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Abstract—Recently, wearable devices have become increasingly popular in our lives because of their neat features and stylish

appearance. However, their tiny sizes bring about new challenges to human-device interaction such as texts input. Although some

novel methods have been put forward, they possess different defects and are not applicable to deal with the problem. As a result, we

propose an acoustic-based texts-entry system, i.e., EchoWrite, by which texts can be entered with a finger writing in the air without

wearing any additional device. More importantly, different from many previous works, EchoWrite runs in a training-free style which

reduces the training overhead and improves system scalability. We implement EchoWrite with commercial devices and conduct

comprehensive experiments to evaluate its texts-entry performance. Experimental results show that EchoWrite enables users to

enter texts at a speed of 7.5 WPM without practice, and 16.6 WPM after about 30-minute practice. This speed is better than touch

screen-based method on smartwatches, and comparable with previous related works. Moreover, EchoWrite provides favorable user

experience of entering texts.

Index Terms—Acoustic signals, texts input, HCI, mobile device

Ç

1 INTRODUCTION

DUE to the limited sizes of screens, wearable devices bring
about new challenges for human-device interaction

such as texts entry. Researchers have proposed various novel
approaches for entering texts on mobile devices. But they
possess different shortcomings. Speech recognition enables
people to convey commands without touching, but leaks pri-
vacy in public, degrades performance in noisy environment
and is inconvenient in certain occasions. Radio-frequency
(RF) signals and inertial sensors have also been utilized to
design texts-input systems [1], [2], [3], [4], [5], [6], [7], [8], [9].
But they either need specialized hardware, or requiring
users to attach/carry devices with them. Prior works have
also proposed to use acoustics to track finger motion pre-
cisely [10], [11], [12]. Nevertheless, they require multiple
microphone-speaker pairs which are not available for most
commercial devices especially tiny smart devices. As a
result, we ask such a question: can we design a novel text-input
interface for existing commercial devices that does not require any
additional hardware and works in a device-free style? Besides
entering texts on tiny devices, such a system can also handle

cases where hands are wet or oil-scalded. Fig. 1 shows the
possible application scenarios.

In response to this question, we propose EchoWrite in this
paper, a system that enables users to enter texts nearly with-
out touching a device, wearing additional hardware and con-
ducting system training. The high-level idea is to construct a
mapping between simple gestures and English letters, and
infer texts by recognizing fine-grained finger gestures via per-
vasive acoustic sensors (i.e., microphone and speaker). How-
ever, there are three challenges to deal with in order to
transform the idea into a practical system. First, it deserves
great effort to design an input schememapping English letters
to finger gestures with high learnability and efficiency. Sec-
ond, for the sake of comfort, the designed input gestures
should be fine-grained. But this in turn induces challenges to
analyze subtle signal changes for accurate finger gesture rec-
ognition. Third, considering possible errors in performing
and recognizing gestures, it is required to conduct appropri-
ate correction. But how to design an efficient method is not
straightforward since there are exponential possible cases.

In the design of EchoWrite, we have taken the following
measures to resolve the above challenges. First, we decom-
pose basic letters into six basic strokes and groups them
according to their first or second strokes when they are writ-
ten naturally. Meanwhile, we design a finger gesture for each
group by directly utilizing the first stroke or making slight
modification. As a result, all letters are classified into different
groups and mapped with basic stroke gestures. Since this
mapping relationship is constructed based on users’ writing
habits, it enjoys benefits of favorable learnability, memorabil-
ity and efficiency. Second, we transform time-domain signals
into spectrogram and extract uniqueDoppler shift profiles for
stroke gestures. By carefully designing signal processing
flowchart, we can track frequency shifting along with finger
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movements. More importantly, the extracted profiles are
intrinsically related with gestures themselves, which makes
EchoWrite get rid of labor-intensive training overhead. Third,
we propose a stroke correction method and adopt reasonable
simplification to improve its efficiency based on physical
insights and experimental results. By this means, we can
achieve a good trade-off between performance and efficiency.
We have implemented a prototype of EchoWrite on aHuawei
Mate 9 and conduct extensive experiments to evaluate its per-
formance. The results show that, with EchoWrite, users can
enter texts at a speed of 7.5WPM (i.e., word perminute) with-
out repetitive practice, and the speed increases to 16.6 WPM
after about 30-minute practice. Comparedwith existing texts-
entry methods for smartwatches, EchoWrite exceeds them
not only in speed but also in user experience. In a nutshell, the
contributions of ourwork can be summarized as follows.

� We propose a device-free texts-input system based
on pervasive acoustic sensors in smart devices. It is
scalable to devices of different form factors, robust to
background noises, and requires no system training
process.

� We propose an input scheme that matches basic
English letters with simple finger gestures with high
learnability. We also develop effective data process-
ing methods to extract minute Doppler shifts caused
by fine-grained finger gestures, and design accurate
texts inference method.

� We implement a prototype, i.e., EchoWrite, on a
smartphone and conduct comprehensive experi-
ments to evaluate its performance. The results dem-
onstrate that our system enables users to enter texts
at a favorable speed. What is more, the user study
results indicate EchoWrite provides satisfactory user
experience.

The remainder of this paper is organized as follows. In
Section 2, we discuss the related work. Following that, we
give an overview of EchoWrite in Section 3 and details of
system design in Section 4, respectively. We describe the
implementation and experiments in Section 5, and display
performance evaluation in Section 3.3. Last in Section 8, we
conclude the paper.

2 RELATED WORK

2.1 Commercial Text-Entry Approaches

With popularity of mobile devices, efficient texts-entry
approaches have attracted increasing academic and industrial

attention. Soft keyboard is the most common method for
human-device interaction (HCI) on mobile devices such as
smartphones, tablets, smartwatches and the like. The advan-
tages of soft keyboard-based interface mainly include low
cost, high efficiency and favorable convenience. Nevertheless,
it also possesses several shortcomings. For example, soft
keyboard requires large screens, otherwise its performance
degrades severely. As a result, for devices with small or with-
out screens like smartwatches, smartglasses and head-
mounted displays (HMDs), soft keyboard is not an optimal
choice to enter texts. Another shortcoming is that this method
requires a user to touch on the screen which is not applicable
when it is not available. To improve texts-entry performance
on tiny devices, researchers have proposed some novel sys-
tems in previouswork. In early works [13], the authors design
an one-dimension handwriting input scheme on smart
glasses. However, it is not applicable for other tiny devices
such as smartwatches and HMDs. A following work [14] pro-
poses a bezel-based text entry technique while it requires to
rotate multiple cursors. In a latest work [15], the authors an
eyes-free texts entry method with a handled touchpad. These
systems either require touching on the device or additional
hardware support (bezels, cursors or touchpad). Another
promising technology for texts entry is speech recognition
owing to its high accuracy and good experience, based on
which speech assistants like Siri [16] and Cortana [17] have
been popularly used onmobile devices. However, speech rec-
ognition possesses shortcomings of performance degrading
in noisy environment, privacy leakage and awkward feelings
in public occasions.

2.2 Acoustic Signal-Based HCI

Acoustic sensors have been widely used for human-device
interaction with mobile devices in coarse gesture recognition
[18], [19], [20], [21], [22], [23] and precisemotion tracking [10],
[11], [12], [24], [25]. The early works [18], [22], [23] require
users tomove devices to achieve device-to-device interaction.
The works [19], [20], [21] makes use of Doppler effect caused
by relative motion between one’s hand and a device to recog-
nize coarse hand gestures such as “Pull”, “Flick” and etc. In
contrast, our work focuses on designing a texts-entry system
based on more fine-grained finger movements instead of
solely recognizing hand gestures, which brings about unique
challenges. Among the above works, AudioGest [21], which
achieves accurate hand gesture recognition, is most related to
ours from technical perspective. However, the differences are
notable as well. First, due to finer granularity of input ges-
tures (finger versus hand), techniques developed in Audio-
Gest [21] can not be applied in our work according to our
implementation. A key problem is that since the induced
Doppler shift is weaker, we design novel techniques to high-
light and extract it from original spectrogram accurately,
evenwith external interference such as body/armmovement
and others walking. Second, as EchoWrite is a text-entry sys-
tem, we have also devoted to designing efficient and accurate
input scheme, developing texts recognition techniques, and
conducting more comprehensive evaluation. Some other
works develop high-precision motion tracking systems in a
device-based [24], [25] or device-free way [10], [11], [12]
which accomplish mm-level 2D motion tracking. But they
require multiple normal microphone-speaker pairs which

Fig. 1. Possible scenarios where EchoWrite can be applied. EchoWrite
cannot only be on wearable devices such as smartwatches and smart-
glasses to deal with the inconvenience caused by small screens, but
also on mobile devices, such as smartphones and tablets, to handle the
cases where hands are wet or oil-scalded.
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are not available for most commercial devices especially tiny
smart devices. More related works [26], [27], [28] follow a
passive sensing way which recognize the written texts by
analyzing the sounds caused by handwriting on a table. Simi-
larworks [29], [30], [31] present active audio-based handwrit-
ing recognition systems with machine learning approach.
Comparedwith them, our work is training-free whichmeans
much lower training overhead and higher scalability to dif-
ferent people and scenarios.

