverse
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emotional inductions, we select audiovisual stimuli from mul-

tiple databases, including DEAP [23], FilmStim [24], IADS

[25], SEED [26], and EMDB [27], complemented by internet-

sourced clips reflecting a range of emotions such as entertain-

ment, horror, and anger. There are 173 audiovisual materials

utilized across the experiments, which include 4, 54, 30, 15,

and 50 clips respectively from aforementioned databases and

20 online video clips as experimental stimuli materials. The

experiment takes place in a typical office environment with

noise levels ranging from 40 to 55 dB and lasts for 2 to

3 hours for each participants. Participants are equipped with

our designed wristband device on their right hands, and sit

quietly to view the audiovisual stimuli. Simultaneously, they

activate the device and press the ’Start Test’ button on main

screen of app. As each clip concluded, participants cease the

test, following which they rate their emotional experiences

using the SAM scale from 1 to 9 for pleasure, arousal, and

dominance and evaluate the familiarity and likability on a scale

from 1 to 5 in their self-reports. Finally, we collect 11 GB of

physiological data.

It should be mentioned that we encounter challenges with

device instability that results in noisy data during the initial

experiment. We exclude the affected participants and make

necessary corrections to our hardware system. And some par-

ticipants do not strictly adhere to the experimental procedure,

such as engaging in large movement during the testing process

or not watching the videos attentively, which could interfere

with the collection of physiological signals. To ensure the

validity of our experimental results, we conduct a further

selection of participants, ultimately choosing 18 individuals

for the emotion recognition experiment Therefore, there are

13,918 available shots collected throughout the entire study.

B. Comparison of Intra-subject Emotion Classification

To access the effectiveness of the LMFN network, we

evaluate its performance in intra-subject emotion classification

tasks alongside a LSTM network. Specifically, we collect

emotion states and physiological data from single participant

who is required to watch specific types of videos. Furthermore,

we analyze between the collected data and the predicted results

from the networks by calculating precision, recall, F1 score

and accuracy, to evaluate their performance in identifying,

classifying, and predicting emotions of the participants. Table I

presents a comparison of the individual subject emotion recog-

nition performance between the LMFN and LSTM network.

The results show that the LMFN network significantly

outperforms the single LSTM network across all evaluation

metrics, which validates the reliability of the intra-subject

emotion recognition and the effectiveness of multi-source

feature extraction based on LMFN network.

C. Comparison of Cross-Subject Emotion Classification

For comparison of cross-subject emotion classification, we

conduct parallel experiments between the LSTM-based multi-

source Fusion Cross-subject Emotion Recognition (LMFN-

Cross) and the Prototype Network-based Cross-Subject Emo-

TABLE I
THE RESULT OF INTRA-SUBJECT EMOTION RECOGNITION

Performance

method
LSTM LMFN

Precision 67.3% 88.8%

Recall 66.6% 88.2%

F1-Score 66.9% 88.5%

Accuracy 68.3% 95.6%

TABLE II
THE RESULT OF CROSS-SUBJECT EMOTION RECOGNITION.

Performance

method
DANN-Cross MN-Cross PN-Cross

Precision 66.2% 68.5% 74.3%

Recall 65.7% 67.6% 70.6%

F1-Score 63.2% 68.6% 71.8%

Accuracy 65.6% 69.1% 72.1%

tion Recognition (PN-Cross). Utilizing data from 18 subjects,

a leave-one-subject-out cross-validation was performed for

testing, to validate broad effectiveness of emotion recognition

model. Specifically, 1 subject is treated as a new unseen data.

This subject intentionally is excluded from both the training

and validation process of the model, and only provide few

shots during the testing. In addition, the remaining 17 subjects

are used to train and validate the model. In PN-Cross, The n-

way k-shot task in PN-Cross is set to 6-way 1-shot, with six

emotion categories and 1 shot each category provided. Fig. 4

indicates that PN-Cross consistently surpasses LMFN-Cross

across all participants in cross-subject emotion recognition. On

average, LMFN-Cross achieves an accuracy of 39.7%, while

PN-Cross achieves an average accuracy of 72.1%, resulting in

an average improvement of 33.4%. These findings demonstrate

that adopting a few-shot learning and utilizing the prototype

network can effectively enhance the performance of cross-

subject emotion recognition tasks.

In addition, this research also encompasses a comparison of

diverse cross-domain models with our designed model. Within

this comparison, DANN-Cross refers to the classic model

on physiological signals for solving cross-subject problems

in emotion recognition tasks, and MN-Cross represents the

matching network algorithm in metric learning for few-shot

learning. From the Table II, it can be demonstrated that the

PN-Cross model achieves the best performance in emotion

recognition compared to the other models.

