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Abstract—Limited by size, shape, and other factors, it is rather
inconvenient to interact with new smart devices by traditional
methods. Acoustic-based methods following a machine learning
approach have been put forward to resolve this problem in previous
works. But they possess limitations of heavy training overhead,
low performance for unseen users, and intensive computation cost.
Following our previous work in this area, we further overcome
shortcomings of existing work and propose a lightweight and zero-
shot text-entry system for unseen users based on acoustic sensing.
The key novelty of this work is proposing a new model training
strategy including dataset construction and augmentation methods
to effectively enhance generalization ability of a simple learning
model with as few training data as possible, based on our insight
into the problem. We design and implement a real-time Android
application system called EchoWrite 2.0 to validate our idea with
extensive experiments. Results show that EchoWrite 2.0 can recog-
nize digits, English letters, and words with an accuracy of 85.3%,
73.2%, and 96.9%, respectively, for unseen users without providing
any data to the learning model. The comparison with related work
in different aspects shows overall superiority of EchoWrite 2.0.

Index Terms—Acoustic signals, text entry, wearable devices.

I. INTRODUCTION

R ECENTLY, novel smart devices have gained enormous
popularity among different people. A growing number

of people tend to possess at least one wearable device (e.g.,
smartwatch, smartband, and smartglass) according to a fore-
cast [1]. These devices are mostly of tiny sizes, which incur
inconvenience for interaction tasks such as entering texts with
widely used soft keyboards. As a result, it is even a rather
challenging task to dial telephone numbers on these devices.
In addition, since a soft keyboard requires a user to touch the
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screen with fingers, it will fail to work when fingers are wet
or dirty, and result in hidden risks of COVID-19 due to direct
interaction with public equipment.

Researchers have explored different novel methods for text
entry. Among these methods, speech recognition is a popular
choice that allows a user to convey information by speaking. But
it possesses shortcomings of inconvenience in certain occasions
(e.g., in a conference or in a library), performance degradation
in noisy environments, and privacy leakage in public places.
Other text-entry techniques are based on either radio-frequency
(RF) signals such as WiFi and RFID [2]–[5], or inertial sen-
sors [6]–[10]. However, RF-based techniques need specialized
equipment (e.g., RFID readers and tags, multiantenna Wi-Fi
transceiver, etc.) and/or require users to attach additional hard-
ware (tags) on them. Hence, these methods are not very ap-
plicable to mobile devices. Besides, the inertial sensor-based
scheme requires a user to hold a device with hand(s) or wear an
additional hardware while writing texts in the air. In a word, all
these equipment-dependent schemes appear to be not appealing
to users.

Following a device-free manner, some recent works make
use of acoustic sensors embedded in smart devices, namely,
microphone and/or speaker, to deal with text-entry or related
tasks [11]–[18]. Among them, the first five works adopt a passive
sensing way that merely utilize a microphone to sense acoustic
signals caused by writing digits or letters on a surface such as
a table or paper with a pen. By analyzing received signals, the
written contents can be inferred. Different from them, AcouDig-
its [17] makes use of both speaker and microphone in a smart
device to emit and receive acoustic signals when writing texts in
the air. It mainly takes advantage of Doppler shifts in received
signals to differentiate written texts. Despite these differences,
they share similar data processing pipelines following machine
or deep learning approaches. However, these works possess
the following shortcomings. First, they do not cope with the
cross-user problem well, which makes their methods perform
badly for unseen users. This is because different people write
texts in different ways, which results in differences between the
distribution of training data and that of testing data of unseen
users. Although some of them try to resolve this issue by request-
ing unseen users to provide enough data to retrain classification
models, it incurs heavy retraining burden for users and greatly
degrades their experience. Second, in order to achieve high
recognition performance, they require a large amount of training
data to build a complex learning model. This not only increases
the training overhead (including data collection effort and model
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training time) for a system builder, but also affects real-time
response performance on commercial devices. As a result, we
ask such a question: Can we design a lightweight, zero-shot
text-entry system that can reduce model complexity, training,
and retraining overhead as much as possible?

Similar to AcouDigits [17], in this work, we also follow an
active sensing route with a speaker emitting high-frequency sig-
nals to capture finger writing activities. Compared with passive
sensing, active sensing has stronger robustness to environmental
noises due to higher signal power and customized modulation.
But the critical difference from AcouDigits [17] lies in the novel
model training strategy proposed in this work. The key idea of
our methods is to enrich the diversity of training dataset and
expand boundaries of data distribution to cover as many unseen
cases as possible, under requirements of decreasing the size of
training set and getting rid of retraining process. To overcome
conflict between the goal and requirements, we first figure out
intrinsic factors that affect the generalization ability of a given
learning model. We find that writing speed plays a dominant
role since Doppler shift patterns highly depend on the speed of
a moving finger during writing. What is more, we discover that
users usually write texts at different speeds, and even the same
person shows this kind of variance at times. It means that speed
is a critical factor that induces user diversity and is the key to
cope with cross-user problem.

Based on the above insight, we intentionally add diversity
into training dataset by requesting participants to write texts
at three different speed levels, namely, slow, medium, and fast
when constructing a training dataset. Since user diversity mainly
depends on writing speed, we only need one participant to collect
training data, which can also effectively reduce the number of
samples. In addition, to further enrich diversity of the train-
ing dataset, we apply data augmentation (DA) techniques on
the original dataset similar to image processing. Combining
with the above measures, we find that it is rather effective to
reduce the training overhead for system builders and retrain-
ing cost for unseen users. What is more, proposed methods
make it possible to achieve high recognition accuracy and good
real-time response even with a very simple learning model
LeNet.

In a nutshell, the main contributions of our work can be
summarized as follows.

1) We propose a novel model training strategy that combines
multiscene training dataset construction and DA, in or-
der to improve data diversity and thus boost generaliza-
tion capability of a learning model. With our methods,
EchoWrite 2.0 greatly reduces training overhead and
totally eliminates retraining process while keeping high
recognition performance for unseen users. We believe that
our methods can be applied to many other related topics
such as human activity recognition that encounter similar
problems.

2) We design and implement a real-time Android system on
mobile devices, and also conduct extensive experiments to
evaluate its texts-entry performance. Experimental results
show that our system can recognize digits, letters, and
words with average accuracies of 85.3%, 73.1%, and

96.9%, respectively, for unseen users even with much less
training samples compared with other related works.

