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Abstract—Recent research studies have made significant
progress in acoustic-based gesture recognition. However, the
existing methods lack the capability to expand to customized
gestures and adapt to different practical environments. We pro-
pose a highly scalable gesture recognition system called EchoGest
which integrates a well-designed feature-wise transformation
layer into the prototypical network framework, and accomplishes
unseen gesture recognition with a device’s built-in speaker and
microphone. Our key insight involves gauging the similarity
between the query sample representations and class prototypes in
the embedding space, and thus enabling the scalability to unseen
gestures. Meanwhile, we introduce a feature transformation layer
to linearly adjust the feature maps and propose an efficient
two-stage training strategy to obtain regularized parameters for
this layer. Specifically, this layer employs affine transformation
to enhance intermediate feature activations and yield more
diverse feature distributions for cross-domain recognition, and
it improves recognition accuracy by 10% in one-shot cases. We
train the system with a collected a letter gestures (i.e., writing
“A” to “Z”) data set and test it on a digit gestures (i.e., writing
“0” to “9”) data set with ten volunteers. The results show
that the EchoGest can recognize unseen digit gestures with an
accuracy of 93.7% in two-shot cases, and 93.2% in the leave-
one-user-out testing setting. We also explore a semi-supervised
clustering approach in which each user’s data can be used to
update his or her prototypes for personalized customization. The
comprehensive experiments also verify that the EchoGest remain
good performance across various environments, age groups, and
different devices.
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I. INTRODUCTION

N-AIR gesture recognition has attracted widespread
Iattention as an emerging human—computer interaction
method [2], [23]. With the popularity of smart devices
like smartwatches, the demand for text input in limited
screen space has increased [19]. However, traditional touch
screen input is not convenient enough due to the limited
screen size. In-air gesture recognition, as shown in Fig. 1,
offers users a more natural and convenient way of writing in
the air, enhancing the practicality and functionality of smart
devices in daily life [42]. Researchers have explored various
noncontact gesture recognition methods based on the Wi-
Fi [12], [29], mmWave [24], RFID [34], [37], and inertial
measurement units (IMUs) [1], [11]. Nevertheless, they often
require specialized devices (e.g., RFID readers and tags and
Wi-Fi transceivers) or demand additional hardware on the
users’ devices. IMU-based solutions typically require users
to hold or wear extra hardware when writing in the air.
In a summary, these methods have certain limitations in
practical application. In contrast, present commercial smart
devices are commonly equipped with the built-in speakers
and microphones, making the acoustic-based gesture recog-
nition systems nearly cost-free to deploy rapidly on the
smart devices. Despite various background noise in daily life,
utilizing modulated high-frequency acoustic signals for gesture
recognition can significantly reduce noise interference, and
human ears cannot perceive high-frequency signals, avoiding
the sound disturbance.

However, existing research on the acoustic-based gesture
recognition often involves extracting features and inputting
them into the traditional convolutional neural networks for
classification. This means that the number of recognized
gestures needs to be fixed during the training process, and if
the user needs to customize new gestures or use the system
in a completely new environment, a lot of data collection
or retraining is required. Additionally, overfitting must be
considered, limiting practical applications. Earlier works, such
as Dolphin [21], Soundwrite [48], and later high-precision,
fine grained works like Ultragesture [14], RobuCIR [38],
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Fig. 1. Potential scenarios of acoustic-based in-air gesture recognition.

AMT [15], Amaging [36], and AO-Finger [44] only accept
predefined gestures and conditions without considering new
customized (i.e., user-defined) gestures from the users and
extensions to different environments, devices, and orientations.
Limited scalability results in data collection overhead and
training overhead for users. To collect enough samples of each
unseen gesture class for a new user and then retrain the model
is inconvenient in practice.

The emerging field of few-shot learning (FSL) [39] has
provided a promising solution to the problem. Unlike tradi-
tional deep learning approaches, it focuses on the training
models with minimal data to quickly adapt to new tasks based
on a small amount of relevant data. Some works attempt
to apply the FSL methods to human gesture recognition.
DHGR [46] uses the Doppler radar to capture gestures and
performed gesture recognition using the weighted relation
network (RN) [9]. WiGr [49] develops a Wi-Fi-based gesture
recognition system with a dual-path prototypical network
(PN) for domain-invariant feature extraction and cross-domain
recognition. OneFi [43] uses meta-learning for one-shot fine
tuning to recognize Wi-Fi gestures. In order to realize zero
training-cost for using, we choose the metric-learning methods
in FSL, which only needs to provide shots for comparison
without fine tuning the model.

In our feasibility study, we initially implement a simple
gesture recognition system using PNs [28] and evaluate its
usability. We develop an original system on Android, collect
“A’—7” letters data from the first ten volunteers, train a
ResNet18-backbone PN and have another 20 volunteers test
our application. According to volunteers’ feedback, we draw
Fig. 2 as a schematic. In ideal conditions, the application
occupy less storage space, have a higher recognition accuracy,
and it can reduce the time to prepare customized gestures as
much as possible, that is, provide as few shots as possible
but still achieve a high accuracy. During testing, volunteers
can customize their own gestures for recognition. To provide
a quantifiable indicator, we ask them to use “0” to “9” digit
gestures as a set of customized gestures. This feasibility
analysis reveals that the basic model achieves around 80%
accuracy for these ten digits with two-shot, which is not high.
We use cross-task problem to describe this problem. Another
practical problem is that we have observed users have their
own usage habits, such as placing the phone horizontally
rather than vertically, or holding on the hand instead of on
the table. In addition, real-world noise is also a factor. All of
the above factors differ from the training data collected in the
lab. When faced with these situations, a gesture recognition
system encounters obvious performance degrading, making
it challenging to meet real-world usage requirements. We
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Fig. 2. Performance of an original system versus our expectations.

use cross-domain problem to describe this problem in the
following. In addition, shots (serve as prototypes) provided by
the users are biased [16] due to the data scarcity in few-shot
scenarios, which is also a problem that cannot be ignored.

To overcome the cross-task and cross-domain problem, we
analyse that the reason of low accuracy is relatively inabundant
distribution of our training data set, indicating a need for simu-
lating a broader range of feature distributions, and incorporate
ideas from the FSL methods [3], [20], [26], [30], [31]. We
design a feature transformation layer for linearly transforming
feature maps, providing appropriate and effective parameter
training methods. The layer enhances intermediate feature
activation through affine transformations to generate a more
diverse feature distribution, which facilitates cross-domain
recognition. Moreover, our training process uses a multilayer
perceptron (MLP) to output the required hyperparameters of
our feature transformation layer instead of optimizing directly
with the gradient of hyperparameters [30], which is also the
key to our approach. Experimental results also support that
by optimizing MLP parameters, the desired hyperparameters
can be obtained indirectly rather than directly to improve
the model performance. Our method increases the model size
and inference cost minimally while significantly improving
accuracy across various gesture type, experimental conditions,
and environments. When users only provide one-shot, the
accuracies in cross-domain cases are improved by about 10%.

To address the problem that the users’ provided shots
might be biased and writing habits changes over time, we
explore updating prototypes using the users’ own handwritten
data. Drawing inspiration from semi-supervised PN [25], we
collect each user’s unlabeled data through semi-supervised
clustering. Updating the prototypes through clustering achieves
an user-customized effect. We demonstrate its effectiveness
and potential through tests on the collected data.

In this article, we propose and design a real-time acoustic
gesture recognition system, EchoGest, that integrates our
feature-wise transformation layer into the PN framework. We
train with 26 uppercase letter gestures and test with ten digit
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gestures which are considered as unseen gestures. Note that,
those unseen gestures can be extended to any other customized
gestures as also evaluated in Section VI-D. The two-shot
accuracy reaches 93.7% and 93.2% accuracy in the cross-
person testing. The top-2 accuracy of different gestures all
exceed 98%. Moreover, its accuracies in various cross-domain
tests also exceed 90%. We also explore a semi-supervised
clustering approach to update prototypes using each user’s own
data, achieving personalized customization.

Our contributions are listed as follows.

1) We design a feature transformation layer to linearly
transform feature maps and proposed an efficient two-
stage training strategy. By training an MLP, we can
obtain all the hyperparameters for MLP outputs. During
testing, hyperparameters remain fixed, adding the min-
imal model size and inference cost while improving
accuracy across different settings.

2) We explore using the user’s own writing data to update
prototypes. By leveraging semi-supervised clustering,
results show that updating prototypes can consistently
improve the model performance.