2.3 Motion Sensor- and RF-Based Input Systems

Besides acoustics, other text-entry systems can be mainly
divided into two categories, namely, sensor-based [5], [6],
[9], [32] and radio frequency (RF)-based [1], [2], [3], [4].
Motion sensor-based systems mainly utilize inertial sensors
(i.e., accelerometer, gyroscope) or with proximity and dis-
tance sensors to recognize characters, digits and texts [5], [6],
[9], [32], [33]. Compared with EchoWrite, they have the fol-
lowing shortcomings: 1) needing additional hardware such
as a ring or glove except the interactive device; 2) requiring
users to wear or carry devices during interaction; 3) being
sensitive to irrelevant body movements. RF-based systems
utilize Wi-Fi, RFID, 60 GHz signals and visible light to
achieve high-precision finger input [1], [2], [4], [34] or coarse
inputing gestures [3]. The Soli project [35] uses 60 GHz chip
in a mobile device to recognize fine-grained finger gestures.
Nevertheless, they require additional RF equipment, such as
RFID readers and tags, Wi-Fi/60 GHz transceivers, and
LEDs, and thus are not applicable for most mobile devices.
In comparison, EchoWrite provides a novel texts-input
method without any additional device/hardware, and
works in a device-free, touch-free and training-free style.

3 SYSTEM OVERVIEW

3.1 Input Scheme Design

As is well known, uppercase English letters can be decom-
posed into six basic strokes as shown in Fig. 2a. The key idea
of our input scheme is similar to T9 input method which rec-
ognizes texts in a fuzzy way. Specifically, each stroke repre-
sents a set of certain English letters and a word can be
inferred from a sequence of strokes. When users intend to
enter texts (letters, words, or sentences), they only need to
‘write’ a sequence of strokes in the air. As the first step, we
need to consider how to assign 26 letters to different strokes.
A basic principle of designing an input scheme is learnability,
that is, it should incur as light mental workload as possible

when they utilize this system. Considering this, we initially
group the 26 letters according to their first strokes since it is a
natural way for users to remember. Although different peo-
ple may have varied writing styles, we adopt the stroke
orders of upper-case letters1 as shown in Fig. 2b which is rec-
ommended for kid’s learning English [36]. As a result, we can
obtain the letter assignment scheme as shown in Fig. 3a.
However, we can notice that there are no letters correspond-
ing to S6 while too many letters are assigned to S2. This shall
greatly degrades a user’s learnability, memorability and per-
formance. Second, it shall also balance the number of charac-
ters assigned to each stroke. Consequently, we rearrange the
scheme by moving letters of ‘B’, ‘D’, ‘P’ and ‘R’ down to S6

based on their second strokes, and accordingly obtain the
scheme shown in Fig. 3b.

Nevertheless, another consideration of designing such a
scheme is the uniqueness of Doppler profiles of different
strokes. As a result, we conduct preliminary experiments
and extract Doppler profiles of six strokes following instruc-
tions from Sections 4.1 to 4.2, to check whether the new
scheme satisfies this requirement. The results demonstrate
that S1 and S4, S2 and S5 havemuch similar Doppler patterns
and are rather difficult to be differentiated (Section 4.3). To
tackle this problem to guarantee uniqueness, we make slight
adjustments by modifying S4 and S5 as shown in Fig. 3c.
After adjustment, the corresponding Doppler profiles of dif-
ferent strokes can be guaranteed to be unique, which will be
shown in Section 4.2.

3.2 Demonstration of Words Representation

Until now, a key question to be answered iswhether this stroke-
letter mapping scheme can represent English words accurately. To
verify this, we generate the sequence of corresponding
strokes for each word in the Corpus of Contemporary Ameri-
can English (COCA) [37]. The original COCA dataset con-
tains a total number of 450 million words in which the same
word could appear for multiple times due to its different PoS
(part of speech) with corresponding word frequency. We
select 5000 most frequent words which can cover most daily
usage andmerge the dataset by adding the word frequencies
of a same word with different PoS together. After this opera-
tion, the new dataset contains a total number of 4348 words.
We then apply word recognition algorithm, (i.e., Algorithm
2) in Section 4.3 on each generated stroke sequence which
returns sorted word candidates with descending probabili-
ties. Note that as we have taken possible errors in performing
and recognizing strokes, we add error correction mechanism
in Algorithm 2. However, we do not need to consider this
here, and thus we remove it from the algorithm. To evaluate
how accurately the mapping scheme represent English
words, we introduce top-k accuracy which is defined as the
ratio of the number of words appeared in the top-k candi-
dates provided by the algorithm over the total number of
words in the database. We perform this operation on all the
words in the database and then compute the average top-1 to
top-5 accuracies. The result shows that these five accuracies
are 85.3, 94.1, 97.2, 98.4 and 99.2 percent, respectively. This

Fig. 2. The design of input scheme.

1. As for the more complex lower-case letters, we do not consider
this problem in this work. An intuitive way is to add a shift function in
the system design, via a certain gesture or touching button.
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indicates that the mapping scheme in Fig. 3b can represent
the common English words by providing no more than five
candidates.

3.3 Evaluation of Learnability

Before designing the system, we conduct user study experi-
ments to obtain learning curve and evaluate the learnability
of the above input scheme. To do this, we assume that our sys-
tem recognizes strokes in real time with an accuracy of
90 percent althoughwe have not designed such a system yet.2

We recruit a total number of 6 participants (3 females and 3
males) from our university who have no any knowledge
about our project. Before experiments, we spend 5 minutes to
introduce the input scheme and make sure that they have
fully understood. After that, we request them to write out
stroke sequences corresponding to 300most frequent and ran-
domly shuffled words which are selected from COCA [37]. In
comparison, we also request them to input the same words
that they have written via soft keyboard on Huawei smart-
watch 2. During this process, the participant is allowed to see
each word for only once. When they make errors, they are
reminded but not permitted to make correction. Each partici-
pant writes words continuously for 15 minutes and every
minute we count error rate of letters to get the learning curve
as shown in Fig. 4a. As we can see, after 15 minutes’ practice,
participants canwrite out stroke sequences of different words
with an average accuracy up to 98 percent. Moreover, we also
investigate words-input speed and accuracy and obtain
results shown in Figs. 4b and 4c after 15minutes’ practice. It is
clear that participants can enter words with our scheme at a
speed of 11words perminute and achieve aword-recognition

accuracy of 90 percent.3 These results preliminarily indicate
that our scheme is capable of achieving favorable learnability,
memorability and efficiency.

3.4 The System Flowchart

Fig. 5 displays the flowchart of EchoWrite. When users
intend to enter texts, they write a sequence of strokes with a
finger near a device. Meanwhile, a built-in speaker emits
inaudible single-tone audio signals of 20 KHz and a micro-
phone samples echoes at 44.1 KHz simultaneously. Then
we perform short time Fourier transform (STFT) with Han-
ning window on audio sequence to obtain corresponding
spectrogram. To reduce noises in spectrograms and enhance
Doppler shifts caused by finger movement, we apply a
series of image processing techniques such as smoothing
and binarization. After that, we propose a mean value-
based contour extraction algorithm (MVCE) to figure out
outlines of Doppler shifts based on cleaned spectrograms as
profiles of different strokes. At last, we perform dynamic
time warping (DTW) to recognize strokes and utilize Bayes-
ian language model to infer inputed texts (i.e., words and
sentences) by a list of candidates with corresponding proba-
bilities. It is noted that the Doppler profile in our work is
different from that in [38], since it is extracted from reflected
signals instead of direct propagations.

4 SYSTEM DESIGN

4.1 Doppler Enhancement

After receiving echoes, we perform short-time Fourier trans-
form (STFT) with a Hanning window on signal sequence in

Fig. 4. The experimental results of learnability study.

Fig. 3. The design of letter assignment scheme.

2. Since we only evaluate the learnability of input scheme instead of
the whole system, it is acceptable to make such assumptions.