The rest of this article is organized as follows. Section II
introduces the related works. In Section III, we present specific
technical design of EchoWrite 2.0. Section IV introduces the
experimental design, and performance evaluation is described
in Section V. We conduct discussion in Section VI. Finally,
Section VII concludes the article.

II. RELATED WORK

In this section, we discuss the existing works that are closely
related to EchoWrite 2.0.

A. Commercial Text-Entry Approaches

Due to the increasing popularity, smart devices have gained
much attention to develop novel applications such as human–
computer interfaces (HCI) [19], [20] and crowd sourcing [21].
To enhance interaction experience of inputting texts, different
text-entry methods have been come up with. It is almost the
most common way to make use of soft keyboard as an inter-
face on present mobile devices such as smartphones, tablets,
and the like. The advantages of this method include low cost,
high efficiency, and good convenience. But it is not suitable
for those devices with tiny screens such as smartglasses and
smartwatches. In order to boost the text-input efficiency on these
devices, researchers have made some technical improvements
to soft-keyboard methods [19], [20]. Nevertheless, they still
cannot resolve intrinsic shortcomings of touch-based text-entry
methods. Speech recognition is another promising technique
that can be used for inputting texts on smart devices such as
Siri [22] and Cortana [23]. However, speech recognition is not
appropriate for any usage scenarios in real life. For example, it
is to be negatively affected by background noises, which shall
degrade the recognition performance. In addition, it has the risk
of privacy leakage and causing awkward feelings to users when
they use speech assistant in the public occasions.

B. Sensor and RF-Based Text-Entry Systems

In addition to the above, some other techniques have also been
put forwarded including sensor-based methods [6], [7], [10],
[24] and RF-based schemes [2]–[5]. In [6], the accelerometer
in a smartphone is utilized to recognize characters written by
a user in the air. In [7] and [10], different sensors such as
distance sensor, proximity sensor and accelerometer have been
fully used to design middlewares for users to enter texts to other
devices. Nevertheless, they have the following shortcomings in
comparison with EchoWrite 2.0: 1) in addition to the device to
interact with, they require additional hardware/devices; 2) users
need to carry a device in the hand while entering texts, which
induces inconvenience. The RF-based schemes make use of
60-GHz transceivers, RFID, and Wi-Fi to design precise motion
tracking [3], [4] or text-input systems [2], [25]. However, those
systems need to deploy specialized RF hardware, which are not
applicable for commercial devices. Compared with the above
methods, EchoWrite 2.0 enables users to enter texts without
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Fig. 1. Data processing workflow of EchoWrite 2.0.

additional hardware and allows them to free hands instead of
carrying or wearing devices in hand or on body.

C. Acoustic Signal-Based HCI

Researchers have also widely made use of acoustic sensors
including microphone and speaker to design HCI on mobile
devices. Some take advantage of the Doppler effect for gesture
recognition [26]–[29] and motion tracking [30]–[33]. But all
those systems except [27] and [28] require a user to carry a device
in hand to perform gestures, which is rather inconvenient. What
is more, the techniques proposed in these previous work cannot
be used for recognizing texts. Even though the works [27], [28]
can recognize in-air gestures, both of them distinguish a small
set of coarse gestures such as “PULL” and “FLICK” as they only
use Doppler features induced by hand gestures. Finer recognition
granularity is needed to recognize texts written by a finger in the
air. The works [34]–[36] are most related to EchoWrite 2.0 that
achieves millimeter-level 2-D finger motion tracking in a device-
free way. Nevertheless, there exist notable differences between
our work and them. First, they deal with the motion tracking
problem instead of text entry. Further extensions are needed for
them to recognize texts. Moreover, those works require a mobile
device to equip multiple speaker–microphone pairs in order
to track finger motion. However, a majority of existing smart
devices, such as smartphones and smartwatches, do not satisfy
this requirement due to the limitation of cost or size. In contrast
to them, our system only needs one speaker–microphone pair,
which makes it much easier to be implemented on almost all
commercial devices. Some other related works [11]–[17], [37]
conducted research of text entry with acoustic signals by various
means. But our work shows advantages of better performance
for unseen users, much less training overhead for system builder,
and good real-time response. We conduct a comprehensive
comparison with these works in the evaluation part described
in Section V-E.

III. SYSTEM DESCRIPTION

The overview of EchoWrite 2.0 is displayed in Fig. 1,
which exhibits different functional components in line with
data processing pipeline. In detail, a speaker in a smart device
first emits sin wave-modulated inaudible signals, which is then

bounced off by a finger writing texts near the device. At the same
time, a microphone in the same device receives bounced echoes
at a default sampling rate of 44.1 KHz. The received echoes
are first denoised to filter out interfering noise and magnify
the signal components of interest. Then, we transform the sig-
nal sequence into Doppler spectrograms via short-time Fourier
transform (STFT), which uncover Doppler patterns of writing
different digits and letters. To cut off unnecessary information in
spectrograms, we detect writing events based on Doppler shifts
and extract corresponding parts. In the model training stage, we
collect training dataset following our proposed strategy to cover
cases of different speeds. After that, we apply DA techniques
that have been widely used in image processing to the obtained
training dataset in order to further improve the dataset. After
that, we train a LeNet model to recognize entered texts. In a
word, EchoWrite 2.0 is composed of three main modules, i.e.,
data preprocessor, model training stage, and texts recognition
module. In the following, we shall give detailed description
about this workflow.