3) We conduct a series of experiments to validate the
effectiveness of our designed modules and the overall
robustness of our real-time acoustic gesture recogni-
tion system. Additionally, experiments on smartwatches
show the potential of the acoustic gesture recognition
technology in smartwatch applications.

The remainder of this article is organized as follows.
Section II reviews the related work. Section III introduces
preliminaries. Section IV shows our system design, detailing
the entire process and classification framework. Section V
introduces our feature-wise transformation layer, including its
principles, functions, training methods, and how to integrate it
into the PN framework. Furthermore, this section briefly out-
lines updating prototypes using clustering. Section VI shows
the system implementation and evaluation in various aspects.
Sections VI and VIII are our discussion and conclusion.

II. RELATED WORK
A. Acoustic-Based Gesture Recognition

The use of the Doppler effect in soundwave perception
is a direct approach in the gesture recognition technology.
Besides the Doppler frequency shift, other methods, such as
frequency modulated continuous wave (FMCW) and channel
impulse response (CIR) are also utilized. The early research
Soundwave [8] explores the use of commercial off-the-shelf
audio components to recognize the hand gestures in the air.
SoundWrite [48] utilizes MFCC [17] to describe handwritten
features, employing KNN to match capture features. Recent
research advancements in gesture recognition have aimed
for fine-grained granularity, higher accuracy, smaller train-
ing set sizes, and more targets. With the development of
transfer learning [41], FSL [39], and generative adversarial
networks [40], these techniques have also been applied in the
field of gesture recognition. The work [22] conducts FSL for
gesture recognition using electromyography signals. Despite
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its relatively basic approach, the accuracy for five-way five-
shot recognition of new gestures is only 73%. The work [35]
applies GAN to generate virtual samples from real samples,
testing it on the millimeter-wave data. Although different
in methods and carriers, these approaches provide valuable
insights for acoustic-based gesture recognition.

In the last few years, more related works have appeared.
Ipanel [5] utilizes sounds generated by fingers sliding on a
table to recognize writing contents with an average accuracy
of 85% for 10 digits and 26 letters. UbiWriter [45] treats
handwriting signals as complete trajectories and achieves
recognition an accuracy of 69.23% for lowercase letters and
91.8% for words. Ultragesture [14] achieves high-precision
gestures tracking based on CIR measurements. RobuCIR [38]
employs frequency hopping to reduce frequency selective
fading and accurately recognize 15 kinds of hand movements.
Echowrite2.0 [51] proposes a new model training strategy and
data set augmentation method to minimize required training
data. DHGR [46] makes use of meta-learning methods to
recognize five different gestures with an accuracy of 91%
with one shot. AO-Finger [44] designs a wristband with a
microphone and two high-speed optical motion sensors, and
proposes a multimodal CNN-Transformer model to recognize
light tapping, pinching, light patting, and no motion. However,
compared with these works, EchoGest has the following
unique advantages.

1) The utilization of commercial devices without any

additional hardware equipment.

2) The extension of recognizing unseen gestures and
adaptation to different domains.

3) The exploration of a semi-supervised clustering method
to update prototypes with unlabeled data to boost the
recognition accuracy.

We have also summarized the comparison in Table I.

B. Few-Shot Learning Methods

FSL is a machine learning task aims at effectively clas-
sifying or recognizing test data from a target domain with
very few labeled samples, where the training data dis-
tribution differs from the test data distribution. Common
strategies include data augmentation, optimization-based, and
metric-based approaches. Data augmentation methods like
Mixup [47] generate new training samples through linear
interpolation between different training samples, enhancing
diversity, and model generalization. Optimization-based meth-
ods like model-agnostic meta-learning (MAML) [6] enable
the model to quickly fine tune using limited data from
the target domain through meta-learning on multiple tasks.
Metric-based approaches focus on learning an embedding
function that maps the input space (e.g., images) to a new
embedding space, where a similarity metric distinguishes
different classes. Typical works include Siamese networks [4],
matching networks [33], PNs [28], and RNs [9]. In our work,
we aim for the ability to directly provide a few samples
(shots) from the users without the need for retraining the
model, achieving fast deployment, and real-time requirements.
Considering this goal, we mainly focus on metric-based

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on October 02,2024 at 17:00:48 UTC from |IEEE Xplore. Restrictions apply.



29712

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 18, 15 SEPTEMBER 2024

TABLE I
COMPARISON WITH RELATED WORKS

‘Work Extra Hardware Recognition Content — Accuracy Unseen Gesture
Required Recognition

UbiWriter [45] No 26 letters — 69.23% No
50 words — 91.8%

RobuClIR [38] No 15 gestures — 98.4% No

Echowrite2.0 [51] No 26 letters — 73.2% No
10 digits — 85.3%
50 words — 96.9%

DHGR [46] Yes 10 gestures (1-shot) — 88.99% Yes

10 gestures (3-shot) — 91.88%
AO-Finger [44] Yes 4 action types — 94.83% No
EchoGest (Ours) No 26 letters (cross-environment, 2-shot) — 88.9% Yes

10 digits (cross-task, 2-shot) — 93.7%
8 gestures (cross-task, 2-shot) — 95.8%

optimization approaches, particularly the PN method which
performs well in FSL. Furthermore, to prioritize high real-
time performance, we avoid overly complex model structures.
Complex meta-learning schemes may increase computational
complexity and inference time, while our work emphasizes
usability and efficiency in real-world scenarios. Although some
FSL methods have been applied to gesture recognition, such
as OneFi [43] and WiGr [49], we want the model to be used
directly without fine tuning, so we do not adopt the method
in [43]. The dual-path PN structure in WiGr [49] is somewhat
complex, and it only addresses the cross-domain problem
without changing the recognition class, i.e., does not address
our cross-task problem and the possible bias of prototypes.

In a summary, works closely related to ours are
EchoWrite [42], EchoWrite2.0 [51], and DHGR [46].
Compared to the EchoWrite and EchoWrite2.0, our signal
collection method is similar, but we enable users to directly
write in a complete and natural manner without requiring
them to memorize additional rules for simple gestures and
concatenation. Additionally, we specifically focus on practical
few-shot scenarios, using a PN framework instead of manually
extracting features followed by the machine learning methods
or simply applying the CNN networks. By leveraging the PN
structure along with our proposed feature transformation layer,
we achieve effective recognition with only a few samples
provided by users, without the need for retraining the model.
Furthermore, we can recognize new gestures and different
environments without these data appearing in the training
set. In comparison to DHGR [46], their approach requires a
Doppler radar as an auxiliary device, whereas we are device-
free, relying only on smart devices equipped with speakers
and microphones. Moreover, their work uses a basic weighted
RN as the classification model, while we introduce the feature
transformation layer and a training approach for its hyperpa-
rameters. Our work does not have the limitation of DHGR [46]
that the number of training classes needs to be the same as the
test classes. Our model with the feature transformation layer
exhibits stronger generalization capabilities across different
environments and device orientations, which is the key to
enhancing performance in our approach.

III. PRELIMINARIES

We introduce some background knowledge, including the
relationship between the Doppler effect and gesture recogni-
tion, few-shot classification, and the meaning of cross-domain.

A. Doppler Frequency Shift and Its Application

When users perform air writing gestures near the micro-
phone, the received sound wave signals are composed of
three parts: 1) the directly transmitted sound waves from
the speaker; 2) the sound waves emitted by the speaker and
reflected by the hand before reaching the microphone; and
3) the sound waves reflected by the surrounding environment,
such as walls, before reaching the microphone. Considering
that the environment at close proximity remains relatively
stable during the gesture recognition process, we can assume
that the sound waves received by the microphone from both
the directly transmitted sound waves and the environment-
reflected sound waves are essentially consistent with the source
frequency. As for the sound waves reflected by the hand, when
the hand moves relative to the wave source with a velocity v,
and the sound waves propagate in the air at a speed v, and the
frequency of the sound waves emitted by the speaker as the
wave source is f, the frequency of the sound waves received
by the hand as the receiver can be described by

S = (vjzvh> X fi.

The operator £ is determined based on the direction of
relative motion. The sound waves received by the microphone,
which are reflected by the hand movement, can be considered
as emitted by the hand. In this case, when the sound waves
propagate to the microphone, the frequency of the received
sound waves can be described by

f=< ’ )th~
VI v,

By substituting (1) into (2), we can obtain the frequency
difference f generated by the hand movement, as shown in

ey

(@)

2vp

Af =If —fil = (VM) < i

3
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Overview of the architecture of EchoGest. The system comprises data collection, data processing, feature similarity measurement, and classification.