3. It is noted that this accuracy is obtained by multiplying assumed
stroke-recognition accuracy (90 percent) by word sequence accuracy.
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order for framing audio files and extracting Doppler shifts
caused by finger movements. To balance the time-frequency
resolution and real-time performance of motion analysis,
we empirically set the frame length (i.e., FFT size) and win-
dow step size to be 8192 and 1024 samples (corresponding
to 0.186 and 0.023 s), respectively. Consequently, we can
obtain the spectrogram of raw signals which displays the
Doppler shifts of writing strokes as shown in Fig. 6a. Then
we concatenate the STFT results of every 5 frames and
obtain the spectrogram of corresponding signal sequence.
To reduce following computation overhead, we estimate
the frequency range of interest by considering the Doppler
shifts calculated by

Df ¼ f0 � 1� vs � vf
vs � vf

����

����; (1)

where f0, vs and vf represent frequency of emitted signals
(20 KHz), speed of sound (340 m/s) and velocity of finger
movement (4 m/s at maximum [20]), respectively. Thus the
resultant frequency shift is about 470.6 Hz and the effective
frequency range should be within ½19530; 20470� Hz. In this
way, the column size of spectrogram to be processed can be
reduced from 8192 to 350.

After that, we perform a 3� 3 median filter to remove
random noises. Following this, we subtract STFT of static
frames (i.e., without finger movements) from each following
frame within a stroke in order to suppress static frequency
components of background noises, direct transmission and
multipath reflections. Specifically, we first compute the
average STFT of initial 5 frames and subtract the corre-
sponding result from each frame within a stroke. The ratio-
nale is that background noise and static multipath keep
stable within each stroke lasting no more than 1 seconds.
Besides static interference, there also exists bursting hard-
ware noise whose power is larger than background noise
but lower than echoes reflected from finger, which results in
some random noisy points in spectrogram after spectral
subtraction. To deal with this problem, we empirically
define an energy threshold a below which elements of the
matrix are set to be zero, and then apply a Gaussian filter
with kernel size of 5 to smooth the spectrogram as shown in
Fig. 6c. The Gaussian filter is a 2D convolution smoothing
operator that is used to blur images and remove detail and
noise. Here we borrow this method from image processing

to remove random noises in spectrograms. We observe that
a is closely related to hardware and set to be 8 in our system
design. Later on, we sequentially conduct zero-one normali-
zation to mitigate the effect of absolute amplitude and per-
form binarization with a threshold of 0.15. Further more, we
also fill up the “holes” in binary spectrogram by performing
a flood-fill operation on background pixels [39]. By the
above operations, we can enhance the Doppler shifts of fin-
ger movements and obtain a relatively clean spectrogram as
shown in Fig. 6e.

4.2 Extracting Doppler Profile

Based on the processed spectrogram, we further proceed to
extract the Doppler profile by figuring out the contour of
spectrogram. As we can see, due to reflections frommultiple
parts, there exist multiple Doppler shifts in a single frame.
To depict finger motion clearly, it is theoretically required to
separate each dynamic multipath and pick out the one corre-
sponding to user’s finger. However, it is impossible and
unnecessary for our system design. For stroke recognition,
we only need to get Doppler shift that can describes overall
trend of finger motion, instead of precise moving details. As
a result, we extract the contour of spectrogram with a mean
value-based contour extraction algorithm (MVCE). The key
idea of our method is that for each frame, we regard the
mean value of Doppler shifts as the real Doppler shift caused
by finger motion. By determining Doppler shift of finger
motion in each frame, we can obtain the Doppler profile cor-
responding to each stroke (see Fig. 6f).

However, there are two more steps besides MVCE. First,
before extracting contour, we need to perform a bit more
processing on the spectrogram. We fill up the “holes”
appeared in the spectrogram with an existing image proc-
essing technique. Second, we further smooth the obtained
Doppler profile to remove outliers with a moving average
method of which the sliding window size is 3.

Following that, we proceed to segment the continuous
Doppler profile curve. To achieve this, we come up with an
acceleration-based segmenting method which localizing
start and end points of a stroke by detecting abrupt changes
of acceleration of Doppler shifts. The key insight is that writ-
ing a stroke is a short-duration and high-acceleration process
which induces rapid changes in Doppler shifts. Specifically,

Fig. 6. Different stages of extracting the Doppler shifts profile of writing
stroke S2.

Fig. 5. The work flowchart of EchoWrite.
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we first calculate first-order difference of obtained Doppler
profilewith a noise-robust differential approach as follows [40]:

accðiÞ ¼ 2� ½yðiþ 1Þ � yði� 1Þ þ yðiþ 2Þ � yði� 2Þ�
8

; (2)

where yðiÞ and accðiÞ represent Doppler shifts sequence (i.e.,
finger moving speed) and its first-order differential (i.e.,
acceleration), respectively. On the other hand, considering
the principle of Doppler effect, we can obtain

ft ¼
1� vf

vs

1� vf
vs

f0 ¼ � 2f0vf
vs � vf

þ f0 � � 2f0vf
vs

þ f0; (3)

since vf 	 vs. The first-order differential of Doppler shift
(Dft ¼ jft � f0j) is as follows:

Df
0
t ¼

2f0
vs

v
0
f ¼ 2f0

vs
a; (4)

where a is the acceleration of finger movement which is
about 0.15 m/s2. Substituting this into the above equation,
we know that the acceleration of Doppler shift in normal
cases is about 40. Therefore, we set a acceleration threshold
b of detecting stroke movement to be 40 and search the first
point P whose value is above this threshold. From P , we
search backward until the point whose Doppler shift is clos-
est to zero. This point is then identified as the start point of
a stroke, denoted by Pstart. When a user finishes writing a
stroke, he/she withdraws the finger and prepares to enter
next stroke. In this process, the speed remains but the accel-
eration decreases notably. To identify the end point of a
stroke, we set another acceleration threshold g to be b

2, i.e.,
20. If a point and its following nine points are detected to be
less than g, it is therefore identified as the end point of a
stroke, denoted by Pend. By the above method, segments cor-
responding to stroke movements can be detected as shown
in Fig. 8. As we can see, even with interfering Doppler shifts
caused by multipath (labeled by green square) and irrele-
vant hand movement (labeled by circle), our method can

effectively detect the start and end points of each stroke. We
summarize the above mean value-based Doppler profile
extraction process as shown in Algorithm 1.

Algorithm 1. Doppler Profile Extraction

Input: Spectrogram matrix P , centre frequency bin cf
Output: Doppler shift profileDopShift

1 colNum=getColumNum(P );
2 DopShift(1:colNum)=cf ; //initialization
3 for i=1:colNum do
4 row=getNonNullRows(col(i)); // get non-null rows of the

ith col
5 if isNotEmpty(row) then
6 meanValue=mean(row);
7 if meanValue>cf then
8 DopShift(i)=max(row);
9 else
10 DopShift(i)=min(row);
11 end
12 end
13 end
14 DopShift = SMA(DopShift); // SMA represents smoothed

moving average filter

4.3 Stroke and Texts Recognition

After profile extraction, the following step is to recognize dif-
ferent strokes. Our insight is thatwriting different strokes pro-
duces unique Doppler shift profiles as shown in Fig. 7. More
importantly, within a certain area, the induced Doppler shift
profiles are intrinsically related with strokes themselves and
irrelevant with the person who performs them and how fast
they are performed, which can be deduced by the Doppler
principle. For stroke recognition, we make use DTW tomatch
extracted Doppler shift profile with templates that have been
stored in the system. Dynamic timewrapping is a mathemati-
cal method to compute similarity of time series. Compared
with other methods, DTW exceeds in taking stretch and con-
traction of time series into consideration [41].

Fig. 8. The segmentation results for a series of writing strokes.

Fig. 7. The extracted Doppler profiles of different strokes according to the final version of input scheme.
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Recognizing a stroke sequence enables us obtain differ-
ent sets of candidate letters whose combinations consist of
multiple words. To infer corresponding words, we make
use of posterior probability maximization technique and
find out feasible words with highest probability. To be spe-
cific, for a stroke sequence denoted by I ¼ s1s2 . . . sn, the
output is a letter combination denoted by w ¼ l1l2 . . . ln,
where s1; s2; . . . ; sn and l1; l2; . . . ; ln are mutually indepen-
dent. By Bayesian rule

P ðwjIÞ ¼ P ðw; IÞ
P ðIÞ � P ðw; IÞ; (5)

since P ðIÞ is the same for every possible candidate. Further,
we know that

P ðw; IÞ ¼ pðwÞ 
 P ðIjwÞ
¼ pðwÞ 
 P ðs1s2 . . . snjl1l2 . . . lnÞ

¼ P ðwÞ 

Yn

i¼1

P ðsijliÞ:
(6)

This is

P ðwjIÞ ¼ P ðwÞ 

Yn

i¼1

P ðsijliÞ ¼ P ðwÞ 

Yn

i¼1

P ðsijtðliÞÞ; (7)

where P ðwÞ represents the prior probability of a candidate
word obtained by vocabulary statistics, tðliÞ is the stroke
template of letter li, and P ðsijtðliÞÞ denotes the probability
of recognizing strokes which can be obtained from confu-
sion matrix in stroke-recognition stage.