A. Preprocessing

1) Denoising: The received signals are first fed into a prepro-
cessing module to remove noise and boost signal-to-noise ratio.
More precisely, we conduct noise removal on the raw signals
and then detect finger writing gestures in this stage. To avoid
disturbing others, we make use of high-frequency inaudible
audio signals with a frequency of 19 KHz, which is beyond the
human hearing range. Because of this, we only pay attention to a
certain frequency band of received signals, which is centered at
19 KHz with frequency shifts caused by finger motions. Signal
components out of this frequency band are regarded as noises
and filtered out by a bandpass filter. To determine the filter
parameters, we need to estimate the quantity of frequency shifts
when a finger writes in the air. Considering a case in which a
finger moves at 1 m/s, the resultant maximal frequency shift is
about 112 Hz determined by

Δf = f0 ·
∣∣∣∣1−

vs ± vf
vs ∓ vf

∣∣∣∣ (1)
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Fig. 2. Illustrations of spectrograms and writing activity detection. In each spectrogram, the color bar indicates the intensity of signals and the red dashed lines
represent the detected starting and ending positions with our method. (a) Writing “0.” (b) Writing “1.” (c) Writing “3.” (d) Writing “8.” (e) Writing “A.” (f) Writing
“H.” (g) Writing “M.” (h) Writing “X.”

where f0, vs, and vf represent the frequency of emitted signals,
the speed of sound, and the velocity of finger motion, respec-
tively. Based on this, we apply a six-order Butterworth bandpass
filter with a passing band of [18 700, 19 300]Hz on raw signals to
remove background noises and human voices. Besides, signals
also transmit through a direct path from speaker to microphone,
which result in a dominant component at central frequency (i.e.,
19 KHz). To eliminate it, a three-order band stop filter with
a stopband [18 985, 19 015] Hz is used to suppress this static
component interference.

2) Event Detection: Following the denoising operation, writ-
ing gesture detection is performed to extract corresponding sig-
nal segments. Different from most previous works, we conduct
events detection based on spectrograms of original data. It is
because that the finger motion induces notable frequency shifts
in the time–frequency domain. By transforming signals in time
domain into spectrograms, it is easy to figure out the starting
and ending points of writing activities. Technically, we apply
a sliding Hamming window on a signal sequence and obtain a
series of audio frames. After that, we perform FFT on each frame
to obtain the spectrum [38], and then check whether there exist
frequency shifts around the 19-KHz band. In detail, we set the
frame length and nFFT (the length of FFT) to be 8192 sample
points (i.e., about 0.1858 s) and the overlapping length between
consecutive frames to be 7168 samples (i.e., about 0.1625 s).
There are some tricks of setting these parameters. A larger
frame length (i.e., nFFT) results in better frequency resolution
(i.e., activity analysis granularity) but worse time resolution and
real-time response and vice versa. The above parameters are
empirically tuned by taking the tradeoff of above factors into
account. Then, we can obtain a spectrogram of signal sequence
with x sample points, which has �(x− 8192)/1024� time bins
and 4097 frequency bins with a resolution of 5.38 Hz. As the

induced Doppler frequency belongs to [18 700, 19 300] Hz, we
can reduce computational cost by cutting off parts beyond this
range.

In the training stage, we can manually label the starting and
ending time of a writing event in the process of collecting
training data. However, when a user tries such a real-time system,
it requires to detect writing events and extract corresponding
active segments automatically for the sake of input efficiency. To
do this, we check frequency shifts of each frame of spectrogram
at different frequencies. When there exists a threshold number
(Thre1) of continuous frequency shifts with high power, the
frame is asserted to be active; otherwise, it is regarded as an
inactive frame. As a general stroke writing time is about 450
ms [11] (about three bins), we set the above threshold Thre1 to
be 4. However, frequency shifts may also be caused by some
random movements instead of writing activities. Hence, we
empirically set a power threshold Thre2 to be −80 to filter out
random interference with low energy. The results of detecting
writing digits and letters based on spectrograms are shown in
Fig. 2. We can note that when writing “0,” a user sweeps his/her
finger through the microphone and back, which induces sine
wave-like Doppler frequency shifts. As for digit “1” a user writes
it with finger going away from microphone directly. As a result,
a “valley” appears in the spectrogram.

B. Model Training

In this section, we mainly describe the methods of model
training.

1) Model Training Strategy: Inspired by the above insight,
we redesign data collection strategy to cover more practical
situations of unseen users. To be more specific, we request a
trainer to collect training data in three cases according to the
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level of writing speed, namely, i.e., slow, medium, and fast. In
this way, we can construct a dataset covering three different
usage scenarios that intrinsically affects Doppler shift patterns
of writing different digits or letters. This strategy seems to be
simple but is proved to be effective by experiments as demon-
strated in Section V. The key insight is that we figure out the
intrinsic factors that induce users’ diversities and affect classi-
fier’s generalization capability to unseen users. We intentionally
vary values of these intrinsic factors when collecting training
data and thus add variance to the training dataset covering as
many usage cases as possible. In our work, the most critical
factor is writing speed according to our analysis, which is the
reason why we design such a training data collection scheme.

2) Data Augmentation: After collecting training data, we ap-
ply DA techniques to further improve the generalization ability
of classification model based on a small sample set. Inspired
by DA in image processing, we make use of some common
DA techniques including translation and scaling. Specifically,
the translation operation refers to shifting spectrograms to hori-
zontally and vertically, with translation ratios of 0.11 and 0.05,
respectively. The scaling operation refers to zooming in or out
a spectrogram proportionally by ratios of 1.15 and 1.07 in two
directions. These parameters are carefully set to avoid distorting
the spectrograms too much in the case of losing intrinsic Doppler
shift patterns of writing gestures. Our insights are twofold.
For one thing, considering the complex conditions of practi-
cal usage scenarios, our detection method may fail to detect
writing activities precisely with detected starting and ending
points shifting horizontally, as shown in Fig. 2. Translation adds
more horizontally shifting samples automatically and improves
the data diversity. For another thing, considering the diverse
writing speeds of different users, spectrograms of the same digits
or letters present compression and stretching effect vertically.
Scaling adds more vertical deformations to spectrograms, which
simulates virtual users with various writing speeds. In our work,
translation and scaling operations are randomly applied to orig-
inal training dataset and enlarge it to be roughly three times,
namely, from 450 samples to 1350 samples for digits, and from
1170 samples to 3510 samples for letters. It is noted that although
there are some other DA operations such as flipping, cropping,
and rotation, they are not appropriate for our problem since they
change Doppler shift patterns.