In Section IV, we briefly introduce the basic structure of the feature extractor Eg o.6p Details about training 0y parameters and feature transformation will be

introduced in Section V.

B. Few-Shot Classification and Metric-Based Method

Few-shot classification is commonly represented as N,,-way
(number of classes) and Ns-shot (number of labeled examples
per class, often denoted as K). Metric-based algorithms typ-
ically consist of a feature encoder E and a metric function
M. During each iteration in the training phase, the algorithm
randomly selects the N, classes and constructs a task 7.
Denote the input image set as X = {xy, x2, ..., X, }, and their
corresponding class labels as ¥ = {y, y2, ..., yu}. Task T
consists of a support set § = {(X;, Ys)} and a query set Q =
{(Xy, Yy)}. For each N,, class, n samples are randomly chosen
to form the support set S, and N, samples to form the query
set Q. The feature encoder FE first extracts features from both
the support and query images. Then, the metric function M
predicts the class of the query image X, based on the labels of
the support images Y;, the encoded query image E(X,), and
the encoded support image E(X;), which can be represented as

¥, = M(Y,, E(X,), E(Xy)). @

Finally, the training objective of the metric-based framework
is the classification loss of the query images in the query set,
denoted as

L= La(Y. ¥y). )

We use the PN [28] as the basic framework, and the metric
function m can utilize the Euclidean distance to measure
similarity of vectors. The major advantage of applying the
few-shot strategy is that the model does not require retraining,
and it helps to avoid overfitting more effectively.

C. Cross-Domain Recognition

Our target includes both the cross recognition categories and
cross environment scenarios. In fact, the few-shot problems
usually involve cross recognition categories. For example, the
common mini Imagenet data set [27] follows a benchmark of
training with 64 classes and testing with 16 different classes.
In our case, cross recognition categories refer to training data
consisting of 26 uppercase letters and testing data including 10
digits and some other extended gestures. Additionally, cross
environment issues are frequently encountered in the Internet
of Things field. Here, the term “environment,” can encompass
a broader range of settings, such as the orientation of our
device (horizontal or vertical), its placement on a table or held

upright by the hand, the level of environmental noise, and
variations in device types. For example, if we train the model
with the device placed flat on a table but test it while being
hand held upright, the considerable differences in spectral
representations due to physical changes would lead to lower
classification accuracy using conventional classifiers. In such
cases, the few-shot methods would show better performance.

IV. SYSTEM DESIGN

In this section, we present our designed in-air gesture
recognition system, EchoGest, including overview of architec-
ture, data collection, extract doppler profile, and the classifier
backbone based on the PN.

A. Overview of Architecture

Fig. 3 presents the overview of our system design, which
mainly includes four stages: 1) data collection; 2) data process-
ing; 3) similarity measure; and 4) classification. Specifically,
the mobile device’s speaker emits high-frequency signals to
capture the hand movements, while the microphone receives
the reflected echoes from the hand. After filtering out-of-band
noise, the time-domain signal sequence is transformed into
a spectrogram through short-time fourier transform (STFT).
Then, the final gesture feature map is obtained through image
binarization and median filtering. For feature map recognition,
the feature extractor Ey, o, removes the fully connected layer of
ResNet18, which serves as the backbone. Here, 6, represents
all the convolutional layer-related parameters of ResNetl§,
and 6y represents the 6, and 6g parameters required for
the integrated feature transformation layer. Ey, g, will obtain
fixed parameters through a two-stage training process. The
input query image X, goes through the feature extractor
Ege,gf, resulting in a feature vector. The final classification is
performed by comparing the query feature vector’s £ distance
with each gesture support set feature vector, selecting the class
with the smallest distance, i.e., the most similar vector, as the
classification result.

We will discuss data collection in Section IV-B, data
processing in Section IV-C, and introduce the basic PN-based
feature extractor and classifier in Section IV-D. In Section V,
we will further present our feature transformation layer and
the final PN model structure used for classification after
incorporating the feature-wise linear transformation layer.
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The writing process of character 0

Fig. 4.

B. Sensing Signal and Data Collection

To meet the requirements of device-free and privacy protec-
tion, we utilize 19 kHz ultrasonic signals (since some devices
only support up to 20 kHz) to avoid affecting human ears and
potential interference. The sampling rate is set at 44.1 kHz.
In this study, we do not focus on accurately segmenting the
motion in the signals. During the construction of the training
data set, participants are instructed to perform the gestures
at specified intervals, and each data recording lasted for 2 s.
Similarly, in the testing phase, users are asked to perform a
gesture within a 2-s timeframe. Detailed guidelines for these
gestures will be presented in Section V.

Fig. 4 shows a frame-by-frame illustration of performing
the gesture O in-air writing. The upper part demonstrates
the process of our writing, while the lower part exhibits the
microphone-received sound waves with frequency shifts in
both the time and frequency domains, visualized using the
audacity! audio processing software. In Section IV-C, we
will provide a detailed explanation of how we process and
obtain the spectrogram and gesture feature maps to make them
suitable inputs for the deep learning framework.

C. Extracting Doppler Profile

Since, the speed of sound propagation in the air is approx-
imately 346 m/s, Soundwave [8] demonstrated that the finger
movement speed v, for gesture writing is around 0.2 to
3.5 m/s. With the speaker and microphone sampling rate set at
44.1 kHz, and the speaker’s emitted sound wave frequency f
at 19 kHz, we can use (3) to calculate the received frequency
difference Af to be approximately between 20 to 300 Hz.
Therefore, our processing steps are illustrated in Fig. 5: first,
we apply a sixth-order Butterworth bandpass filter to retain
the signal within the range of (18700, 19300) Hz. Next, a
third-order Butterworth bandstop filter is used to remove the
frequency band near the center frequency (18 980, 19 020) Hz
for further signal enhancement. Afterward, we use STFT to

1 https://www.audacityteam.org

Ilustration of our experimental data collection process and a visualization of the data in the frequency domain.

Mixed signal (2 seconds)
18980~19020Hz

— — —
18700~18980Hz 19020~19300Hz

Band-pass filtering
I Band-stop filtering

STFT spectrogram

Noise Noise

Fig. 5. Processing steps of extracting doppler profile.

transform the 1-D signal into a 2-D spectrogram, revealing the
Doppler frequency shift caused by the gestures.

We execute STFT on each signal sequence with a frame
length of 8192 data points (corresponding to 0.186 s) and an
overlap length of 7168 data points (corresponding to 0.163 s).
The determination of these two key parameters involves a
tradeoff between the time and frequency resolution, providing
a frequency resolution of 5.38 Hz and a time resolution of
23 ms. We restrict the frequency range to (18700, 19300)
Hz and save it as the spectrogram. An example of writing is
shown in Fig. 6(a), which presents the spectrogram of letter A
captured by the participant pl in the laboratory environment
using a Samsung Galaxy Tab S2 device, while Fig. 6(d) shows
the same content but recorded using a Xiaomi Tab Mix2
device with other settings remaining the same. Although there
is a common frequency shift pattern in the writing, different
settings still have a significant impact on the generated spec-
trogram. Therefore, we use a binarization method to eliminate
background interference as much as possible. We directly erase
the background with no information at the top and bottom
of the spectrogram using two rectangular boxes and then
perform binarization using the common OTSU method [18] to
obtain the binarized result as shown in Fig. 6(b). Finally, to
remove noise, we apply the median blur method (medianBlur?)
to obtain the result as shown in Fig. 6(c). In this way,
the binarization process may cause the loss of some depth

2https://docs.0pencv.0rg/4.x/dc/d66/ ‘group_cudafilters.html
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Fig. 6. Obtained spectrogram illustration and the subsequent processing
steps. (a) p1-“A”-Samsung. (b) OTSU threshold. (c) Median blur. (d) p1-“A”-
Xiaomi. (e) Retaining depth. (f) Median filter.

(a) (b) (©)
(d (e) ®

Fig. 7. Spectrogram writing of digits “0”, “1”, and the letter “X” by different
participants, pl and p2. (a) pl1-0. (b) pl-1. (c) pl-X. (d) p2-0. (e) p2-1.
() p2-X.

information in the image. We also attempt to retain the depth
information by performing a bitwise AND operation between
the binarized data and the original image, preserving the RGB
depth of the pixels with information after binarization, as
shown in Fig. 6(e) and 6(f). However, in experimental testing,
we find that this approach take more time but do not help
improve accuracy.