A straightforward approach to work out candidate
words is directly applying Eq. (7) to calculate probabilities
of feasible candidates and select the one with highest proba-
bility. However, such an approach ignores possible errors
in stroke recognition caused by imperfection of our algo-
rithm and user’s writing strokes. Consequently, we propose
a stroke correction technique to improve the accuracy of
word recognition.4 In theory, stroke correction can be per-
formed by deleting, inserting and substituting a certain
number of letters in different positions within the word,
which yet induces exponential increase of computation
overhead. However, we notice that our acceleration-based
stroke detection method can accurately detect strokes and
ignore irrelevant motion interference. It means that we can
take no account of deleting and inserting cases without
much performance decline. What is more, we find that there
is little possibility for multiple strokes to be wrongly recog-
nized simultaneously in a sequence according to our experi-
ments. Consequently, when we perform correction for a
candidate word, we only consider the substitution case with
editing distance of 1 at each time. To further improve com-
putation efficiency, we make use of an experimental obser-
vation that errors of stroke recognition are mainly caused
by high false positive rate of S1 and false negative rate of S5,
only consider these possible substitution cases when per-
forming stroke correction. This is because S2, S4 and S6 are
likely to be recognized as S1, and S5 is likely to be recog-
nized as S2 and S3, which can be also inferred from Fig. 7.

By substituting one stroke each time, we can obtain a set of
corrected stroke sequences.

For each obtained stroke sequence, there exist different
corresponding letter sequences but only part of them are fea-
sible words. To verify a letter sequence, we build up a cus-
tomized dictionary consisting of 5000 words with top
frequencies selected from COCA, which is one of the largest
currently available corpora [37], [42]. To improve searching
efficiency, we follow the steps below to construct a tree-
structure dictionary. First, each word is encoded to be an
entry with attributes of fword; frequency; length; strokeSeqg,
of which strokeSeq represents its corresponding stroke
sequence. Second, words are storedwith a tree data structure.
Specifically, words are first arranged according to length in
the first layer. Then in the following layers, words are further
arranged by the type of first stroke, second stroke, ..., until the
last one. As for words belonging to the same leaf node, we
arrange them with a descending order of frequency. As a
result, to find out the word matching with a letter sequence,
we only need to follow the tree structure within a limited
number of steps in such a way. If there is no word match, it
indicates that the letter sequence is not a feasibleword.

When we find a word match in the dictionary, we calcu-
late its corresponding probability by P ðwÞ 
Qn

i¼1 P ðsijtðliÞÞ,
where P ðwÞ is the attribute of frequency and P ðsijtðliÞÞ can
be obtained by stroke recognition. For a stroke sequence rec-
ognized by our algorithm, there aremultiple candidates after
correction, each of which has several possible words with
different probabilities. We sort these feasible words by their
P ðwjIÞ in a descending order and provide top k (k equals 5 in
our implementation) candidates with highest probabilities
for a user to choose. Theword recognitionmethod is summa-
rized in Algorithm 2. In the implementation, we also config-
ure the system to pick the first candidate as the final result
when a user does not make any choice for a thresholding
time. Without specification, experimenters are instructed to
adopt the first approach, namely, making selection among
candidates, in experiments of performance evaluation in
Section 5.2. After word recognition, our texts-entry algo-
rithm will predict following words by automatic associa-
tions. In our system design, we make use of the 2-gram data
of COCA. Specifically, the system will search following
words in the 2-gram database according to automatic associ-
ations and provide the five words with top frequencies as
potential choices. If a user makes a choice among these five
words, the systemwill continue automatic associations.

Algorithm 2.Word Recognition Algorithm

Input: stroke sequence I ¼ s1s2 . . . sn
Output: candidate words W

1 CandidateI=correct(I)[ I;
2 W= ? ;
3 for each I in [candidateI] do
4 words=I.findIn(Dictionary);
5 for each word w in [words] do
6 compute P ðwjIÞ ¼ P ðwÞ 
Qn

i¼1 P ðsijliÞ;
7 end
8 W =W[words;
9 end
10 sort W by length in ascending order, and P ðW jIÞ in descend-

ing order;
4. It is noted that although correction is not performed on candidate

words, the principle and effect are much similar, that is, improving
accuracy by allowing for possible errors.
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5 IMPLEMENTATION AND EXPERIMENTS

5.1 Implementation

We first implement EchoType on Android platform with
Huawei Mate 9 which is equipped with a 2.4 GHz Hisilicon
CPU and 6 GB RAM. Although Mate 9 has two normal
microphones, we only need to make use of a single one of
them in our system design. The whole application is pro-
grammed with both Java and C codes. The Java codes are
responsible for high-level logic and user interface design,
while the C codes are utilized for low-level signal processing
and algorithms including signal preprocessing, Doppler
shifts detection, profile extraction, and Bayesian-based texts
inference. This hybrid programming is useful for improving
running efficiency of the application. When the system is
running, a process takes responsibility for controlling the
speaker to emit 20 KHz audio signals continuously. At the
same time, a parallel process manages a microphone to
receive echoes at a 44.1 KHz sampling rate and temporarily
stores data in a buffer. The buffer size is set to be 5 frames
corresponding to 40906 samples which is optimized accord-
ing to the efficiency of data processing. When the buffer is
full, data are pushed to following data processing flowchart.
To optimize system performance, we adopt two key tricks in
specific implementation. First, since STFT costs too much
time, we balance the computational overhead by paralleliz-
ing the whole computing process to improve efficiency of
whole application. Second, we optimize several key parame-
ters such as sizes of buffer, FFT and window step which
affect system performance to a great extent.

It is noted that, limited by the power of CPU, current com-
mercial smartwatches can not afford the data-processing
workload of this application. As a result, it is unfeasible to
implement EchoType on existing smartwatches. However,
considering the vast improvement of CPU on commercial
devices, we envision that it is feasible to implement this
application on smartwatches in the near future.We shall con-
duct a detailed discussion about the scalability to smart-
watches in Section 7. Even so, to verify this capability of
other hardware, we implement part of functions of Echo-
Type on a Huawei smartwatch 2 which include emitting and
receiving audio signals simultaneously. The received echo
signals are further processed in an offline style following the
same routine as shown in Fig. 5.

5.2 Experiments

In order to evaluate EchoWrite, we have conducted compre-
hensive experiments under three settings as follows.

� Meeting room. During experiments, the air condi-
tioners are turned on and windows are closed as a
usual case in daily life. The average noise level is

measured to be 60 � 70 dB with a sound level meter.
Moreover, to evaluate the impact of different levels of
noises, we also test the system under 70 � 80 and
80 � 90 dB noises, by controlling the volume of play-
ingmusic with another device in themeeting room.

� Lab area. The room size is 8 m � 9 m in which twenty
students are working on workdays. During experi-
ments, non-participants are unaware of on-going
experiments. They keep a usual state such as work-
ing with computers, chatting casually, and walking
around occasionally.

� Resting zone. It is an open area in the CSE building
spared for discussing problems and conversing
casually. Moreover, since it is very close to a corri-
dor, students usually walk around or talk with each
other near our experiments site. To test EchoWrite’s
robustness to irrelevant movements, we also request
a participant to walk around near the site with a dis-
tance of 30 � 40 cm.

� Mobile scenarios. We also test the performance of
EchoWrite in recognizing strokes when it is used in
mobile scenarios. That is, a user perform stroke ges-
tures while he/she is walking with the device held
in another hand. This part of experiments are con-
ducted in the meeting room with 60 � 70 dB noise.