Fig. 3 clearly shows the effectiveness of our strategy with
DA techniques in boosting the generalization capability of a
classifier. In this figure, the red points represent samples of
an unseen user projected in 2-D feature space after principal
component analysis. The black points represent samples of a
trainer collected with our strategy at three levels of writing
speeds. The blue points represent samples created by DA based
on the trainer’s medium-speed samples (denoted by black pen-
tagon points). Correspondingly, the black, red, and blue ellipses
indicate distributions of the three datasets. As we can see, the red
and black points are much closer to each other, which means that
both datasets share very similar distribution patterns. In contrast,
the red and blue points separate from each other obviously, which
indicates the noticeable difference between corresponding data
distributions. In other words, our strategy of constructing

Fig. 3. Demonstration of effectiveness of our strategy with DA techniques.

training dataset is beneficial for aligning sample distributions
of a trainer and unseen user, and boosting classification perfor-
mance finally.

3) Classification Model: Following the above, we take ad-
vantage of a LeNet model for classification by taking several
factors such as accuracy, real-time response, and training time
into account. Although there are some other classification mod-
els appropriate for mobile devices, LeNet is an relative optimal
choice after trying SVM, LSTM, and MobileNet, as described
in Section V-A1 in detail. LeNet is a simple and straightforward
convolutional neural network (CNN) structure, which has only
seven layer besides the input layer. After tuning network param-
eters, LeNet performs well in terms of key evaluation metrics
including accuracy, response time, and training overhead. Table I
shows specific architecture and parameters of LeNet utilized in
our work. It is noted that we use the same network architecture
for digits and letters recognition except for the number of nodes
in the last layer, with 30 and 78 nodes, respectively. We train
these two models with Adam as optimizer and cross entropy
as loss function utilizing corresponding dataset separately and
deploy both of them into a mobile device. For the convenience
of practical use, we create a shift button in the present version of
Android APP such that users can easily switch text-entry func-
tions. Obviously, this can also be accomplished by designing a
special gesture if being totally touching-free is required.

4) Classification Decision: In this way, our model could
predict an unseen user’s input in an acceptable accuracy while
only trained on one user’s small dataset. Noticing that the speed
is the core of the Doppler effect, we divide 10 digits and 26 letters
into 30 and 78 classes, respectively, according to the three speed
levels. We make a sum of different speeds to make the final
classification as follows:

C = arg max
i∈S

(P (i)), where P (i) =
∑

j∈V
P (i, j) (2)

where C is the predicted digit or letter; S = {‘0′, . . . , ‘9′} or
{‘A′, . . . , ‘Z ′rbrace, representing the full set of digits or letters;
V = {slow, medium, fast} representing the set of speed levels;
and P (i, j) is the probability of digit or letter i with speed j.
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TABLE I
SPECIFIC ARCHITECTURE AND PARAMETERS OF LENET UTILIZED IN OUR WORK

C. Words Recognition

Based on the results of letter recognition, we can further
accomplish words recognition based on Bayesian inference.
Suppose a user writes a word S of length N denoted by
s1, s2, . . . , sN . As we know, the classification model outputs a
26-dimensional likelihood vector with each element indicating
the probability of recognizing si as a certain letter li. Conse-
quently, for the word W , there exists an N × 26 likelihood
matrix denoted by A. In order to infer the right word that S
represents, we need to compute the probability of matching
s1, s2, . . . , sN with each word of length N in a dataset.

Specifically, for a candidate word W = l1, l2, . . . , lN , the
probability of mapping S to it should be the product of matching
every si with li, which can be computed in a recursive way as
follows:

PS→W (i) = PS→W (i− 1)×A(si, li)

× P (li|l1, l2, . . . ,li−1), i > 1 (3)

where PS→W (i) represents the probability of matching the first
i letters of S with those of W . A(si, li) represents the prob-
ability of recognizing si as li. P (li|l1, l2, . . . ,li−1) represents
the appearance probability of li given l1, l2, . . . , li−1, which
reflects dependency of letters in words. Nevertheless, it is rather
computationally intensive to calculate this probability if we
take n-gram dependency into account especially when n is a
large number. As a result, we reduce it to be a simple form as
follows with 2-gram dependency according to Markov chain
assumption.

P (li|l1, l2, . . ., li−1) ≈ P (li|li−1) (4)

where P (li|li−1) is also called as transition probability, which
can be obtained by computing corresponding frequencies within
a large words dataset as follows:

P (li|li−1) =
C(li−1,li)

C(li−1,A→Z)
(5)

where C(li−1,li) and C(li−1,A→Z) represent the frequency of
letter combination li−1li and combinations li−1(A → Z), re-
spectively. When i equals 1, meaning that li is the first letter
of a word, the corresponding P (li|li−1) reduces to be P (l1).
Consequently, (3) can be simplified as follows:

PS→W (i) = PS→W (i− 1)×A(si, li)×
C(li−1,li)

C(li−1,A→Z)
, i > 1.

(6)

Thus, for a word of length N , the final matching probability can
be computed by

PS→W (N) = P (l1)×
N∏

i=1

A(si, li)

N∏

i=2

C(li−1,li)

C(li−1,A→Z)
, N > 1

(7)
when N equals 1, PS→W (1) equals A(s1, l1)× P (l1). Some
notes should be given about the above equations. First, when we
compute (7), P (l1) and all the C(li−1,li) and C(li−1,A→Z) should
be counted within the words set of length N , instead of the
whole words set. Second, all the conditional probabilities in (7)
can be precomputed by counting vocabularies and then stored
in a database. When a user enters texts, the system continuously
queries the database to obtain corresponding conditional proba-
bilities to infer possible words. Following the above procedure,
we can obtain probabilities of mapping S to different candi-
date words with the same length. Finally, the application will
recommend several candidates with highest probabilities.

IV. IMPLEMENTATION AND EXPERIMENTS

A. System Implementation

To evaluate our method, we implement EchoWrite 2.0 An-
droid application on a Samsung Galaxy Tab S2, which has an
Exynos 5433 CPU chipset with a basic frequency of 1.3 GHz
and 3 GB ROM. In the application, we modulate one speaker
to emit a sinusoidal acoustic wave of 19-KHz frequency that
can be supported by most commercial devices. At the same
time, a microphone is set to receiving acoustic echoes with a
sampling rate of 44.1 KHz simultaneously, which satisfies the
Nyquist sampling theorem and is supported by current Android
OS. Obtaining echo signals, we make use of Python codes in the
Android application to via Chaquopy project [39] to deal with
signal processing operations including denoising, transforming,
and events detecting. The reason why we utilize Python codes
instead of more efficient C codes here is that different program-
ming languages possess different numerical truncation errors
that have impact on the final results according to our exper-
iments. In accordance with following classification model, we
sacrifice some real-time performance to attain better recognition
performance. Nevertheless, we think this is more an engineering
problem that can be handled by sparing more development effort
in the future. After that, we train classification models with
Keras-2.3.1 [40] offline, pack them into h5 files, and then deploy
them into mobile devices with TensorFlow Lite [41].
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Fig. 4. Experimental setup and Android APP. (a) Experimental setup. (b) UI
of our Android APP.