Fig. 7 displays some spectrograms obtained after processing
the input signals. Fig. 7(a)—(c) represent the digit 0, digit
“1”, and the letter “X” written by participant pl, respec-
tively. Fig. 7(d)—(f) depict the same characters but written by
participant p2. It can be observed that different participants’
writing also has a noticeable impact on the frequency shift. To
demonstrate the effectiveness of our method, we refrain from
using the data augmentation techniques and instead utilize the
feature transformation layer to address these variations.

D. Classifier Based on Prototypical Network

PN [28] is based on the fundamental idea of mapping inputs
into an embedding space where the embedding representation
of each class clusters around a single prototype. Given a
labeled data set T = {(x;, y;)} for i = 1 to N, consisting of
N samples belonging to R different classes, we use the entire
data set T as the sample set for training. During each training
iteration, we randomly select K samples for each class r €
{1, 2,..., R}. As a result, R x K samples form the support
set S = {81, S2, ..., Sg}, where S, = {x;,y;} fori=1to0 K
represents the labeled samples of class r, with r € {1, 2,...,
R}. The remaining N — R x K samples form the query set
Q, where Q =T \ S.
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The learning objective is to train an embedding function
Ep : RP — RM that maps samples from the original input
space (e.g., 224x224x3) to an m-dimensional embedding
space (e.g., 512-D vector), where 6 represents the learnable
parameters. The prototype P, for each class r is the mean
of the embedded representations of the corresponding support
samples

1

P, =
TS

> Eg(x). (6)

(xi,yi) €Sy

Once the prototypes are determined according to formula
(1), for each query point x; € Q, and given a distance function
d: RM xRM = [0, +00) (such as ¢; and ¢, distance), the PN
generates a class distribution based on the distance d to the
prototypes in the embedding space using the softmax function

exp(—d(Es (x;), P,)
YR exp(—d(Eg (xi), Pyr))

The learning process involves minimizing the negative log
probability of the true class

pQy =rlx) =

(7

J(0) = —logp(y = klxi) ®)

where k represents the true class of the sample x;, and 6
denotes the learnable parameters of the PN. In our imple-
mentation, we adopt a PN architecture based on ResNet18 as
the backbone. We modify its first convolutional layer from
a 7 x 7 kernel to a 5 x 5 kernel (as we observe improved
feature extraction with this change) and remove the final fully
connected layer of ResNet18. Apart from these modifications,
the basic backbone remains unchanged.

Regarding the learnable parameters, a regular PN under-
goes a single global-stage training, where 6 represents all
the convolutional layer parameters in ResNetl18. To enhance
cross-domain recognition accuracy, we design a feature trans-
formation layer to enable more generalized feature extraction.
This feature transformation layer has hyperparameters denoted
as ¢, while the other original convolutional layer parameters
are denoted as 6,. The training process involves two stages:
first, we pretrain 6,, and then we use data with different
distributions from the Pretraining data to train and obtain
the hyperparameters 6y. Once both stages of training are
completed, all the model parameters are fixed. In Section V,
we will provide a detailed explanation of the design of our
feature transformation layer and how we obtain 6y.

V. IMPROVED METHODOLOGY

In this section, we present the feature transformation layer
designed to enhance the model’s generalization ability during
inference in different environments. We also explore the archi-
tecture of the PN classifier with the integration of the feature
transformation layer. Additionally, we introduce a two-stage
training process in order to obtain the hyperparameters of the
feature transformation layer. Furthermore, we briefly describe
the extension of updating prototypes using the clustering
methods.
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Feature-wise linear transformation layer.

Fig. 8.

A. Feature-Wise Linear Transformation Layer

Due to variations in feature distributions across different
domains in the task, features obtained from the task might
overfit to the training data set and struggle to generalize well
to the other domains. To address this, we integrate a feature
transformation layer into the feature encoder E to enhance
intermediate feature activations with affine transformations.
This intuitively generates more diverse feature distributions,
capable of meeting the requirements of tasks like gesture
spectrogram analysis, which is not inherently complex. Our
feature transformation layer’s specific structure is illustrated
in Fig. 8, representing a linear transformation applied to the
feature maps obtained from the /th layer of the network. Given
the intermediate feature activation map x of dimensions C x
H x W from the feature encoder, a linear feature transformation
is performed using the hyperparameters 6, of size C x 1 x 1
and 0g of size C x 1 x 1

Xeschxw = Oy X Xexhxw + 0p. ©)

Fig. 9 provides a more intuitive illustration of the effect
of the linear modulation. In practice, we apply the feature
transformation layer only after the batch normalization of the
final convolutional layer in ResNet18. This adds a mere 1024
additional hyperparameters, which is negligible compared
to the total number of the convolutional parameters. The
concept and implementation are initially introduced in the
work of FILM [20]. Subsequent works, such as CNAPs [26],
SimpleCNAPs [3], and the work [30] are influenced by
the FILM layer. The primary distinction of our work from
these is how the hyperparameters 6, and 6g are trained and
determined.

In contrast to CNAPs and SimpleCNAPs which draw inspi-
ration from the conditional neural process (CNP) [7] concept,
their 0, and g required by FiLM necessitate an additional
complex encoder. Their encoder takes the images from the
support set as input and utilizes convolutional and fully con-
nected layers to compute 6, and 0. As a consequence, they
are not deterministic, and the intricate encoder also needs to
be deployed on mobile devices, incurring significant training,
storage, and computational overhead. In comparison to the
work [30], where 6, and g follow a Gaussian distribution
rather than specific values, training involves straightforward
computation of the loss for 6, and 6, updated through
gradient descent. Although the work [30] shares a similar
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Fig. 9. Diagram of the modulation process.

Layer (type:depth-idx) Param # Kernel Shape Mult-Adds

ResNet18-backbone
—Conv2d: 1-1 4,800
—BatchNorm2d: 1-2 128
—ReLU: 1-3 - -
—MaxPool2d: 1-4 - 3
—Sequential: 1-5
—Sequential: 1-6
—Sequential: 1-7
—Sequential: 1-8
L_BasicBlock: 2-7
LBasicBlock: 2-8
LConv2d: 3-46
L—BatchNorm2d: 3-47
| L_ReLU: 3-48
L—Conv2d: 3-49
| L_BatchNorm2d: 3-50
LFeature-wise layer: 3-51
| LReLU:3-52 -
—AdaptiveAvgPool2d: 1-9

[5,5] 61,291,200

128

2,359,296
1,024

[3,3] 150,994,944
- 1,024
2,359,296
1,024
1,024

150,994,944
1,024
1,024

- [3.3]

Fig. 10. Overall model structure integrated with feature-wise linear
transformation layer (3-51, only 1024 Param #). The corresponding number
of channels C is 512.

methodology with ours, in our experiments, we observe that
directly updating 6, and g through gradient descent yielded
suboptimal results during testing. To address this, we train an
MLP to map randomly initialized values to optimal 6, and 6g,
leading to improved performance during testing. Fig. 10 shows
the model architecture after integrating the feature transforma-
tion layer into the base feature extractor. It is evident that the
incorporation of this feature transformation layer introduces
minimal additional parameters and computational complexity.

B. Training Parameters With Two-Stage Process

Formally, our data set is divided into three parts.

1) Pretraining data P’, used to optimize the 6, parameters
in the feature extractor, akin to training a standard PN.

2) Meta-training data S, employed to optimize the 6;
parameters in the feature extractor. In practice, post
the pretraining of the conventional PN, we employ the
S’ data set to train an MLP capable of mapping the
initially randomly initialized 6, and 6g parameters to
their optimal counterparts.