We recruit 10 participants for our experiments. Overall,
our experiments can be divided into three parts, namely,
stroke recognition, words input and phrases entry. As partici-
pants have no idea about our design scheme, we explain rules
to them until they have totally understand how experiments
should be conducted. Before experiments, we let them do
some texts entry practice according to the rules in order to
make sure they have actually understand. For stroke recogni-
tion, we request each participant to perform each stroke for
30 times in each experimental setting. As a result, we can
obtain a total number of 10800 (6ðsettingsÞ � 10ðparticipantsÞ�
6ðstrokesÞ � 30ðrepetitationsÞ) testing instances. For the evalua-
tion of words input, we select 10 words of short, medium and
long lengths from COCA as shown in Table 1. These words
are commonly used in our communications such as short mes-
sages, brief memos, and etc.. And also words of different
lengths cover all six strokes. In this set of experiments, each
participant is requested to write each word for a total number
of 30 repetitions in each of three basic experimental settings,
namely, meeting room, lab area and resting zone. The last part
is user-study experiments to evaluate the user experience of
using EchoWrite and soft keyboard on a smartwatch.

6 EVALUATION

In this section, we demonstrate the evaluation of EchoType
from different aspects. The main metrics that we utilized for
evaluation are explained in a detail as follows.

TABLE 1
The Selected Words for Our Experiments From COCA

Words
Properties

OK YES YOU CALL SOON WAIT LATER THANKS MEETING RECEIVE

ID W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

Length 2 3 3 4 4 4 5 6 7 7
Frequency (�104) 5.5 15.7 308 36.7 7.7 10.2 14.2 2.3 5.0 8.0
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� Top k accuracy: For a word entered for N repetitions,
there are n times occurring in the lists with k candi-
dates given by our system. Then the top k accuracy
is defined as the ratio of n

N.
� Stroke proportion: To recognize a word withM letters,

the number of strokes required to be entered is m.
Then the stroke proportion for this word with the
texts-entry system is defined as m

M.
� Top k stroke proportion: To recognize a M-letter word

within k candidates, the number of strokes required
to be entered is m. The the top k stroke proportion is
defined as m

M.
� WPM: It is short for word per minute which measures

the number of words entered in one minute. This
metric is commonly used for evaluating the effi-
ciency of an text-entry system.

� LPM: It is short for letter per minute which measures
the number of letters entered in one minute. This
metric takes the length of words into account when
evaluating texts-entry efficiency.

� NASA-TLX: It is short for NASA-TLX Load Index,
which is a widely used tool to assess user experience.
The obtained score indicates how the user experi-
ence is. The lower it is, the better experience a user
feels. In our work, we use it for the comparison of
user experience between EchoWrite and smartwatch
soft keyboard.

6.1 Stroke Recognition Performance

6.1.1 Overall Performance on Different Devices

As mentioned in Section 5.2, although we have not imple-
mented real-time EchoWrite on a smartwatch, we test the
performance of recognizing strokes on a Huawei smartwatch
by off-line data processing. Fig. 9 shows the results. The aver-
age accuracy with a smartwatch is about 95.4 percent which

is very close to that of EchoWrite onMate 9 (i.e., 94.8 percent).
The negligible difference indicates that acoustic sensors on
a smartwatch are capable of sensing finger gestures, which
verifies the feasibility of extending EchoWrite to smart-
watches in the near future.

6.1.2 Accuracy of Different Strokes

Fig. 10 shows average accuracies of recognizing different
strokes under three settings. Overall, the accuracy can be
up to 98.9 percent (S3, lab area) and is no lower than
87.8 percent (S5, resting zone), which indicates EchoWrite’s
high performance of recognizing strokes. Moreover, com-
pared with other strokes, S4 and S5 possess worst perfor-
mance since they are more complex which makes it more
difficult to write them well. In addition, we can see that the
average accuracies over all strokes are 94.1, 94.5 and 93.3
percent in meeting room, lab area and resting zone, respec-
tively. We can obtain that EchoWrite is robust to noises
from different sources such as air conditioner, human talk-
ing and typing keyboard, and irrelevant human motions.
The reasons are two-fold. On the one hand, the frequency
range of received echoes shares few overlaps with common
nosies in daily environments. On the other hand, compared
with finger strokes, normal human motions are with lower
accelerations, and thus are filtered by our acceleration-
based stroke detection method. However, due to bursting
noise that span whole frequency band like rubbing interfer-
ence, accuracy in resting zone decreases slightly.

6.1.3 Accuracy of Different Participants

Fig. 11 displays stroke recognition performance for different
participants in order to evaluate the impact of user diversity.
The highest and lowest average accuracy in three environ-
ments among the 10 participants are 95.5 and 92.8 percent,
respectively. Due to different proficiencies in performing fin-
ger gestures, their performances deviate from each other by
a maximum gap of 2.7 percent. However, considering the
minute standard deviation (i.e., 1.4 percent), we can claim
that with same training, participants can achieve nearly the
same performance.

6.1.4 Performance in Mobile Scenarios

Fig. 12 shows the accuracy of recognizing each stroke in
mobile scenario. As we can see, the average accuracies of
recognizing strokes in resting zone and mobile scenario are
92.6 and 90.8 percent, respectively. When people use Echo-
Write during walking, the stroke recognition performance

Fig. 9. The performance comparison of EchoWrite with Mate 9 and
a smartwatch.

Fig. 10. The recognition accuracy of different strokes in three
experimental environment.

Fig. 11. The accuracy of recognizing strokes for different participants
recognizing strokes for different participants.
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slightly decreases by about 1.8 percent. The minute gap indi-
cates that EchoWrite has relatively high scalability to normal
walking scenario. The reason is that when a user walks
steadily, there is no notable relative movement caused by
walking between his/her writing finger and another hand
that holds the device. As a result, the whole-bodymovement
induces negligible frequency shifts in received echoes.

6.1.5 Performance Under Different Noise Levels

Fig. 13 shows EchoWrite’s performance of recognizing
strokes under three different noise levels. The average accu-
racies over different strokes under low, mediate and high
noise level are 94.5, 93.6 and 93.3 percent, respectively. As
we can see, external noise has negative effect on system per-
formance. But when the noise level increases over 70 dB,
purely increasing the sound volume nearly does not
decrease the recognition performance. This result is owing
to the use of near-ultrasound signals, which makes it diffi-
cult to be interfered by common noises.

6.1.6 Performance at Different Distances

We also evaluate the performance of EchoWrite under differ-
ent distances between the finger and device in the meeting

room scenario. As it is difficult to measure the distance pre-
cisely in texts entry process, we define a 8� 8 cm square
region within which the finger writes strokes. As a result, the
distance is defined between centers of the square and the
device which varies from 8 cm to 32 cm. At each distance, we
request participants to perform each strokes for 10 times and
thus collects 600 trials in total.We calculate the overall accura-
cies of recognizing strokes at different distances as shown in
Fig. 14. Aswe can see, within 20 cm, even though the accuracy
decreases with distance, it remains relatively stable between
95 and 92 percent. However, when the distance exceeds
20 cm, the performance degrades sharply to 62 percent at a
distance of 32 cm. This is because the power of received ech-
oes decreases with the distance which results in increasing
difficulty of detecting and segmenting strokes, especially
when the distance exceeds 20 cm. Considering the difficulty
of regulating precise distance in real-world experiments, we
only request participants to do experiments within 20 cm
without specification.

6.2 Texts Recognition Performance

6.2.1 Accuracies of Different Words

Fig. 15a shows the top 5 accuracies of recognizing words
shown inTable 1. For k ¼ 1; 2; . . . ; 5, the average top k accuracy
over different words is 73.2, 85.4, 94.9, 95.1 and 95.7 percent,
respectively. By providing 3 candidates, EchoWrite can infer
words correctly with a probability of 94.9 percent which is
favorable for texts entry. When k exceeds 3, the accuracy
slightly increases by 0.8 percent that can also be verified by
Fig. 15b. The above results mean that EchoWrite can achieve
high words-recognition performance by providing only 3 can-
didates.Moreover, different words possess varied absolute top
k accuracies and overall trend. For words such asW6, W8 and
W10, when k is 2, the accuracy reaches the maximum value;
while forW4, the accuracy increaseswith k.

Fig. 12. The performance of stroke recognition in mobile scenarios.

Fig. 13. The performance of stroke recognition under different noise
levels.

Fig. 14. The performance of stroke recognition at different distances.