B. Experiments

To do experiments, we recruit a total number of 22 participants
including 15 males and seven females from our campus with
ages from 17 to 24. We pay them by 100 CNY per hour after ex-
periments. The experiments are divided into two stages with the
setup as shown in Fig. 4(a), that is, training data collection and
system testing. In the former stage, we request four participants
(denoted by P1, P2, P3, and P4) to write each digit and letter
in the air 15 times at three levels of speed, namely, “fast speed,”
“medium speed,” and “slow speed.” Thus, each trainer collects
45 samples for each digit and letter used for training. It is to be
noted that, although four participants take part in training data
collection, we utilize samples from only one of them, that is,
450 samples for digits and 1170 samples for letters, instead of
all the collected training samples to train the model and build
our real-time system.

After that, we request all the participants (including the above
four trainers) to use the system and evaluate its performance from
three parts. Different from the training stage, we do not impose
any restrictions on writing to participants except for following
a set of uniform writing trajectories that are the same as those
used in our previous works, namely, AcouDigits [17] (for digits)
and EchoWrite [18] (for letters). In other words, they can write
digits and letters at any speed, and in any size that they are used
to. In this testing stage, participants can write texts in the way
that they are used to. The first part is about the performance
of recognizing basic digits and letters. We ask testers to write
each digit and letter ten times and collect a total number of 2200
and 6760 testing cases for digits and letters, respectively. The
second part is to evaluate the performance of entering words
with EchoWrite 2.0. To make it more reliable and convincing,
we make use of three word sets including the 50 words used
for the same purpose in a latest related work [16], randomly
selected 50 words in Corpus of Contemporary American English
(COCA) [42], randomly selected 105 words in 20 sentences [43].
Additionally, we also evaluate the impact of word length and
frequency on word recognition performance. We first categorize
words in COCA by length from 1 to 15, and randomly select
ten words for evaluation in each category except for the first
and last ones as they only contain one word. We also classify
words in COCA into ten groups with word frequency ranging
from (0, 500] ∩ Z to (4500, 5000] ∩ Z. In each group, we also
randomly select ten words for evaluation. After picking up the
above two word sets, participants write each word within them
ten times.

There are several points about the experiments to be pointed
out. First, there are some environmental variables that may affect
system’s performance such as noise level, writing distance, and
device orientation. We conduct all the above experiments in a
baseline setting with noise level within [45, 50) dB, writing dis-
tance at [0, 30) cm away from a device, and relative orientation
being 0◦. With data collected in such a baseline setting by a
trainer, we train a unified model instead of specific models to
build our system, and also test its performance under different
conditions by varying values of the above environmental factors.
Note that a unified model indicates that our system can handle
unseen usage scenarios involving diverse users, heterogeneous
devices, and different noise levels without collecting new train-
ing samples and updating the recognition model. Nevertheless,
considering the overwhelming experimental overhead of full
test, we request two instead of all participants to do this part
of experiments. In Sections V-B3–V-B5, we shall give detailed
evaluation of the impact of those variables. Second, besides the
above, we also conduct experiments to evaluate the system’s
real-time running performance including response time, CPU
and memory occupation, and battery consumption. We shall give
detailed description about this in Section V-D.

V. EVALUATION

In this section, we evaluate the performance of EchoWrite
2.0 from different aspects. Besides the most frequently used
metric (i.e., accuracy), we also adopt top-k accuracy to evaluate
the performance of recognizing letters and words. For a letter
or word entered N times in total, if it occurs n times in the lists
with top k candidates, then the top-k accuracy is defined as n

N .

A. Real-Time System Building

In this section, we shall determine several key components of
our real-time system by experiments, which include classifica-
tion method, training subject and strategy, and DA techniques.
To reduce the overhead of building a system, we request four
out of the whole participants to collect 15 samples at different
speeds, and each of them constructs a dataset with 450 samples.

1) Classification Methods: We first aim to determine a
proper classification method by testing the following classifiers
in recognizing digits.

1) AcouDigits: We implement the complete data processing
pipeline including preprocessing, segmentation, feature
selection, and SVM classifier following the work [17].
Then, we train and test the system with “leave-one-
subject-out” policy with data of the four participants.

2) MobileNet: We replace the “CNN model” block in Fig. 1
with a MobileNet and train it with spectrograms [44].

3) LSTM raw: In this method, we directly feed the obtained
acoustic signals into a fine-tuned LSTM model [45].

4) LSTM spec.: In this method, we feed the obtained spec-
trograms after preprocessing as described in Fig. 1 into an
LSTM model.

5) LeNet: We replace the “CNN model” block in Fig. 1 with
a LeNet [46].
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Fig. 5. Performance of recognizing digits with different methods.

There are several points to be noted. First, we consider these
models instead of other more complex and powerful ones since
they can be more easily supported by mobile devices to guarantee
favorable real-time response. Second, for fair comparison, all
the above methods make use of the same dataset, namely, a total
number of 450 samples with 45 ones for each class (i.e., training
strategy is not applied) from the same subject for model training.
And then, we test them with samples from the other three
subjects. We conduct the above training and testing process with
“leave-one-subject-out” policy among the four training subjects.
Third, we have carefully tuned each method including input size,
model structure, and hyperparameters with best effort to achieve
their optimal performance. The average results of different
methods are shown in Fig. 5 . As we can see, LeNet performs
the best with an accuracy of 75.3%, better than the suboptimal
method LSTM spec. by about 14.3%. We envision that this is
mainly because LeNet is a simpler network and has stronger
generalization ability especially when the training dataset is
not large enough. LSTM raw achieves the worst performance
since time series do not reveal the patterns of writing different
texts obviously in contrast with spectrograms. We can also see
that Acoudigits does not work well on our new dataset with
an accuracy of 35.2%. We suspect that this is because when we
construct the training datasets ofP1,P2, andP3, we request them
to write digits with different speeds and scales intentionally,
which exaggerates the writing diversities of different users.
Additionally, we note that in our evaluation the size of input
spectrograms results in a tradeoff between recognition accuracy
and parameters size (or training time) with LeNet. With a larger
input size, the accuracy and parameter size increase. We set this
parameter to be 56 for a better balance of accuracy and real-time
response. Based on the above results, we finally build our system
with LeNet and conduct the following evaluations.