3) Testing data T’, for evaluating the model’s recogni-
tion accuracy across various scenarios. In essence, our
Pretraining data consists of letter samples written on
a Samsung tablet in a vertical orientation (0°), the
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Parameter ’
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N

MLP,
Oy ={0y,6}
(hyper-para.)
/

0

—
z~N(0,1), fixed

E=————"Dense/FC o Elu

Fig. 11. Initial input z is fixed, and by training the parameter ¢ of the
MLP, parameter 607 required by the feature-wise transformation layer is finally
obtained.

meta-training data involves letters rotated to a horizontal
orientation (90°), and the testing data encompass diverse
settings, such as digit categories, noisy environments,
and varying hand poses.
Our MLP architecture, as illustrated in Fig. 11, consists of
three fully connected layers combined with the exponential
linear unit (ELU) activation function. In contrast to the
rectified linear unit (ReLU), ELU returns a value close to zero
for the negative inputs, avoiding zero itself, while preserving
similar properties to ReLU in the positive range. The input,
a randomly initialized but fixed vector z, a 128-D vector,
undergoes the three-layer MLP,4 to produce z/, a 1024-D
vector. Here, 0 = 7 = {0,,0p}, where both 6, and 0g are
512-D vectors, serving as the hyperparameters for the feature
transformation layer within the feature extractor. The specific
training process is divided into two stages: the initial phase,
termed pretraining, focuses on optimizing 6, parameters; the
second phase, referred to as meta-training, involves training
the MLPy to obtain the desired 6; = {0, 6g} parameters. The
training procedure is outlined in Algorithm 1 for clarity.
Upon completing the optimization of the MLPy, the param-
eters 0 = {0,,0g} are also determined, finalizing the
optimization of Egmgf. Concerning the loss function J(¢) dur-
ing the meta-training phase, we introduce an £, regularization
term to constrain the values of 6, and fg, where « is set
to 0.001. Without regularization, the training performance is
notably poor. Additionally, we experiment with the training
approach proposed in the work [30]: Qf’“ =0 — Vg, Les,
where ¢ represents a training step. However, training the
feature transformation layer in this manner does not yield the
desired outcomes. The accuracy decreases when dealing with
cross-domain scenarios. We will continue our exploration in
subsequent endeavors, investigating the distinctions between
such training techniques and the introduction of an MLPy for
indirect training. We think that the primary factor behind this
improvement is likely the incorporation of the £ regularization
term, which allows 6 to be properly trained.

C. Updating Prototypes With User Data

Given that the users’ writing habits and writing envi-
ronments may change over time, a more intuitive solution
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Algorithm 1 Learning Network Parameters With Feature-
Wise Linear Transformation Layer. Parameters 6, in Feature
Extractor £ Remain Fixed During Meta-Training

Input: Pre-training data P/, Meta-training data S’, randomly
determined vector z

Output: Optimized parameters 6., 0f

1: Initialize 6, and 6y = {0,, Og}

2: while Pretraining do

3 J@6,)=0 /[Training parameters 0,
4:  Select support set S, and query examples from P’
5:  Compute prototype: P, = IS_lr\ Z(x,»,y,-) cs, Eo, (xi)
. exp(—d(Eg, (xi),Pr))
6:  Query x;: p(y =r|x;) = S exp(—d(Eg, ()P
7. Update 6, by J(6,) = —logply = klx;)
8: end while
9: while Meta-training do
10 J(@) =0 /[Training parameters ¢ to get 0f

11:  Select support set S, and query examples from S’
12:  Get hyper-parameters: 0y = {0, 0g} = MLPy(z)
13:  Compute prototype: P, = ﬁ Z(x,-,y,-) es, Eo (xi)
4 Query x: ply = rl) = R )
' Y P e (—d(Ea, (). P)
15: Update ¢ by J(¢) = —logp(y = klxi) + a(ll 6,13 +
| 9/3”%) [IWith €, regularization term
16: end while

is to collect the user’s own unlabeled data to update the
corresponding gesture prototypes. This section represents an
extension we have made in the algorithm. The motivation
behind this lies in the fact that using only 2 or 3 data points
as prototypes may not accurately represent an entire class.
Our aim is to update prototypes using the real user data.
Inspired by semi-supervised PNs [25], consider this scenario:
if we can collect unlabeled data from each user’s writing
process (this only requires user authorization and saving the
feature maps of the writing process, without any additional
steps), through the semi-supervised clustering methods like
K-means, each prototype is initially treated as a cluster center.
The refinement process adjusts the cluster centers’ positions
through clustering, ensuring that the final cluster centers better
match the true data distribution. In paper [25], semi-supervised
clustering employs soft K-means as it requires differentiability
during the training process. In contrast, we directly use hard
K-means to keep the process as simple as possible. We do
not introduce clustering operations during training. Instead,
we update prototypes using the K-means with unlabeled
data only when necessary for classification. Our subsequent
tests indicate that the hard K-means enhances accuracy. This
implies that the classification testing process is equivalent to
classifying samples within the final clustering clusters. The
process of updating prototypes using the K-means can be
summarized by the formula (10), where U, denotes the set of
unlabeled data points assigned to the class r

Sipd > )

a (xi,Yi)ESy (xj.y;) €Uy

1
Ep(x;) + —

10
|Ur| 1o
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Fig. 12. Illustration of the process of updating prototypes through semi-
supervised clustering using unlabeled data. The calibration of initial prototypes
is achieved through multiple iterations with unlabeled data, enhancing the
representativeness of prototypes for each class. Additionally, the utilization
of unlabeled data contributes to reducing the reliance on labeled data in real-
world scenarios.

Fig. 12 provides an illustrative explanation of our approach.
The initial prototype’s classification boundaries can be mod-
ified after undergoing clustering. The more unlabeled data
an user contributes, the more closely the cluster centers
should align with the true center positions, resulting in more
precise classification boundaries. Currently, we have only
experimented with this algorithm extension on a data set. In
the future, it could potentially be extended to the application,
allowing each user to update their own prototypes using their
unlabeled data, thereby achieving personalized user objectives.

VI. IMPLEMENTATION AND EVALUATION
A. Experiment Setup

To construct the data sets, we initially develop an Android
mobile application as a data collection tool. This application
control the speaker in the mobile device to emit a 19 kHz
sinusoidal modulated audio signal. Simultaneously, the micro-
phone within the same device is controlled to receive echoes
reflected from writing fingers and other nearby objects at a
sampling rate of 44.1 kHz. It is worth noting that, although
we set amplitude of the emitted audio to the maximum in
our software, adjusting the system’s media volume still affects
the power of the emitted sound waves. Due to variations in
hardware across different devices, we take the example of the
speaker configuration on the Samsung Galaxy S9 phone.’ In a
35 dB environment measured using a sound level meter, when
the media volume on the phone is set to 1/3, 2/3, and 1, the
sound level at a distance of 10 cm from the speaker reads 39,
49, and 62 dB, respectively (these high-frequency sound waves
are inaudible to the human ear). We observe that when the
media volume is set to less than 1/3, the resulting spectrograms
appear disordered. On the other hand, when the volume is
set higher than 2/3, the spectrograms become consistent and
are no longer influenced by the volume, as shown earlier.
For the subsequent experiments, we set the volume to the
maximum.

For our experiments, we recruit ten volunteers from the
school (six males, four females) between the ages of 18

3 https://www.amazon.com/Speaker-Samsung-SM-G9600-Assembly-
Replacement/dp/B092VX8M28
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Fig. 13. Some writing norms of uppercase english letters.

and 25. Subsequently, as part of the extended experiments
detailed later, we recruit three additional on-campus volunteers
(three males, aged 18-25) to write on different devices and
at various distances. Additionally, we recruit three special
volunteers aged 9, 35, and 59 to illustrate that our system
can be used stably by individuals of different ages, including
children and the elderly. This is especially significant when
considering that these groups may exhibit smaller frequency
shifts due to the fine-grained finger movements or slower
writing speeds.

Our handwritten gestures primarily consist of three types:
1) digit gestures from O to 9; 2) uppercase letter gestures from
A to Z; and 3) an additional set of eight gestures commonly
used in the human—computer interaction applications [50]. For
the O to 9 digit gestures, we do not impose any specific writing
standards, allowing volunteers to write in their accustomed
manner. Regarding the A to Z uppercase letters, due to the
greater variety of characters, we provide slightly more specific
writing guidelines as illustrated in Fig. 13. The eight com-
mon gestures and their associated content will be discussed
in Section VI-D. In the basic experiments, ten volunteers
are required to write on the Samsung tablet devices under
various conditions, including different writing angles, noise
interference levels, and postures. The extended experiments
also encompass assessments involving individuals of varying
age groups, different writing gestures, distinct devices, and
varying distances from the device.

Regarding the conditions considered in our experiments.

1) Angle: This denotes the relative orientation of the device
and the writing area. 0° indicates that the device is
in a vertical position, with the writing area under.
90° represents a horizontal device orientation, with the
writing area on the right side of the device.

2) Environment: An office setting with the noise levels
ranging from 35-50 dB, and a relaxation area, which is
open and exhibits noise levels exceeding 50 dB.

3) Posture: This refers to the method of device usage,
either placed flat on a tabletop (on-table) or held in the
hand (in-hand). In the in-hand condition, we practically
employ a smartphone stand to simulate the upright
posture as if the device is held in the hand.

We divide the collected data into the required training and

testing sets as described below.

1) Pretraining: Using the Samsung tablets at 0° in a lab
environment, the users wrote A—Z letters placed flat on
the table. There are ten volunteers, each writing each
letter 20 times, resulting in 5200 samples (26 letters x
20 repetitions x 10 participants).
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2) Meta-Training: Similar to Pretraining, but the orientation

is changed to 90°, resulting in another 5200 samples.