Fig. 15. The top 5 accuracies of recognizing words w/o and with stroke correction for different words.
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6.2.2 Impact of Stroke Correction

To evaluate the impact of stroke correction, we show the aver-
age top 5 accuracies for cases with and without stroke correc-
tion in Fig. 15b. Overall, the average top 5 accuracies for both
cases are 84.2 and 88.6 percent, respectively. For each k, the
corresponding top-k accuracy with stroke correction is higher
than that of without stroke correction. This indicates that
stroke correction indeed improves the performance of words
recognition. The reason is thatwith stroke correction, the algo-
rithm provides more candidates for inferring correct words.
What is more, we can clearly see that when k exceeds 3, the
top-k accuracy nearly keeps stable as aforementioned. To
figure out the impact more specifically, we also show the dif-
ferences of top 5 accuracies for each tested word in Fig. 15c. It
verifies that formost testedwords, stroke correction technique
improves their top k accuracies for varied percentages. Fur-
ther, we can notice that for words with medium length, the
performance improvement ismore noticeable. This is because,
for short words, correction adds more candidate words and
the exact word may be listed beyond top 5 candidates; while
for long words, there exist more error cases to be corrected.
But our current correction method only consider substitution
and ignore other cases. Improving the correction method is
also one of our futurework.

6.2.3 Stroke Proportion

As an indicator of efficiency,we compute stroke proportion by
calculating howmany strokes are needed for EchoType to rec-
ognize a word within top k candidates. The results are dis-
played in Fig. 16a. As we can see, contrary to recognition
accuracy, stroke proportion decreases with k on the whole.
This is because with less candidates, it is more difficult to rec-
ognize words accurately and requires inputting more strokes.
Moreover, formore than half of the selectedwords, only about

60 percent strokes are needed when more than 3 candidates
are provided. However, when only one candidate is consid-
ered, full strokes are required to precisely recognize corre-
sponding word. To further evaluate the impact of stroke
correction on letter proportion, we also show the average sta-
tistics of top k stroke proportionswhen stroke correction is not
applied in Fig. 16b. It is obvious that when stroke correction is
used, it requires to entermore strokes in order to recognize tar-
get word within k candidates, since there are more stroke
sequences and corresponding words after correction. Fig. 16c
shows the differences of stroke proportion for different words
with various candidates. Overall, stroke proportions of longer
words are more likely to increase after correction. Compared
with short words, correction adds more candidates for long
words, which requires to input more strokes to provide top k
candidates.

6.2.4 Speed of Texts Entry

Fig. 17 displays ‘the average speeds of entering given para-
graphs randomly selected in Fry Instant Phrases with Echo-
Write and touch screen on a smartwatch [43]. The paragraphs
are grouped in five blocks, each of which contains two para-
graphs. The average texts-entry speeds over all participants
with EchoWrite and smartwatch are 7.7 and 5.5WPM, respec-
tively. Moreover, by providing more candidates, users can
input texts with a higher speed up to 8 words per second in a
fuzzy way. Although this speed is not comparable with soft
keyboard on mobile devices with large screens, it is yet suffi-
cient for most texts-entry applications with wearable devices
such as writing a memo, making simple notes, giving short
reply and the like. Considering the differences of words’
lengths, we also compare the texts-entry speed by LPM (i.e.,
letter perminute) in Fig. 18.We can clearly see that the average
speed is 25.5 LPM for EchoWrite which is higher than that of
smartwatch by about 18.9 LPM.

Fig. 16. The top 5 accuracies of recognizing words w/o and with stroke correction for different words.

Fig. 17. The comparison of words-entry speed between EchoType and
Soft keyboard on a smartwatch.

Fig. 18. The comparison of letter-entry speed between EchoType and
Soft keyboard on a smartwatch.
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6.2.5 Impact of Training Time

Intuitively, a user’s proficiency has great impact on text-entry
speed. To evaluate this quantitatively, we request participants
to ‘write’ a block for 15 times (i.e., sessions) ofwhich each lasts
for about 2 minutes. We display the WPM and LPM of each
session in Fig. 19. As we can see, with increasing number of
practice sessions, the speed of user’s texts input also increases
especially in initial sessions. When this number reaches 13,
the WPM and LPM are stable and can be up to 16.0 and 54.0,
respectively. With less practice time, the texts-entry speed of
EchoWrite is higher than the state-of-the-art related works
COMPASS [14] which achieves a speed of 12.5 WPM after
90-minutes practice.

6.2.6 User Experience Assessment

As aforementioned, we make use of NASA-TLX as our evalu-
ation tool. NASA-TLX is a widely used subjective, multidi-
mensional assessment tool that rates perceived workload in
order to assess a task, system, or etc.. It divides the total work-
load (i.e., entering texts in our work) into six subscales which
include mental demand (MD), physical demand (PD), tempo-
ral demand (TD), performance (Pe), effort (Ef), and frustration
(Fr). We recruit 15 volunteers to participate in the user study
experiments. Before experiments, we first investigate the
weights that participants assign to different subscales for the
task of entering texts, following the approach suggested in
[44]. The investigation result is shown in Fig. 20a which has
been averaged over different participants.We can see that per-
formance (Pe), frustration (Fr) and temporal demand (TD) are
the top 3 factors affecting users’ assessment, while mental
demand (MD) and physical demand (PD) weight less. This is
because entering texts is a relatively short period which
requires little mental and physical effort. After entering texts
with both methods, we request each participant to give scores
to each factor in NASA-TLX questionnaire, and then sum up

weighted scores of all factors.5 Fig. 20b shows the overall score

of each participant. The overall score of EchoWrite is lower
than that of smartwatch, which indicates that our system pro-
vides better user experience.

6.3 System Running Performance

6.3.1 Running Time of Each Part

The time consumption of different data processing parts in
EchoWrite is shown in Fig. 21. As we can see, the total proc-
essing time of recognizing a stroke is less than 200 ms which
indicates favorable real-time performance of EchoWrite. We
can also see that signal processing including Doppler
enhancement and profile extraction occupies over 90 percent
running time. The underlying reason is that performing
STFT is rather time-consuming which can be optimized by
downsampling technique in the future work. Further more,
we notice that S4, S5 and S6 cost more time than other strokes
as they last longer and consist of more samples than other
strokes.

6.3.2 Energy Consumption

To obtain knowledge of energy consumption of EchoWrite,
We also monitor power consumption of a Mate 9 running
EchoWrite to recognize texts continuously and obtain
results as shown in Fig. 22. During experiments, the Echo-
Write application keeps running and experimenter ’writes’
texts continuously. At the same time, the screen is turned
on for the experimenter to make selection among candidate
words. As is shown, the power level decreases from 100 to
87 percent after 30 minutes, which means about 3 percent
power is consumed every 5 minutes. As a result, a smart-
phone can last for about 2.8 hours if we run EchoWrite con-
tinuously. Since entering texts such as short messages,
quick replies and etc. are not frequent, this power consump-
tion rate is acceptable for mobile devices. By optimizing
STFT as aforementioned, we can further reduce the power
consumption of EchoWrite.

6.3.3 CPU Occupation

We also evaluate the occupancy of CPU resources when a
mobile device runs EchoWrite. During evaluation, we turn

Fig. 22. The energy consumption when running the application.

Fig. 19. The performance of text input after different numbers of training
sessions.

Fig. 20. The results of user study experiment.

Fig. 21. The running time of different parts of data processing.

5. It is noted that for different participants, weights assigned for each
factor are not the same. When we calculate overall score of each partici-
pant, wemake use of his/herweights instead of the averageweights.
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off all other applications except EchoWrite and monitor
CPU consumption with Android API. We continuously
enter texts to test the maximum CPU consumption with
EchoWrite. Fig. 23 shows real-time CPU proportion con-
sumed during recognizing words with EchoWrite. Even
though the CPU proportion varies from 9.5 to 25.6 percent,
the average is about 15.2 percent with a standard deviation
of 2.3 percent which is acceptable for an application. Indi-
cated by Fig. 21, we can further decrease CPU resources
consumption by accelerating image and matrix processing
using the GPU.

7 DISCUSSION AND FUTURE WORK

As an prototype, EchoWrite still has several limitations and
needs to be optimized in the future work.

7.1 Scalability to Smartwatches

As aforementioned, EchoWrite can not run on existing
smartwatches at present due to the limitation of CPU capac-
ity. The results shown in Fig. 9 indicates that the hardware
of a smartwatch can support to implement EchoWrite pro-
vided the CPU workload is affordable. We are optimistic
about tackling this problem based on two-fold reasons. On
the one hand, obtaining the spectrogram by continuous
STFT costs a high percentage of CPU resources. To decrease
computing overhead, a possible approach is to utilize
down-sampling technique to reduce the number of FFT
points, according to bandpass sampling theorem [45]. More
importantly, this operation does not need to modify main
methods proposed in this work. On the other hand, We can
expect that wearables’ CPUs are able to support EchoWrite
in the near future considering the rapid hardware improve-
ment. Another concern of scalability is the impact of inaudi-
ble sounds on common use of speakers and microphones,
which actually also exists in previous works such as [10],
[11]. However, as EchoWrite only uses one single speaker-
microphone pair, we can control other microphone and
speaker to emit and receive ordinary acoustic signals, if the
device has multiple pairs. By utilizing signal processing
techniques such as filtering, it is feasible to remove inaudi-
ble components and reduce its impact.