2) Effectiveness of Strategy: Following the above, we also
evaluate the effectiveness of our proposed training strategy by
responding to how much gain we can obtain from this strategy
and whether it goes for different training subjects. To do this,
we test the system performance by considering the strategy is
used or not. In the case of with strategy, we train LeNet with one
trainer’s augmented dataset in each time, which has 45 samples
for each of the 30 classes, and is obtained by applying DA
techniques on the original dataset introduced in Section III-B2.
In the case of without strategy, we make use of the same dataset

Fig. 6. System performance with/without training strategy on different sub-
jects.

Fig. 7. System performance with/out DA techniques.

with the above but merge samples of writing the same digit with
different speeds into one group. As a result, there are actually 135
samples for each of the ten classes in this case. In both cases,
we make use of “leave-one-subject-out” policy train and test
classification models of which parameters are carefully tuned in
each time. The results are shown in Fig. 6 in which Px/wo
represents the accuracy when the system is trained on Px’s
dataset without applying strategy, while Px(+)/w indicates
the accuracy gain brought by the strategy. As we can see, the
average accuracies across three training subjects in two cases are
88.4% and 79.2%, respectively. This means that the proposed
strategy can indeed bring about a nearly 9.2% accuracy gain
without increasing the overhead of collecting training data. As
a result, we take advantage of training strategy when building
the system by default. We can also notice that the strategy is
similarly effective for different training subjects, with accuracies
ranging from 87.3% (P3) to 90% (P2). This indicates that the
proposed method applies to different training subjects without
noticeable performance variations. Thus, we select P1 as the
training subject and utilize its data to train a real-time system
for the following evaluation.

3) Gain of DA: With strategy used, we also evaluate the
impact of DA techniques by training LeNet with original dataset
of P1 without augmentation (i.e., 30 classes and 450 samples
in total) and its augmented versions (i.e., 30 classes and 1350
samples in total) with different augmentation operations includ-
ing shifting, zooming, and both of them. After that, we test the
obtained four models with data of three other subjects (i.e., P2,
P3, and P4). We can see from Fig. 7 that the accuracies of

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on January 19,2023 at 09:29:15 UTC from IEEE Xplore.  Restrictions apply.



ZOU et al.: ECHOWRITE 2.0: A LIGHTWEIGHT ZERO-SHOT TEXT-ENTRY SYSTEM BASED ON ACOUSTICS 1321

Fig. 8. Overall accuracies of recognizing different digits and letters. (a) Average accuracies of different digits. (b) Average accuracies of different letters.

Fig. 9. Confusion matrices of recognizing digits and letters: (a) confusion matrix of recognizing digits; (b) confusion matrix of recognizing letters.

recognizing digits in the above four cases are 74.4%, 80.3%,
78.3%, and 85.3%, respectively. In other words, DA with both
shifting and zooming brings about the maximum accuracy gain
of 10.9% when training data collection strategy is used. Never-
theless, comparing the results shown in Figs. 5 and 6, we can
find that when strategy is not applied, DA can improve system
performance by only 2.7%. This in turn proves the effectiveness
of proposed strategy.

B. Digit and Letter Recognition

Based on the above results, we build a real-time system by
making use of the augmented dataset of training subject P1 to
train a fine-tuned LeNet with proposed training strategy. After
that, we conduct comprehensive evaluation of its performance
in recognizing digits and letters. Without specification, all the
22 participants take part in the evaluation experiments in this
stage.

1) Overall Performance: Fig. 8(a) and (b) displays the over-
all performance of EchoWrite 2.0 in recognizing digits and
letters, respectively. As we can see, the average accuracy of
digits recognition over all the experimenters is 85.3% with the
lowest accuracy of 70% for digit “6” and highest accuracy
of 95% for digit “7.” This indicates that different digits vary
in recognition accuracy, which is due to the similar Doppler
patterns in spectrograms of some digits. For example, as digit

“4” has rather similar writing trajectory to that of digit “6,”
their spectrograms present similar Doppler patterns, which make
them easier misclassified. Similarly, “0” and “6,” “1” and “7”
also have similar Doppler patterns. These can be verified by
Fig. 9(a), which shows that over 13% samples of digit “6”
are misclassified to be digit “4”; nearly 20% samples of digit
“1” are misclassified to “7.” Different from digits, we display
top-1, top-3, and top-5 accuracies for English letters, since top-k
accuracy is meaningful for the following words input according
to (7). As we can see from Fig. 8(b), the average top-1, top-3, and
top-5 accuracies of all the letters are 73.2%, 95.4%, and 98.8%,
respectively. Similar to digits, due to the similarities of writing
patterns, some letters have relatively low recognition accuracies
such as “K,” “P,” and “Q.” This is because “D” and “K,” “O”
and “P,” “Q” and “D” share similar Doppler shift patterns in
spectrograms. Consequently, as shown in Fig. 9(b), “K,” “P,” and
“Q” are easily miscategorized to “D,” “O,” and “D,” respectively.

2) Impact of User Diversity: We also display experimental
results from the perspective of user diversity, considering that
different people have varied writing habits. To do this, we
calculate the average recognition accuracies over all digits and
letters for each participant. As shown in Fig. 10, the recognition
accuracies of different participants vary from 77% to 92% with a
mean value of 85.3% and standard deviation of 3.7% for digits,
from 65.4% to 78.9% (top-1 accuracy) with a mean value of
73.2% and standard deviation of 3.7% for letters. It is noted
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Fig. 10. Average accuracy of recognizing digits and letters for different participants.

Fig. 11. Impact of relative distance. (a) Experimental setting. (b) Experimental
results.

that the tested system is built only with training data from
subject P1. This implies that even though there exist variations
of recognition performance among different participants, the
system based on our method shows high generalization ability
across different users.

