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Motivation

PC Era Mobile Era IoT Era
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Motivation

Smartphone PCTable computer

Traditional interaction interface - Keyboard
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Motivation

For new smart devices? Small screen size / no screen!

Smart watch Smart glass Smart home
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Related work

RF speech recognition IMU

Unstable Privacy concern Wearing device
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Hand gesture recognition
Coarse-grained HAND gesture 

Acoustic finger tracking
Two microphones are required

5. S. Gupta, D. Morris, S. Patel, and D. Tan, “Soundwave: using the Doppler effect to sense gestures,” in Proceedings of ACM CHI, 2012.
6. W. Wang, A. X. Liu, and K. Sun, “Device-free gesture tracking using acoustic signals,” in Proceedings of ACM Mobicom, 2016.
7. Y. Zou, Q. Yang, Y. Han, D. Wang, J. Cao, and K. Wu, “Acoudigits: Enabling users to input digits in the air,” in IEEE PerCom, 2019
8. W. Ruan, Q. Z. Sheng, L. Yang, T. Gu, P. Xu, and L. Shangguan, “Audiogest: enabling fine-grained hand gesture detection by decoding echo signal,” in ACM 

Ubicomp, 2016.

Related work
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Related work
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Training-
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Fine-
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One
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System Design - Basic idea

Principle: Doppler Effect
Frequency of a sound wave changes as a listener moves toward or away from the source
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System Design - Basic idea

horizontal vertical left-falling right-falling Left-arc Right-arc

*“Using Mobile Phones to Write in Air”, Sandip Agrawal , et.al, ACM MobiSys, 2011

Six basic strokes of English letters*
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System Design - framework

Audio 
stream

Templates

Noise 
elimination

Removing 
direct path

Profile 
extraction

Segmentation Stroke type

Matching

Correction Word 
suggestion

Word 
association

Linguistic model

Data collection

Stroke recognition

Preprocessing

Text recognition
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System Design - Challenges

1. How to recognize finger gestures in a training-free way?

2. How to input continuously under ambient interference ?

3. How to input text efficiently based on finger gestures?
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C1. How to recognize finger gestures in a training-free way?

Noise elimination
• Random noise: median filter
• Direct path: spectrum subtraction

STFT
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C1. How to recognize finger gestures in a training-free way?

Stroke profile extraction
• Normalization + Binarization
• Image processing: Area open, flood fill
• Profile extraction: Mean Value-based Contour Extraction (MVCE) algorithm

Stroke profile 

14



C1. How to recognize finger gestures in a training-free way?

Strokes Recognition
• Template matching
• Dynamic time wrapping (DTW)
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C2. How to input continuously under ambient interference ?

Successive Strokes Segmentation: 
• Traditional methods: based on speed (i.e. Doppler frequency)
• Key observation: In the end of stroke writing, the speed remains but acceleration 

decreases notably.
• Acceleration can be utilized to discriminate strokes and other movement (arm, body, 

and other objects)
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C2. How to input continuously under ambient interference ?

Successive Strokes Segmentation
• Acceleration: first-order difference
• Green box: moving objects
• Green circle: Uninterrupted writing

𝑓𝑓𝑡𝑡 =
1 ±

𝑣𝑣𝑓𝑓
𝑣𝑣𝑠𝑠

1 ∓
𝑣𝑣𝑓𝑓
𝑣𝑣𝑠𝑠

𝑓𝑓0 = ±
2𝑓𝑓0𝑣𝑣𝑓𝑓
𝑣𝑣𝑠𝑠 ∓ 𝑣𝑣𝑓𝑓

+ 𝑓𝑓0 ≈ ±
2𝑓𝑓0𝑣𝑣𝑓𝑓
𝑣𝑣𝑠𝑠

+ 𝑓𝑓0

𝑓𝑓𝑡𝑡′ =
2𝑓𝑓0
𝑣𝑣𝑠𝑠

𝑣𝑣𝑓𝑓′ =
2𝑓𝑓0
𝑣𝑣𝑠𝑠

𝑎𝑎
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C3. How to input text efficiently based on finger gestures?

Referring to T9 Keyboard
• Each stroke represents several letters (started by this stroke when writing).
• Users can customize their own writing habits.   

a, b, c C,G,O,Q
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C3. How to input text efficiently based on finger gestures?

Example: Input ’TO’

I, T, Z, J

C, G, O, Q

IC
IG
IO
IQ
TC
TO
TQ
…
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C3. How to input text efficiently based on finger gestures?

Bayesian-based Linguistic Model
• Tolerating possible errors (recognition or writing)
• Auto-associating the next possible word.

Corpus
(COCA)

Pre-coding

Dictionary
{word, frequency, length, strokeSequence}

𝑎𝑎𝑎𝑎𝑎𝑎max
𝑤𝑤

𝑃𝑃 |𝑊𝑊 𝐼𝐼

W: word
I: Input

Word association
2-gram data 

Stroke sequence (I)
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Evaluation - setup

3(settings) X 6(participants)X 6(strokes)X 30(repetitions) = 3240 strokes
6(participants) X 10(words) X 20(repetitions) = 1200 words

Huawei watch 2 vs Huawei mate 9

Meeting room Lab area Entertainment zone
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Evaluation – stroke recognition

Different devices
• Smartwatch: 94.4%, Smartphone: 94.7%
Different environment
• 94.4%, 94.9% and 93.2% in meeting room, lab area and entertainment zone.
Different participants
• 95.6%, 93.5%, 93.1%, 93.0%, 94.8% and 95%, respectively. 
• The standard deviation is about 1.1%.
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Evaluation – word recognition

Different words
• Average top k accuracies over different 

words are 73.2%, 85.4%, 94.9%, 95.1% 
and 95.7%.

• Providing three candidates, the inferring 
accuracy is up to 94.9%.

Linguistic model
• The average accuracies are 84.5% and 

88.9%, for cases with and without 
Linguistic model. 
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Evaluation – input speed

Speed of text-entry
• The average texts-entry speeds over all participant with EchoWrite and 

smartwatch keyboard are 7.5 WPM and 5.5 WPM, respectively.

WPM: Words Per Min    LPM: Letters Per Min
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Evaluation - User experience

User experience assessment
• Performance, Frustration and temporal demand are the top 3 factors that 

affect users’ assessment on a text-input system.
• the overall score of participants shows, smartwatch soft keyboard has higher 

workload than EchoWrite.

NASA-TLX workload factors:
• mental demand (MD)
• physical demand (PD)
• temporal demand (TD)
• performance(Pe)
• effort (Ef)
• frustration (Fr)
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EchoWrite – conclusion

With high-frequency signals and careful-designed processing 
pipeline, EchoWrite is robust to ambient noise and moving 
interference.

We design and implement EchoWrite which can recognize fine-
grained finger-writing strokes without training. 

EchoWrite enables users to perform text-entry in the air with 
the speed of 7.5 WPM with the commodity microphone and 
speaker.
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