7.2 Robustness to Bursting Noises

Although EchoWrite has exhibited robustness to external
noises, it is yet sensitive to certain kinds of burst noises such
as knocking tables and striking objects which usually cover a
wide frequency range overlapping with signals utilized in
EchoWrite. Due to the frequency overlap, the noises cause
interference to spectrograms of strokes, which makes it
rather difficult to work out corresponding Doppler profiles
and degrades the performance of stroke recognition. As a
result, it is desirable to further enhance system robustness by

tackling this problem. In our opinion, there are two possible
approaches to handle this problem. The first one is to
improve denoising techniques by making use of properties
of such noises like short duration. Another one is to use clas-
sification methods to classify texts-entry behaviors and irrel-
evant behaviors. By this approach, we can discard signal
segments only containing bursting noises caused by irrele-
vant events.

7.3 User-Defined Input Scheme

EchoWrite works in a training-free way, more precisely,
without collecting training data and training models, which
reduces intensive labor workload and increases its scalability
to different people and environments. But it needs a ’training’
process for users to learn the writing style of English alpha-
bets and remember the mapping relation between stroke ges-
tures and alphabets. Even though this overhead is acceptable
according to our experiments, a possible way to further
reduce the practice overhead for users is to take user’s own
writing habits and preference into account when designing
input scheme in Section 3.1. The current version of EchoWrite
can not support users to customize the input gestures due to
two reasons. First, we have not designed an module to auto-
matically check whether the customized gestures set are
appropriate. For example, some gestures may have the same
Doppler profile which are not permitted according to our
approach. Another reason is that some parameters are empir-
ically determined according to gestures. When users redefine
certain gestures, the corresponding parameters need to be
adjusted automatically. We leave adding self-adjusting mod-
ule into EchoWrite as one of our futurework.

8 CONCLUSION

Motivated by limitations of existing texts-entry approaches
for mobile devices, we propose a novel system named Echo-
Write that enables users to input texts with a finger writing
strokes in the air. EchoWrite relies on pervasive acoustic sen-
sors to sense writing gestures and further recognize entered
texts. To design this system, we propose a natural and effi-
cient input scheme, develop fine-grained Doppler profile
extraction method, design stroke-correction and texts infer-
ence algorithm. To evaluate performance of our texts-entry
approach, we implement real-time system on a commercial
device and conduct comprehensive experiments. Results
show that our approach enables users to enter texts at a com-
parable or even higher speed compared with related works.
It also provides more favorable user experience than touch
screen-basedmethod on smartwatches. Although EchoWrite
has still some limitations, we envision that it has great poten-
tial to be applied on various smart devices.

ACKNOWLEDGMENTS

The authors really appreciate the kind effort of the reviewers
andAE for giving precious suggestions to revise and improve
the paper. This work was supported in part by the China
NSFC Grant (61802264, 61872248, U1736207), Guangdong
NSF 2017A030312008, Guangdong Provincial Key R&D
Program (2019B111103001), Fok Ying-Tong Education Foun-
dation for Young Teachers in the Higher Education

Fig. 23. The CPU overhead during the process of recognizing words.

WU ETAL.: ECHOWRITE: AN ACOUSTIC-BASED FINGER INPUT SYSTEMWITHOUT TRAINING 1801

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 27,2021 at 09:01:51 UTC from IEEE Xplore.  Restrictions apply.



Institutions of China (Grant No. 161064), Shenzhen Science
and Technology Foundation (No. JCYJ20180305124807337,
No. ZDSYS20190902092853047), GDUPS (2015), and Natural
Science Foundation of SZU (No. 860-000002110537).

REFERENCES

[1] J. Wang, D. Vasisht, and D. Katabi, “RF-IDraw: Virtual touch
screen in the air using RF signals,” in Proc. ACM Conf. SIGCOMM,
2014, pp. 235–246.

[2] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu, “Tagoram:
Real-time tracking of mobile RFID tags to high precision using
COTS devices,” in Proc. 20th Annu. Int. Conf. Mobile Comput.
Netw., 2014, pp. 237–248.

[3] L. Sun, S. Sen, D. Koutsonikolas, and K.-H. Kim, “WiDraw:
Enabling hands-free drawing in the air on commodity WiFi
devices,” in Proc. 21st Annu. Int. Conf. Mobile Comput. Netw., 2015,
pp. 77–89.

[4] T. Wei and X. Zhang, “mTrack: High-precision passive tracking
using millimeter wave radios,” in Proc. 21st Annu. Int. Conf. Mobile
Comput. Netw., 2015, pp. 117–129.

[5] S. Agrawal, I. Constandache, S. Gaonkar, R. R. Choudhury,
K. Caves, and F. DeRuyter, “Using mobile phones to write in air,”
in Proc. 9th Int. Conf. Mobile Syst. Appl. Serv., 2011, pp. 15–28.

[6] C. Amma, M. Georgi, and T. Schultz, “Airwriting: Hands-free
mobile text input by spotting and continuous recognition of 3D-
space handwriting with inertial sensors,” in Proc. IEEE 16th Int.
Symp. Wearable Comput., 2012, pp. 52–59.

[7] M. Goel, L. Findlater, and J. Wobbrock, “WalkType: Using acceler-
ometer data to accomodate situational impairments in mobile
touch screen text entry,” in Proc. SIGCHI Conf. Hum. Factors Comput.
Syst., 2012, pp. 2687–2696.

[8] T. Ni, D. Bowman, and C. North, “AirStroke: Bringing unistroke
text entry to freehand gesture interfaces,” in Proc. SIGCHI Conf.
Hum. Factors Comput. Syst., 2011, pp. 2473–2476.

[9] S. Nirjon, J. Gummeson, D. Gelb, and K.-H. Kim, “TypingRing: A
wearable ring platform for text input,” in Proc. 13th Annu. Int.
Conf. Mobile Syst. Appl. Serv., 2015, pp. 227–239.

[10] R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota, “FingerIO:
Using active sonar for fine-grained finger tracking,” in Proc.
SIGCHI Conf. Hum. Factors Comput. Syst., 2016, pp. 1515–1525.

[11] W. Wang, A. X. Liu, and K. Sun, “Device-free gesture tracking
using acoustic signals,” in Proc. 22nd Annu. Int. Conf. Mobile
Comput. Netw., 2016, pp. 82–94.

[12] S. Yun, Y.-C. Chen, H. Zheng, L. Qiu, and W. Mao, “Strata: Fine-
grained acoustic-based device-free tracking,” in Proc. 15th Annu.
Int. Conf. Mobile Syst. Appl. Serv., 2017, pp. 15–28.

[13] C. Yu,K. Sun,M. Zhong, X. Li, P. Zhao, andY. Shi, “One-dimensional
handwriting: Inputting letters and words on smart glasses,” in Proc.
SIGCHI Conf. Hum. Factors Comput. Syst., 2016, pp. 71–82.

[14] X. Yi, C. Yu, W. Xu, X. Bi, and Y. Shi, “COMPASS: Rotational key-
board on non-touch smartwatches,” in Proc. SIGCHI Conf. Hum.
Factors Comput. Syst., 2017, pp. 705–715.

[15] Y. Lu, C. Yu, X. Yi, Y. Shi, and S. Zhao, “BlindType: Eyes-free text
entry on handheld touchpad by leveraging thumb’s muscle mem-
ory,” in Proc. ACM Interactive Mobile Wearable Ubiquitous Technol.,
2017, Art. no. 18.

[16] Apple Inc., “Siri,” [Online]. Available: https://www.apple.com/
ios/siri/. Accessed: Oct. 20, 2019, 2018.

[17] Microsoft Inc., “Cortana,” [Online]. Available: https://www.
microsoft.com/en-us/cortana/. Accessed: Oct. 20, 2019, 2018.

[18] M. T. I. Aumi, S. Gupta, M. Goel, E. Larson, and S. Patel,
“DopLink: Using the doppler effect for multi-device interaction,”
in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 2013,
pp. 583–586.

[19] K.-Y. Chen, D. Ashbrook, M. Goel, S.-H. Lee, and S. Patel,
“AirLink: Sharing files between multiple devices using in-air ges-
tures,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput.,
2014, pp. 565–569.

[20] S. Gupta, D. Morris, S. Patel, and D. Tan, “SoundWave: Using
the doppler effect to sense gestures,” in Proc. SIGCHI Conf. Hum.
Factors Comput. Syst., 2012, pp. 1911–1914.