3) Impact of Relative Distance: As aforementioned, the
above evaluation experiments are conducted in baseline setting.
In this section, we evaluate the impact of relative distance
between writing finger and the device. Since this distance varies
during writing and is hard to be precisely measured, we consider
four different ranges, namely, near (i.e., [0, 30] cm), medium
(i.e., [15, 45] cm), far (i.e., [30, 60] cm), and farther (i.e., [45,
75] cm), as shown in Fig. 11(a). We can see that when the relative
distance increases, the performance decreases whether for digits
or letters. When the writing distance belongs to the far range,
the average accuracies of digits and letters reduce to 64.4% and
64%, respectively. The underlying reason is that with an larger
writing distance, the received acoustic signals become weaker,
which causes the Doppler shifts to be not obvious enough.

4) Impact of Relative Orientation: We also evaluate the im-
pact of relative orientation between a writing finger and the
device with an experimental setting, as shown in Fig. 12(a).
We divide the relative orientation from −45◦ to 45◦ with a step
of 22.5◦. In each case, we request participants to test the system
with ten trails and obtain the results, as shown in Fig. 12(b).
As we can see, relative orientation has obvious impact on the
system performance. When a writing finger deviates from the

Fig. 12. Impact of relative orientation. (a) Experimental setting. (b) Experi-
mental results.

Fig. 13. Impact of noise level.

device with an angle of 45◦, the performance decreases to 66.5%
and 55.7% for digits and letters, respectively, which are lower
by about 20% compared with the case of 0◦. The reason is that
Doppler shifts not only depend on writing speed but also are
closely related to relative orientation. Since our system is trained
in the baseline setting, when writing orientation changes, the
Doppler shift patterns of digits and letters become different,
which makes it more difficult to recognize them correctly.

5) Impact of Noise: We also evaluate the impact of environ-
mental noise by considering two normal cases with noise level
belonging to [45, 50] dB and [55, 60] dB, which cover most
daily scenarios. To control the noise level, we play different
kinds of noise audio files including traffic noise, human speech,
TV programs, music, etc. with precisely controlled volume.
Then, we ask participants to write digits in different noise
settings. We summarize the results according to the noise level,
as shown in Fig. 13. We can see that the average accuracy of
digits and letters in two noise levels are very close, with a
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Fig. 14. System performance on different smart devices.

Fig. 15. System performance on different smart devices.

negligible difference of 2.5% and 1.2%, respectively. This is
mainly because we make use of high-frequency acoustic signals
(i.e., 19 KHz), which is far beyond normal environmental noise
level.

6) Impact of Devices: In addition, we also evaluate the im-
pact of different smart devices, considering that microphones
and speakers equipped in devices show different response
patterns. We deploy our mobile application on three other
smartphones besides Samsung Tab S2, including Vivo X20,
Samsung S20, and Huawei P40 Pro. It is noted that the de-
ployed applications on other devices are exactly the same,
which means the model is trained with data collected with
Samsung Tab S2 in baseline setting. We can see from Fig. 14
that the average accuracies on the other three devices of rec-
ognizing digits and letters are (78%, 58.6%), (72%, 57.3%),
and (74.5%, 56.7%). Compared with the performance on Sam-
sung Tab S2, the performance decreases by about 11.7% and
15.9% for digits and letters, respectively. This indicates that
the differences of sensors indeed cause noticeable performance
variation.

7) Impact of Training Dataset Size: At last, to gain better
knowledge of the impact of training dataset, we run testing
experiments for digits recognition by varying the number of
training samples per category from 1 to 15, indicating the total
number of training samples from 30 to 450. The results are
shown in Fig. 15. We can see that the recognition accuracy
increases from 34.3% to 85.3%, which means that increasing
training dataset size can boost the system performance. We can

also notice that when the dataset size is below 330, its impact
is more noticeable with accuracy increasing obviously. After
that, adding more samples increases recognition accuracy more
slightly. The above results prove that our method only relay
on a very small training dataset, which is a good property for
constructing a practical system.

C. Words Input

We also evaluate the performance of recognizing words.
Fig. 16(a) shows its top-1, top-3, and top-5 accuracies when
tested on three different words sets described in Section IV-B.
The average top-1 accuracies in three cases are 95.5%, 96.9%,
and 95.0%, respectively. We can see that even with different
words sets, our system maintains stable and high performance.
As for the top-3 and top-5 accuracies, the differences on three
words sets are more negligible. As for the impact of word’s fre-
quency, we can see from Fig. 16(b) that the standard deviations
of top-k accuracies over different frequency ranges are 2.3%,
0.28%, and 0.04%, respectively. Compared with the mean values
more than 96.9%, the mean of standard deviations 0.44% shows
highly stable and satisfactory performance in words recognition,
which also indicates that our method applies to words with
different frequencies. Similarly, we can see from Fig. 16(c) that
no matter how long words are, EchoWrite 2.0 can recognize
them with high accuracy. In other words, the words recognition
performance has little to do with length.

D. Real-Time Running Performance

As a real-time system, it is crucial to evaluate the real-time
running performance of our system. In this section, we shall con-
sider three aspects including response time, CPU and memory
occupation, and battery consumption.

1) Running Time on Different Devices: When evaluating the
real-time response performance, we measure the running time
of different parts constituting the system, which mainly include
producing PCM file, processing of raw signals, model predica-
tion, and running language model (only when entering words).
Moreover, since devices possess different computing capability,
which has impact on the evaluation results, we conduct measure-
ment on different smartphones, as done in Section V-B6. The
results are shown in Fig. 17, which demonstrate two key points.
For one thing, in terms of device, Samsung S20 and Huawei
P40 Pro takes the least total response time compared with other
two devices, which are 266.1 and 339.3 ms, respectively. The
reason is kind of straightforward. These two kinds of devices
are the most latest ones that came into market in the early 2020,
with CPU clock speed more than 2.8 GHz and no less than
8 GB RAM. In contrast, Samsung Tab S2 is a product five
years ago with a 1.3 GHz CPU and 3 GB RAM. As a result,
the total response time of our system on Samsung Tab S2 is
about 412 ms less than that on Samsung S2. On the other hand,
from the perspective of different system parts, we can see from
the figure that processing raw signals takes most of the time
on either device. This is because in the raw signal processing
stage, the system needs to perform continuous STFT in order
to obtain Doppler shifts spectrograms, which consumes a great
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Fig. 16. Words recognition performance under different testing conditions. (a) Words recogniiton performance on different words sets. (b) Words recognition
performance by word’s frequency. (c) Words recognition performance by word’s length.