3) Meta-Validation: Using the Pretraining data set for meta-

validation.

4) Testing: In the basic testing phase, each condition (angle,

environment, posture) is tested with ten volunteers for
0-9 digits, resulting in 2000 testing samples for each
condition (10 digits x 20 repetitions x 10 participants).
Typically, the basic testing utilize the 0° orientation,
lab environment and on-table. Further details regarding
testing data will be explained in the corresponding
chapters.

The models and associated parameters we employ have been
comprehensively detailed in previous sections and Fig. 10.
All our experiments are conducted using the PyTorch 1.8.1
on a remote server equipped with a NVIDIA RTX A6000
GPU featuring CUDA 11.1 framework, 48 GB of memory,
and an Intel Xeon E5-2686 v4 2.30 GHz CPU processor for
evaluation. We utilize the Adam optimizer [10], and the initial
learning rate for all the methods is consistent at 5 x 10~#
(with potential variations in methods like fine tuning). The
activation function employ uniformly across all methods is
the ReLU.

B. Overall Performance

In terms of overall performance, we employ average recog-
nition accuracy as the key metric. We evaluate recognition
accuracy across different random seeds, various handwrit-
ten gestures, and participants. Accuracy is defined as
(Neorrect/Niotal)s Where Neorrect represents the number of cor-
rectly recognized samples, and Ny represents the total
number of the test samples. We conduct evaluation experi-
ments with three different random seeds.

We evaluate the accuracy of 0 to 9 digit gestures recognition
in the testing data set with conditions of 0°, lab, and on-
table. This basic test is cross-task but not cross-environment.
When not specified, it will serves as our benchmark test result.
Fig. 14 illustrates the confusion matrix obtained by testing
the support set with a two-shot per user directly from the
testing data set. Since, each user has 20 samples for each
gesture, during testing, we randomly draw the support set ten
times, using the remaining data as the query set for testing
(the sampling process follows 1). This approach serves as
our default testing method. Despite the spectral similarities
between the digits 0 and “6” and 1 and “7”, the confusion
matrix does show some misclassifications of these gestures.
Nevertheless, our system, EchoGest, still achieves an average
recognition accuracy of 93.7%.

Fig. 15 displays the results of the cross-user testing on
ten volunteers using a leave-one-user-out strategy. In this
approach, data from the individual being tested only appears
in the test set and is absent from the Pretraining and Meta-
training data sets. For this test, we continue to provide a
two-shot support set per individual. Our cross-user testing
yields an impressive recognition accuracy of 93.2%, affirming
the effectiveness of our proposed method. It is suitable for
real-world cross-user scenarios without the need for training
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Fig. 14. Confusion matrix of EchoGest for recognizing unseen gestures with
two-shot.
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Fig. 15. Recognition accuracies of EchoGest obtained for different persons

using leave-one-user-out cross validation.

on the user-specific data. Recognition is possible with a small
number of shot samples.

Figs. 16 and 17 are our discussion on the performance of
the system when the type of gesture changes during testing
or training. Fig. 16 illustrates the accuracy corresponding
to different shots when we randomly select 2, 4, 6, 8, or
10 out of ten gesture categories for testing. This evaluation
aligns with the common practice in FSL for assessing the
test-way, where increased gesture categories correspond to
increased classification difficulty. As observed, recognition
accuracy decreases as the number of unseen gestures increases,
primarily because a higher number of digit gestures leads to
more similar writing trajectories. For a ten-category test with
two-shot testing, we achieve an accuracy of 93.7%, which
increases to 95.6% with three-shot testing. The accuracy is
even higher when there are fewer unseen gestures. Fig. 17
reveals performance during training when the number of
training gesture categories is reduced, indicating a decrease
in the training data set’s scale. With training on 10, 14, 18,
22, and 26 letter gestures, the accuracy continuously improves
because the training data is more information rich. Even when
training with a randomly selected set of ten letter gestures,
the two-shot recognition accuracy for unseen gestures O to 9
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Fig. 17. Recognition accuracy varies with number of 26 training gestures.

exceeds 89%, suggesting that a substantial amount of training
data is not necessary to achieve effective recognition.

In cross-domain experiments involving factors like angle,
environment, and posture, we conduct further evaluations of
our system’s performance. For each cross-domain experiment,
only one domain factor is altered, with the baseline being 0°,
a quiet laboratory environment, and the device placed flat on
a desk. We use three different random seeds: 1) 1; 2) 42;
and 3) 100. Under each seed, ten different support sets are
extracted for all the testing data sets. The average accuracy
across all of these is calculated to provide an objective
evaluation result.

Fig. 18 is the result of our main experimental tests, which
displays the accuracy results for our system when the device is
rotated 90° horizontally, in a noisier environment (>50 dB),
and when the system is used hand held (simulated by placing
the phone on a stand). “w/0” indicates scenarios where our
feature-wise linear transformation layer is not used, only with
basic PN classification. It is shown that in two-shot cases,
EchoGest’s accuracy exceeds 90% in various testing scenarios,
with accuracy rates of 93.7%, 90.5%, 91.0%, and 94.7%. The
performance even surpasses the baseline when the phone is
placed upright, which may be due to the closer microphone-
to-handwriting distance when the phone is upright, resulting
in more noticeable frequency shifts.

When the phone is placed flat on the desk at a 90° angle, our
feature transformation layer brings about the most significant
improvement, with only a slight increase in parameters leading
to an average accuracy improvement of 8%. Under all the
three-shot conditions, our accuracy consistently exceeds 94%
in various cross-domain tests, maintaining high recognition
precision. Results also show that our approach has a significant
advantage when users only provide one-shot: the accuracy
improvement is nearly 10% in all the cross-domain cases.
Adding only a very small number of parameters can result
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Fig. 18. Accuracies of cross-domain evaluation. We show the performance

difference with(w) and without(w/o) feature-wise linear transformation layer.

TABLE 11
TIME REQUIRED FOR ECHOGEST TO PROCESS THE RECEIVED SIGNAL
AND RETURN A RECOGNITION RESULT

Work Extra Hardware Recognition Content — Accuracy Unseen Gesture
Required Recognition

UbiWriter [45] No 26 letters — 69.23% No
50 words — 91.8%

RobuCIR [38] No 15 gestures — 98.4% No

Echowrite2.0 [51] No 26 letters — 73.2% No
10 digits — 85.3%
50 words — 96.9%

DHGR [46] Yes 10 gestures (1-shot) — 88.99% Yes

10 gestures (3-shot) — 91.88%
AO-Finger [44] Yes 4 action types — 94.83% No
EchoGest (Ours) No 26 letters (cross-environment, 2-shot) — 88.9% Yes

10 digits (cross-task, 2-shot) — 93.7%
8 gestures (cross-task, 2-shot) — 95.8%

in a huge increase in accuracy. It is worth noting that, our
testing phase directly employs the most basic few-shot N-way
K-shot testing. In practice, the ability to select template shots
could further enhance accuracy, as random shot selection may
include some low-quality data. More detailed comparative and
ablation experiments are presented in Section VI-C.
Regarding EchoGest’s real-time running performance,
Table II presents the time required for our system to process
data from the user’s input to displaying the classification
results. During our practical testing, we discovered that send-
ing the data to the server for inference execution is more
time efficient than directly utilizing mobile deep learning
frameworks on the client side. Consequently, we continue to
employ a server-client architecture, even though this incurs
some additional network traffic. We plan to optimize this
aspect as part of our future work. What is more, this approach
offers another two advantages. First, it enables the application
to be used on smartwatches since they are currently unable to
execute complex PyTorch inferences. Second, it eliminates the
need for users to locally store the required.pth or.onnx model
for classification, thereby reducing the local storage usage.
Table II presents the total time for testing ten digit gestures
on different terminal devices acting as clients and various
devices serving as servers, all under a 50 Mb/s network speed.
For terminal devices, we utilize both the smartphones and
smartwatches, while for servers, we experiment with a laptop
(ROG Zephyrus M16, with a NVIDIA RTX 3060 GPU, 16
GB of memory, and i7-11800H CPU) and a large server as
described in Section VI-A. It is observed that, for smartphone
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TABLE III
COMPARISON AND ABLATION STUDY OF OUR METHODS

Work Extra Hardware Recognition Content — Accuracy Unseen Gesture
Required Recognition
UbiWriter [45] No 26 letters — 69.23% No
50 words — 91.8%
RobuCIR [38] No 15 gestures — 98.4% No
Echowrite2.0 [51] No 26 letters — 73.2% No
10 digits — 85.3%
50 words — 96.9%
DHGR [46] Yes 10 gestures (1-shot) — 88.99% Yes
10 gestures (3-shot) — 91.88%
AO-Finger [44] Yes 4 action types — 94.83% No
EchoGest (Ours) No 26 letters (cross-environment, 2-shot) — 88.9% Yes
10 digits (cross-task, 2-shot) — 93.7%
8 gestures (cross-task, 2-shot) — 95.8%
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Fig. 19. CPU and memory resources occupation.

with laptop serving as a server, the data upload and storage
time on the server is approximately 0.03 s, the time taken to
convert to a spectrogram on the server averages 0.24 s, and the
model inference time is only 0.1 s. Overall, the total response
time is less than 0.4 s which is sufficient for daily interaction
needs. When a smartwatch serves as the user’s device, the
transmission time increases slightly, but the total required time
remains below 0.5 s. Additionally, we conduct separate tests
on the final layer of the PN using ¢; and ¢, distances. Their
accuracies are quite similar, but the £; distance is more time
efficient and computationally faster. Therefore, we opt for the
£ distance to achieve faster inference speeds.