D. Comparison of Few-shot Support Set

We evaluate the impact of the number of shots per class

within the support set on cross-subject emotion recognition

performance utilizing a prototype network. For each of the

six emotions, we conduct experiments with 1, 3, 5, and 10

shots as the support set. Each shot corresponds to a fixed

time segment, which is divided based on the user-provided

physiological signal detection time. The emotion recognition

accuracy of all participants for different shot numbers is shown

in Fig. 5. As the number of shots in the support set increases,

the performance of emotion recognition gradually stabilizes.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on February 17,2025 at 15:20:23 UTC from IEEE Xplore.  Restrictions apply. 



2685

Fig. 4. Accuracies of different classification methods. Fig. 5. Accuracies of different numbers of shots.
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(b) Cross-subject confusion.

Fig. 9. The confusion metrics of six emotion types in intra-subject emotion
recognition(a) and cross-subject emotion recognition(b) respectively.

Considering the limitation of the few-shot physiological sig-

nals in our task and the essential goal of stable recognition

performance for new users, we choose to utilize k = 5 shots

for cross-subject emotion recognition in our research.

E. Comparison of Embedded Network Modules

In the design of a few-shot cross-subject emotion recogni-

tion system, an appropriate selection of embedded network has

a significant impact on the recognition performance. Hence,

an evaluative experiment is conducted to compare various

sequential models, namely LSTM, RNN, GRU, BiLSTM,

and ResNet18. For this experiment, we employ the leave-

one-subject-out method to conduct the testing. The n-way k-

shot task will be set as a 6-way 5-shot. From the Fig. 6,

the result can be observed that LSTM outperforms RNN by

7.1% and GRU by 10% in accuracy. Additionally, in terms

of precision, LSTM outperforms RNN by 5.9% and GRU by

7.8%. The superior performance of LSTM can be credited

to its design, featuring memory cells and gate mechanisms,

effectively learning the temporal features of input sequences

and stabilizing gradient propagation over time. In contrast,

traditional RNNs often encounter the vanishing gradient prob-

lem, hindering their ability to effectively learn long sequences.

BiLSTM utilizes two independent LSTM modules to more

comprehensively capture sequence context, but it often re-

quires more computational resources and time, which makes

it less favorable for this specific few-shot emotion recognition

task. Therefore, LSTM demonstrates better emotion recogni-

tion performance as the embedded network, and we select it

as the foundational framework for the embedded network.

F. Comparison of Distance Metric

In order to determine the optimal distance metric for the

prototype network, we conduct the cross-subject emotion

recognition experiment by utilizing various distance metrics.

For this experiment, we employ the consistent cross-validation

method and class-shot settings like comparison of embedded

network modules. As shown in Fig. 7, the distance metrics in-

clude Manhattan, Cosine, Chebyshev, Euclidean and Euclidean

IMQ distance. It can be observed that the Euclidean distance

achieves an accuracy of 75.1%, which is 9.5% higher than

Cosine distance, 26.8% higher than Chebyshev distance, and

18.5% higher than Manhattan distance. Furthermore, when the

IMQ is applied to Euclidean distance, the recognition accu-

racy improves to 80.1%. In conclusion, we select Euclidean

distance with IMQ kernel as the distance metric.

G. Comparison of Model Optimizer

We conduct a comparative analysis of the performance of

five optimizer categories: SGD, Adadelta, RMSprop, Adam,

and LazyAdam, to assess the influence of different optimiz-

ers on the few-shot emotional model. For this experiment,

we employ the consistent cross-validation method and class-

shot settings like comparison of embedded network mod-

ules. As shown in Fig. 8, the emotion recognition accuracy

for SGD, Adadelta, RMSprop, Adam, and LazyAdam are

80.1%, 80.1%, 78.2%, 83.2%, and 85.4%, respectively. Among

these, LazyAdam performs the best in the overall emotion

recognition task. This superior performance is attributed to

LazyAdam’s exclusive storage of the diagonal elements of

the first-order and second-order matrices for each parameter,

which effectively diminishes system memory consumption.

Consequently, the LazyAdam optimizer emerges as the most

apt choice for the emotion recognition task.
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H. Confusion of Emotion Types

In an endeavor to discern which emotions are predominantly

misclassified in emotion classification tasks, we conducts

separately six types of emotion confusion statistics on both the

intra-subject and the cross-subject emotion recognition model.

We conduct the assessment under the same experimental

conditions. As depicted in Fig. 9, there is a notable overlap in

classifications between Sad, Disgust and Anger. This confu-

sion is possibly due to the high arousal levels associated with

these negative emotions and the overlapping segments in the

stimuli. Additionally, the high degree of confusion between

Happy and Fear may be due to the fact that both emotions are

associated with high levels of arousal.

I. Performance and Combinations of Different Channels.

We evaluate the emotion recognition performance of single

channel and multi-channel combinations. The channels are

as follows: Ch_GSR is the Galvanic Skin Response sensor,

Ch_PPG is the Photoplethysmography sensor, Ch_IR is the

Infrared channel of the Blood Oxygen Saturation sensor,

Ch_IRed is the red light channel of the SpO2 sensor, and

Ch_SKT is the Skin Temperature sensor. GSR_PPG represents

a combination of the Ch_GSR and Ch_PPG channels.