Fig. 17. Running time of different parts on different devices.

amount of time. In addition, as we implement this operation
with Python codes and embed them into the Android program,
the running performance can be further optimized with some
engineering work such as replacing the signal processing codes
with C programs. We leave this as part of the future work.

2) CPU and Memory Occupation: We also test the CPU
and memory occupation of different APP running states, which
include idle (launching but not running the APP), loading (load-
ing the model), finished (finishing loading), playing (emitting
high-frequency acoustics), and running (running all functions).
To do this, we make use of Android profiler tool, which can
monitor how an application uses CPU and memory resources
in real time. In this experiment, taking the impact of word’s
length into account, we request one participant to write 15
words in total of lengths from 1 to 15 with the APP and log
resources occupation data when writing each word. After that,
we average the obtained results of different words. As we can
see from Fig. 18, the maximum CPU and memory occupation
happen when running all the functions, with an average value
of 26.5% and 169 MB, respectively. It is to be noted that the
memory occupation depends on the lengths of words, which
varies between 112 and 273 MB according to our experiments.

3) Battery Consumption: Finally, we also measure the bat-
tery consumption with Android debug bridge tool when the
system is running. For better comparison, we also measure the
battery consumption with battery fully charged when a smart
device stays in different states, including Idle (no any programs
are running), Playing (just emitting 19-KHz acoustic signals),

Fig. 18. CPU and memory resources occupation of different APP states.

Fig. 19. Battery consumption of our system.

Running (running the whole APP program), Screen (lighting the
screen with medium intensity), and Music (playing music). Each
state has been tested five times, each of which lasts for 10 min.
It is to be noted that the battery consumption of each state has
excluded the impact of screen. As we can see from Fig. 19, light
screen with medium intensity consumes the most battery energy,
much more than that of our application. Compared with playing
music, a daily used service, our system consumes 2.69 mAh/min
more.

E. Comparison With Previous Work

In the last part of evaluation, we conduct a comprehensive
comparison with related work, in order to show the strengths
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TABLE II
COMPARISON WITH OTHER RELATED WORK IN DIFFERENT ASPECTS

The bold entities represent the results of our system proposed in this article in comparison with other related works.

and weaknesses of different work. To make it clearer, we com-
pare several previous related work from the aspects of sensing
way (active or passive), the number of trainers, training, and
retraining samples to build/update a system, the accuracies of
digits, letters and words recognition, and the platform (mobile
or server) on which the system is implemented and tested. All
the accuracies refer to cross-user performance. The results are
shown in Table II. We can see that our system can achieve
comparable high performance with much fewer trainers and
training samples, compared with previous work. It indicates
that the methods proposed in this work can effectively reduce
the training overhead while maintaining the performance at the
same time. In addition, our method also reduces the system’s
complexity, which runs on mobile devices in real time without
the aid of a remote server. As a result, we can claim that we have
proposed a lightweight, zero-shot text-entry system that largely
reduces model complexity, training and retraining overhead.

VI. DISCUSSION

A. Robustness of EchoWrite 2.0

EchoWrite 2.0 is in nature robust against ordinary noise
interference such as human voice since it is built with high-
frequency acoustic signals. This is also verified by our experi-
mental results as aforementioned. But there exists another kind
of interference, which is caused by irrelevant motions along with
writing activities such as nearby persons’ walking. Similar to
writing activities, those irrelevant motions also induce Doppler
frequency shifts to received signals. However, we notice that
controlling emission power of acoustic signals shall effectively
narrow down the propagation range, beyond which other mo-
tions nearly have little influence on the signals. In addition, to
handle the interference from the same systems running simulta-
neously nearby, EchoWrite 2.0 can adopt an additional module
responsible for sensing the working frequencies of existing run-
ning systems and choosing an nonoverlapping central frequency
for emitted acoustics.

B. Cross-Orientation Problem

As indicated by results in Section V-B4, relative orientation
between a device and writing finger has noticeable impact on
system performance. This is easy to understand since Doppler
shift depends on relative radial velocity, which is determined by

both writing speed and normal angle. As a result, changing rel-
ative orientation results in differences of Doppler shift patterns
even when writing the same text. Moreover, different from speed,
which only affects magnitude of Doppler shift, orientation may
also alter its sign, which makes it more complex to resolve.
A straightforward way to tackle this issue is to utilize the
proposed training strategy, that is, dividing relative orientation
into different levels and collecting some samples in each case,
then applying DA techniques to dataset. Another possible way
is to transform Doppler shift at different orientations from the
perspective of physical model. We leave these trials as one of
our future work.

C. Uniform Writing Trajectories

In the present version of EchoWrite 2.0, users need to follow
predefined writing trajectories of digits and letters in order to
guarantee uniform Doppler shift patterns. This results in some
inconvenience for users with unique writing habits. Fortunately,
our user investigation results show that most people share very
similar writing habits and are well used to the writing scheme
used in our work. These people also achieve higher performance
than those with writing uniqueness, as shown in Fig. 10. It
is more favorable and flexible to allow users with uniqueness
to customize their own writing trajectories and achieve high
performance as well. A possible way is to adopt active learning
approach to update the model with a new user’s feedback during
using this system.

VII. CONCLUSION

Inspired by the growing popularity of tiny smart devices,
we propose a touch-free text-entry system called EchoWrite
2.0 using acoustic sensors embedded in commercial devices.
EchoWrite 2.0 enables a user to enter texts including digits,
letters and words in the air using a finger without wearing any
additional hardware. To reduce training overhead of unseen
users, we put forward a novel model training strategy based
on our analysis of intrinsic impact factors. Experimental results
show that our method can not only completely eliminate the
retraining burden of unseen users, but also greatly reduce the
training effort of a system builder. With such an interface, a user
can not only resolve text-entry problem of small-size devices
such as giving phone calls and entering PIN codes, but also
overcome awkward situations like changing TV channel when
clean hands are not available.
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