We also assess the usage of CPU and memory with the use
of our application. During the evaluation process, we employ a
Samsung Galaxy S9 phone, monitor CPU and memory usage
in USB debugging mode via the Android Studio. Fig. 19
shows our CPU and memory usage. The testing duration is
15 s, during which we perform three writing activities. The
maximum memory and CPU usage observed are 335.6 MB
and 25.4%, respectively, with low CPU usage when there is
no activity.

In terms of power consumption, we use the same device
to monitor power consumption of our application within 1 h.
For comparison, we also provide power consumption when
the application is not in use and when only a music player
continuously plays music. The phone has a 3000 mAh battery,
and when not using it, its screen remains on, and Wi-Fi is
enabled. When using our gesture application, we made certain
adjustments in the software to emit a continuous 19 kHz sound

Power (%)
2

—=— Energy (Without APP)
1 |—=— Energy (With our APP)
—— Energy (With Music)

0 10 20 30 40 50 60
Time (min)

Fig. 20. Power consumption under different usage states.

wave without the need for direct interaction. We set it to emit
the maximum volume sound wave for 2 min every 5 min,
indicating that users spend 40% of the time in continuous
writing, which is a substantial portion. For the comparison
with the music player, we use earphones (which consume less
power than external speakers) and control the volume at one-
third, simulating practical usage. Fig. 20 shows our power
consumption results. After 1 h, the phone’s battery decreases
to 95%, 74%, and 82% from 100% in these respective
scenarios. In actual usage, our software’s power consumption
is somewhat similar to continuously playing music on the
phone’s speakers and does not significantly deplete the battery,
especially when users do not need to write frequently.

C. Comparison and Ablation Study

Our comparative experiments, as shown in Table III, primar-
ily assessed various aspects of the methods. These assessments
included the number of parameters in the method, performance
when trained with only 0° letters or both 0° and 90° letters,
the two-shot testing accuracy for ten digits, and deployability.
Deployability in this context, refers to whether users can
directly utilize the method without retraining the model.
Importantly, deployability also means that our model does not
need to be retrained once it is trained, preventing users from
having to incur training costs or time. Fine-tuning methods
require users to provide data for retraining. Given that 0° and
90° letters exhibit significant differences in the spectrogram,
our strategy for fine-tuning, PN [28], RN [9], and other
methods that only require one-time training is to initially train
with 90° letters. After obtaining this pretrained model, we
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proceed to further training with 0° letters, effectively utilizing
the results from the 90° letter training as an initialization for
the model.

The first three compared methods are as follows.

1) Normal training of a ResNetl8 with a fully connected
layer, followed by removal of the fully connected layer,
using the convolutional layers as the feature extractors,
and comparing the obtained feature vectors based on the
£, distance and user-shot.

2) Fine tuning the modified fully connected layer with the
user-shot after changing its dimensions.

3) Fine tuning all the layers of the ResNet18 with the user-
shot, while reducing the learning rate.

Result shows that fine tuning tends to achieve higher accuracy,
surpassing 85%. These, along with the MAML method [6],
RN method [9], will serve as the baselines for the comparative
experiments, while the PN method [28] will be the baseline
for the ablation experiments. It is worth noting that the
feature extractor structure is ResNetl8 for all of them, with
possible adjustments in other parts to match the dimensions.
PN method [28] achieves the highest accuracy among the
baseline methods, with a two-shot testing accuracy of 88.3%
when both 0° and 90° letters are used for training.

“PN + feature transformation” is our primary approach.
When PN is integrated with our feature-wise linear trans-
formation layer, the accuracy reaches 93.7%, significantly
improving accuracy with the addition of very few parameters.
The extension part in combination with the clustering methods
can further enhance accuracy. It is worth noting that the
clustering methods require access to all the raw unlabeled data,
and can only be used when the data distribution is known,
which imposes certain limitations.

We also compared our work with some closely related
methods. The work [30] is the most relevant method to ours,
but our reimplemented accuracy is only 86.7%, indicating
that its feature transformation had limited effect. We have
provided a detailed analysis of this in Section V-B, which also
highlights the effectiveness of our two-stage training parameter
approach and our ¢, regularization term for 6y. DN4 [13]
is a method suitable for our image data in the context of
FSL. Its idea is to utilize deep local descriptors, which means,
instead of applying global average pooling on the ResNet
features, it treats each corresponding position vector as a local
descriptor. Using the local invariant features from two images
for similarity matching, rather than relying solely on their
image-level representations, might be more suitable for our
data. This is because our writing content is composed of
smaller strokes, and local features could better capture this.
While it does improve accuracy, it comes with a significant
increase in computational complexity. The computational cost
of the final layer increases by more than 50 times with our
8x 8 feature maps, making it challenging to achieve real-time
performance. Finally, we compared our work with DHGR [46].
DHGR [46] builds upon the RN structure and concats the
Relation Score to obtain the final result through the FC layers.
When reproducing this method, we encountered a problem:
the vector obtained after combining needs to pass through
the fully connected layers, which require that the number of
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training and testing shots remain the same and cannot be
altered. As a part of our reproduction, we set train-way to
10 instead of 26, which may have caused some decrease in
accuracy, resulting in a maximum accuracy of only 83.7%.
In contrast, we achieved a 93.7% accuracy in the ten-way
two-shot classification and a 95.6% accuracy in the ten-way
three-shot classification without using the additional Doppler
radar devices. This demonstrates the practicality of our system,
surpassing the performance of DHGR [46], which reported a
ten-way-three-shot accuracy of 91.88%.

Figs. 21 and 22 illustrate the visualization of feature vector
distributions obtained using the t-SNE [32] method. In Fig. 21,
only PN is used, while Fig. 22 presents the results after
incorporating the feature-wise linear transformation layer. The
recognition accuracy for the same data improved from 88.5%
t0 92.5%. The visualization results show that our approach can
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push the spacing between classes to a greater extent, which
is more conducive to classification for PN infrastructures.
In this particular set of test data, the device is oriented
vertically. Due to this orientation, the Doppler effect results
in a more pronounced frequency shift during the vertical
finger movements compared to the horizontal movements.
As a result, spectrograms of 1, “2)” and 7 appear more
similar. Intuitively, our feature transformation also appears to
effectively increase the distance between 1 and 2, as well as
6, yielding a noteworthy effect.

D. Performance Under Other Different Settings

1) Impact of Gestures: We present extended experiments
with some variations in the experimental settings. These exper-
iments may have a smaller data set compared to Section VI-B,
and we will clarify this when describing the experimental
content. First, we conduct tests on 26 letters and eight new
customized gestures. For the 26 letters classes, we use a total
of 5200 letters data points previously written by ten volunteers
in an in-hand posture. In this scenario, the test does not involve
cross-task testing but does involve cross-environment testing.
For another customized gestures, we define eight customized
gestures based on the common writing actions in the Wi-Fi
field [50], as shown in Fig. 23. These gestures are relatively
more distinguishable compared to the set of ten digit gestures.
We collect a total of 320 customized gesture data samples
from volunteers p2 and p3. Fig. 24 displays the Top-1 and
Top-2 recognition accuracy for the three major categories of
gestures under the two-shot condition. Top-2 denotes the two
gestures with the highest classification confidence, including
the correct gesture classification. Our Top-2 accuracy for all
tests exceeds 98%. For two-shot tests of digits, letters, and
customized gestures, the Top-1 accuracy rates are 93.7%,
88.9%, and 95.8%, respectively.