Fig. 10 shows the results of cross-subject emotion classifi-

cation task with single-channel, revealing diverse expressive

capacities for various emotions across different channels.

Notably, for neutral and sad emotions, Ch_IRed exhibits robust

recognition performance with accuracies of 92.1% and 84.6%

respectively. The Ch_SKT channel stands out in recognizing

fear and disgust, achieving the highest accuracies of 79.8%

and 62.7%, which substantiates the strong correlation between

skin temperature and negative emotions. Conversely, for happy

emotion, all channels generally have poor recognition perfor-

mance. This might be attributed to the infrequent induction of

happiness during the experiments and the potential overlap in

physiological markers with sadness and disgust.

Fig. 11 presents the enhanced two-channel emotion recog-

nition performance, which is significantly improved compared

TABLE III
THE PERFORMANCE OF RELATED EMOTION RECOGNITION WORKS

Method Stimuli Testers Emotion Signal Accuracy

[19] DEAP 32
HVHA, LVHA
LVLA, HVLA

EEG, PHY intra-subject 93.1%

[28]
CASE

MERCA
CEAP-360VR

15 1D-2C, 2D-5C EDA, SKT, BVP intra-subject 76.62%

[29] SEED 15
neutral, happy

sad
EEG

intra-subject 95.44%
cross-subject 86.30%

[30]
SEED-IV

SEED
15

neutral, happy
sad, fear

EEG
cross-subject 73.92%
corss-subject 91.65%

[10] EMBD 18
neutral, cheer, sad

erotic, horror
EDA, HR
IBI, SKT

cross-subject 65.6%

Ours
Deap, FilmStim, IADS

SEED, EMDB
18

angry, disgusted, sad
happy, scared, neutral

HR, GSR
SKT, blood oxygen

intra-subject 95.6%
cross-subject 80.7%

to using single channel. Specifically, the combination of IRed

and SKT channels achieves precision, recall, F1-score, and ac-

curacy of 76.8%, 77.1%, 72.5%, and 77.4%, respectively. The

union of GSR and SKT channels also enhances the emotion

recognition accuracy to 67.9%, marking 27.9% improvement

over the solitary use of the GSR channel. These results suggest

that the GSR signal captures emotional arousal and intensity,

while the SKT signal reflects physiological changes and the

persistence of emotions. By combining these two signals,

a more comprehensive understanding of various aspects of

emotions can be obtained.

Fig. 12 displays the outcomes of emotion classification us-

ing both three-channel and four-channel combinations. Multi-

channel combinations demonstrate superior emotion recogni-

tion performance compared to single channels. This enhance-

ment is attributed to multi-channel combinations compensating

for the limitations inherent in the sparse information of single

channels. It further validates the effectiveness of the multi-

source fusion strategy designed in our research.

J. Comparison of Relevant Work

In relevant work, our EmoTracer exhibits remarkable capa-

bilities in emotion recognition, as demonstrated by the results

presented in Table III.

For data fusion, unlike previous approaches [19] and [28]

that concatenate data, our LMFN method integrates single-

source and multi-source signals to better represent features,

focusing on long-term dependencies in temporal data. For

few-shot learning, [28] employs Siamese network that embeds

distances within emotional label samples solely to achieve

fine-grained emotion recognition, so it does not emphasize

cross-subject test in experiment. Addressing the cross-domain

challenge, [29] introduces a multi-source domain adaptation

method that aligns the feature distributions of source and

target domains with Maximum Mean Discrepancy loss; on

the other hand, [30] leverages instance-adaptive graphs for

improved generalization across users and sessions. Notably,

these methods, primarily focus on EEG signal acquisition in

experimental settings, overlooking the practical challenges of

adapting to few shots in real-world scenarios. Furthermore,

[10] presents a stacked model-based hybrid sensor fusion

method for peripheral physiological signals, facilitating user-

independent emotion recognition but with suboptimal accu-

racy. In summary, the innovations of our study in data fusion

and few-shot learning, along with its attention to cross-subject

adaptability, offer new perspectives and solutions for the field

of emotion recognition based on physiological signals.
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VI. CONCLUSION

In this study, we delve deeply into the relationship between

emotional fluctuations and physiological indicators, propose

a wearable emotion recognition system called EmoTracer ,

which can capture six basic emotions in intra-subject and

cross-subject emotion recognition with high precision. Cou-

pled with user-friendly design, our system stands out as a

powerful tool for both clinical and personal use. However, our

research focuses solely on the six basic emotions recognition

with a sample size of 18 participants, and we acknowledge the

complexity, as well as the significant individual difference.

The limited range of emotional categories and sample size

may not reflect the generalizability of the research findings

and the statistical power, increasing the likelihood of drawing

incorrect conclusions. Therefore, we aim to explore additional

emotional states and participants, offering more rigorous sci-

entific support for the monitoring in the future. Future work

may also focus on adding interpretability to the model, an

enhancement that could aid healthcare providers and users in

better comprehending emotional changes.
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