[21] W. Ruan, Q. Z. Sheng, L. Yang, T. Gu, P. Xu, and L. Shangguan,
“AudioGest: Enabling fine-grained hand gesture detection by
decoding echo signal,” in Proc. ACM Int. Joint Conf. Pervasive
Ubiquitous Comput., 2016, pp. 474–485.

[22] Z. Sun, A. Purohit, R. Bose, and P. Zhang, “Spartacus: Spatially-
aware interaction for mobile devices through energy-efficient
audio sensing,” in Proc. 11th Annu. Int. Conf. Mobile Syst. Appl.
Serv., 2013, pp. 263–276.

[23] Z. Zhang, D. Chu, X. Chen, and T. Moscibroda, “SwordFight:
Enabling a new class of phone-to-phone action games on com-
modity phones,” in Proc. 10th Annu. Int. Conf. Mobile Syst. Appl.
Serv., 2012, pp. 1–14.

[24] S. Yun, Y.-C. Chen, and L. Qiu, “Turning a mobile device into a
mouse in the air,” in Proc. 13th Annu. Int. Conf. Mobile Syst. Appl.
Serv., 2015, pp. 15–29.

[25] W. Mao, J. He, and L. Qiu, “Cat: High-precision acoustic motion
tracking,” in Proc. 22nd Annu. Int. Conf. Mobile Comput. Netw.,
2016, pp. 69–81.

[26] T. Yu, H. Jin, and K. Nahrstedt, “WritingHacker: Audio based
eavesdropping of handwriting via mobile devices,” in Proc. ACM
Int. Joint Conf. Pervasive Ubiquitous Comput., 2016, pp. 463–473.

[27] H. Du, P. Li, H. Zhou, W. Gong, G. Luo, and P. Yang,
“WordRecorder: Accurate acoustic-based handwriting recognition
using deep learning,” inProc. IEEE INFOCOM, 2018, pp. 1448–1456.

[28] M. Chen et al., “Your table can be an input panel: Acoustic-based
device-free interaction recognition,” in Proc. ACM Interactive
Mobile Wearable Ubiquitous Technol., 2019, Art. no. 3.

[29] T. Yu, H. Jin, and K. Nahrstedt, “Mobile devices based eaves-
dropping of handwriting,” IEEE Trans. Mobile Comput., to be
published, doi: 10.1109/TMC.2019.2912747.

[30] T. Yu, H. Jin, and K. Nahrstedt, “Audio based handwriting input
for tiny mobile devices,” in Proc. IEEE Conf. Multimedia Inf. Process.
Retrieval, 2018, pp. 130–135.

[31] Y. Zou, Q. Yang, Y. Han, D. Wang, J. Cao, and K. Wu,
“AcouDigits: Enabling users to input digits in the air,” in Proc.
IEEE Int. Conf. Pervasive Comput. Commun., 2019, pp. 313–321.

[32] S. Shen, H. Wang, and R. R. Choudhury, “I am a smartwatch and I
can track my user’s arm,” in Proc. 14th Annu. Int. Conf. Mobile Syst.
Appl. Serv., 2016, pp. 85–96.

[33] C. Zhang et al., “FingerSound: Recognizingunistroke thumbgestures
using a ring,” in Proc. ACM Interactive Mobile Wearable Ubiquitous
Technol., 2017, Art. no. 120.

[34] C. Zhang, J. Tabor, J. Zhang, and X. Zhang, “Extending mobile
interaction through near-field visible light sensing,” in Proc. 21st
Annu. Int. Conf. Mobile Comput. Netw., 2015, pp. 345–357.

[35] Google Inc., “Google soli project,” [Online]. Available: https://
atap.google.com/soli/. Accessed: Oct. 20, 2019, 2015.

[36] Super EnglishKid, “Super EnglishKid,” [Online].Available: http://
www.superenglishkid.com/2014/11/stroke-order-worksheet-for-
teaching-how.html. Accessed: Oct. 20, 2019, 2014.

[37] M. Davies, “Corpus of contemporary american english.” Accessed:
Apr. 03, 2019, 2008. [Online].Available: https://corpus.byu.edu/coca/

[38] H. Zhang, W. Du, P. Zhou, M. Li, and P. Mohapatra, “DopEnc:
Acoustic-based encounter profiling using smartphones,” in Proc.
22nd Annu. Int. Conf. Mobile Comput. Netw., 2016, pp. 294–307.

[39] P. Soille, Morphological Image Analysis: Principles and Applications.
Berlin, Germany: Springer, 2013.

[40] P. Holoborodko, “Applied mathematics and beyond.” Accessed:
Jan. 16, 2018, 2015. [Online]. Available: http://www. holoborodko.
com/ pavel/

[41] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series,” in Proc. 3rd Int. Conf. Knowl. Discovery
Data Mining, 1994, pp. 359–370.

[42] M. Davies, “Word frequency data,” [Online]. Available: https://
www.wordfrequency. info/. Accessed: Oct. 20, 2019, 2010.

[43] T. Rasinski, “Fry instant phrases,” [Online]. Available: http://
www.timrasinski.com/presentations/. Accessed: Oct. 20, 2019,
2018.

[44] S. Rubio, E. D�ıaz, J. Mart�ın, and J. M. Puente, “Evaluation of sub-
jective mental workload: A comparison of SWAT, NASA-TLX,
and workload profile methods,” Appl. Psychol., vol. 53, no. 1,
pp. 61–86, 2004.

[45] A. V. Oppenheim, Discrete-Time Signal Processing, 3rd ed. Engle-
wood Cliffs, NJ, USA: Prentice Hall Press, 1999.

1802 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 5, MAY 2021

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 27,2021 at 09:01:51 UTC from IEEE Xplore.  Restrictions apply.



Kaishun Wu (Member, IEEE) received the BEng
degree from Sun Yat-sen University, Guangzhou,
China, in 2007, and the PhD degree from CSE
Department, Hong Kong University of Science
and Technology (HKUST), Hong Kong, in 2011.
He is currently a distinguished professor with the
College of Computer Science and Software Engi-
neering, Shenzhen University. His research inter-
ests include wireless communications and mobile
computing. He won the best paper awards of sev-
eral international conferences, such as IEEE
Globecom 2012 and IEEE ICPADS 2012.

Qiang Yang (Student Member, IEEE) received
the MEng degree in computer technology from
Shenzhen University, Shenzhen, China, in 2019.
He is currently working toward the PhD degree in
the Department of Computing, Hong Kong Poly-
technic University, Hong Kong. His research inter-
ests include mobile sensing, human-computer
interaction, and Internet of Things (IoT).

Baojie Yuan is working toward the postgraduate
degree in the College of Computer Science
and Software Engineering, Shenzhen University,
Shenzhen, China. Her research interest include
mobile computing.

Yongpan Zou (Member, IEEE) received the BEng
degree in chemical machinery from Xi’an Jiaotong
University, Xi’an, China, in 2013, and the PhD
degree from theCSEDepartment, HongKongUni-
versity of Science and Technology (HKUST), in
2017. He is currently an assistant professor with
the College of Computer Science and Software
Engineering, Shenzhen University, since Septem-
ber 2017. His research interests mainly include
wearable/mobile/ubiquitous computing and HCI.
For more information, please visit: https://
yongpanzou.github.io/

Rukhsana Ruby (Member, IEEE) received the
master’s degree from theUniversity of Victoria, Vic-
toria, Canada, in 2009, and the PhD degree from
the University of British Columbia, Vancouver, Can-
ada, in 2015. Her research interests include the
management and optimization of next generation
wireless networks. She has authored nearly 50
technical papers of well-recognized journals and
conferences.

Mo Li (Member, IEEE) received the BS degree
from the Department of Computer Science and
Technology, Tsinghua University, Beijing, China,
and the PhD degree from CSE Department,
Hong Kong University of Science and Technology
(HKUST), Hong Kong. He is currently an associate
professor with the School of Computer Science
and Engineering, Nanyang Technological Univer-
sity. He is headingWireless And NetworkedDistrib-
uted Sensing (WANDS) System Group, Parallel
and Distributed Computing Centre (PDCC). He is

on the editorial board of the ACM Transactions on Internet of Things, IEEE
Transactions on Wireless Communications, IEEE Transactions on Mobile
Computing, and IEEE/ACMTransactions onNetworking.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

WU ETAL.: ECHOWRITE: AN ACOUSTIC-BASED FINGER INPUT SYSTEMWITHOUT TRAINING 1803

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 27,2021 at 09:01:51 UTC from IEEE Xplore.  Restrictions apply.