2) Impact of Ages: Next, we conduct tests with participants
from different age groups. As mentioned earlier, we note
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Fig. 25. Users of different ages and the resulting spectrograms. (a) Young.
(b) Mid-aged. (c) Elder. (d) Young-“0". (e) Mid-“0". (f) Elder-“0".
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Fig. 26. Impact of different age.

that the younger users might have less noticeable frequency
shifts due to the fine-grained finger movements, while older
users might exhibit slower writing speeds, which could also
lead to the less pronounced frequency shifts. We collect
data from the three participants representing different age
groups (9, 35, and 59 years old), with each contributing 100
experimental data. We do not impose any specific restric-
tions on the devices used for their writing experiments.
Fig. 25(a)—(c), respectively, illustrate their writing conditions,
while Fig. 25(d)—(f) correspond to the frequency spectrum
of the handwritten digit 0. These frequency spectrograms
are processed into the binarized feature maps using the
method described in Section IV-C and subsequently used for
classification. Fig. 26 presents the accuracy results of these
tests. It is evident that, although the one-shot accuracy is
relatively lower, the two-shot accuracy for these age groups
reach 89.7%, 86.7%, and 91.3%, respectively. The three-shot
accuracy also consistently exceeds 90%, demonstrating that
the accuracy remains high. This highlights the reliability of our
system.

3) Impact of Devices: We also conduct a specific evalua-
tion of the impact of different devices on the writing process.
Our experimental devices include the Samsung Galaxy Tab S2,
Samsung Galaxy S9 Phone, and Oppo Watch3 Pro. We recruit
two male participants, aged 22, and collect 200 instances of 0—
9 digits for each device. Fig. 27(a)—(c) display the appearance
of these three devices, while Fig. 27(d)—(f) correspond to the
frequency spectrum of a handwritten digit 0 obtained with
each of these devices. To our surprise, the frequency spectrum
associated with the smartwatch is the clearest, exhibiting the
most pronounced frequency shifts with a consistent pattern.
Although not all smartwatches meet the hardware requirements
of emitting and capturing 19 kHz ultrasonic waves, and not all
support Android development, our experimental results clearly

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on October 02,2024 at 17:00:48 UTC from |IEEE Xplore. Restrictions apply.



29724

Fig. 27. Using different experimental equipment and the resulting spectro-
gram. (a) Tab. (b) Phone. (c) Watch. (d) Tab-“0". (e) Phone-*“0". (f) Watch-“0".
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Fig. 28. Impact of different device.

demonstrate the potential of future smartwatches for touchless
writing. Fig. 28 presents the testing accuracy results, with their
two-shot testing accuracy reaching 93.7%, 89.5%, and 93.2%,
respectively, while the three-shot testing accuracy consistently
surpasses 94%.

It is worth mentioning that, even though we have not
provided specific details about the evaluation of image bina-
rization in the main text, it remains a crucial component,
especially evident in this cross-device testing here and tests
involving different age groups mentioned earlier. We con-
duct tests using the spectrograms without binarization as
training and testing data. The results, with the only differ-
ence being the presence or absence of image preprocessing,
shows that the two-shot cross-device recognition accuracy is
below 60% without binarization, while exceeds 90% with
it. Therefore, image binarization not only aligns with our
intuition but also significantly benefits the model’s recognition
capabilities.

4) Impact of Distances: We assess the impact of different
writing distances, as shown in Fig. 29. It is observed that
greater distances result in less noticeable Doppler frequency
shifts. In previous experiments, we primarily assume “near”
range writing. In this evaluation, we invite five volunteers, p2,
p3, p4, p5, and p8, to write a total of 2000 digit gestures at
“mid” and “far” distances using the Samsung Galaxy Tab S2
device. The testing results in Fig. 30 indicate that accuracy
indeed decreases as the writing distance increases. In the case
of two-shot testing, accuracy for mid and far distances are
89.7% and 85.3%, respectively. Even the farthest distance
achieved 90.5% accuracy in three-shot testing, and the near
distance is already suitable for daily use. In the future, we
hope to enhance the algorithm or leverage the dual-microphone
hardware present in most modern smartphones to further
improve accuracy.
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Fig. 31. More complex environment and the resulting spectrogram. (a) Server
room. (b) Outdoor. (¢) Server room-“0". (d) Outdoor-“0".

5) Impact of Complex Environments: Finally, we supple-
ment tests for more complex environments, including scenarios
with much noisier backgrounds (exceeding 60 dB) and outdoor
settings. The experiments are conducted in both the laboratory
server room and outdoor locations on the school campus.
Two male participants, each 22 years old, provide 400 testing
instances of digits 0-9 for each scenario. Fig. 31(a) and (b)
show the experimental setups, and Fig. 31(c) and (d) shows
the corresponding spectrograms for digit 0, respectively. The
results in Fig. 32 demonstrate that in both the noisier and
outdoor environments, the two-shot accuracies are 90.9%
and 89.6%, respectively. And the three-shot accuracies in
both the environments exceed 91%. Compared to the cross-
environment scenario shown in Fig. 18, the accuracy remains
relatively stable. This indicates that our system exhibits a
certain level of robustness against the noise and outdoor
interference.
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VII. DISCUSSION AND FUTURE WORK
A. Optimization of Preprocessing Operations

We think that further enhancements can be made to our
preprocessing operations, including streamlining the process
for faster execution and exploring methods to highlight the
horizontal frequency shifts more prominently. Here, the hori-
zontal frequency shift refers to the shorter side perpendicular
to the phone because, upon observing spectrograms, we
notice that when the phone is placed vertically, the frequency
shift caused by writing vertically is much more pronounced
than the shift caused by horizontal writing. Therefore, the
differentiation between 1 and 2 in the spectrogram is not very
clear. They are only distinctly reflected in the spectrogram
in the downward vertical part. What is more, we hope to
accelerate the current STFT part, making its execution speed
faster and meeting all the requirements of a real-time system
in the software development.

B. Deployment on Edge Devices

In our work, our primary focus has been on expanding
the recognition of unseen gestures, with less emphasis on
considerations, such as device resource constraints, commu-
nication, and network latency. Table II presents the time
consumption when an user device communicates with the
server. While the results in Table II demonstrate the feasibility
of our system, deploying our software to a large number
of users may introduce additional latency. We leave this as
future work. Additionally, considering resource limitations,
especially in scenarios with the constrained memory, relying
on the mobile devices for the inference process may be
challenging. Currently, our edge devices only need to emit
ultrasound, record echoes, and transmit data to the server.
Depending on the server for processing the results is not
without drawbacks, involving additional data transfer and
potential privacy concerns. Hence, we will continue to explore
more suitable approaches.

C. Utilization of Sensing Capacity

The present version of EchoGest only makes use of a
single pair of microphone and speaker. But many commercial
smart devices are now equipped with multiple speakers and/or
microphones. This provides an advantage for more accurate
and robust acoustic-based gesture recognition systems. More
specifically, if we can combine the signals from multiple
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speakers or microphones, we envision that the features of
different gestures reflected in the Doppler spectrograms will
be more evident. To the best of our knowledge, there seems
to be no current improvement in the acoustic-based gesture
recognition technology utilizing dual speakers or microphones
available in commercial products. We believe that analysing
the frequency shift patterns of dual speakers-microphone pairs
could lead to a better enhancement in recognition accuracy.

VIII. CONCLUSION

In this article, we propose an acoustic in-air gesture
recognition system, EchoGest, which is scalable to recognize
various unseen gestures. Our system emits high-frequency
sound waves and records the echo signals resulting from
the gesture movements. We process the audio signals to get
spectrogram and use our classification model to recognize. The
classification model that we propose integrates well-designed
feature-wise transformation layer into the PN framework. The
layer enhances feature activations through affine transfor-
mations, generating more diverse feature distributions, thus
facilitating the cross-task and cross-domain recognition. We
obtain required regularization parameters of this layer through
a two-stage training, which is more suitable for our gesture
recognition task. Our improved method results in a 10%
accuracy increase in one-shot cases. We test the recognition
accuracy with 0-9 digits as customized gestures. The two-shot
accuracy achieves 93.7% and top-2 accuracy in recognizing
various type of gestures all over 98%. We also explore
semi-supervised clustering to update prototypes with each
user’s data to achieve a personalized customization effect. We
conduct a series of experiments, all of which show EchoGest’s
usability, as well as the potential for smartwatch devices.
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