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Abstract—User authentication and identification on smart devices has great significance in keeping data privacy and recommending

personalized services. With the rising popularity of smart earphones recently, they open up a newworld for users to enjoymusic

individually, but also bring about privacy concerns at the same time. Existing few research works propose positive sensing systems that

emit and receive inaudible acoustic signals to authenticate users. However, they share shortcomings of intrusiveness to users, high

power consumption, and purely focusing on authentication. Instead, in this paper, we propose a passive sensing system called EarID with

low-cost customized earphoneswhich attains user authentication and identification at once. It makes use of a embeddedmicrophone to

sense body sounds spread out through ear canals and extract ‘fingerprints’ as a novel biometric feature. With self-designed earphones,

we design a deep learning-based real-time data processing pipeline and cope with external interference. Extensive experiments under

different real-world settings show that EarID can achieve a rather low false acceptance rate of 3:4% for user authentication and a high F1

score of 95:5% for legitimate user identification.

Index Terms—User authentication, earable device, deep learning

Ç

1 INTRODUCTION

WITH the popularity of smart devices, privacy concern
has become a hot spot in academia. Researchers have

paid much attention to the user authentication problem on
smart devices, and proposed various schemes to enhance
privacy and security on such devices. Among them, biomet-
ric authentication is a mainstream scheme which makes use
of fingerprint [1], [2], face [3], iris [4] or other biological fea-
tures to differentiate users. Fingerprinting is currently the
most widely-adopted authentication scheme in commercial
smart devices, especially smartphones and tablets. However,
it requires to equip additional fingerprinting sensors which
increase hardware cost and are not suitable to be equipped
on tiny devices such as smartwatches, smart glasses and
earphones. Moreover, fingerprinting requires a user to con-
sciously participate in the authentication process and is not
appropriate for continuous authentication scenarios. In addi-
tion to fingerprinting, iris and face recognition have also
been used in commercial devices. Nevertheless, they have
the similar aforementioned problems of fingerprinting.
Furthermore, as face and iris recognition rely on image proc-
essing algorithms, the performance of such kind of systems

is highly dependent on light conditions, postures, or finger
clearness. Within the scope of biometric authentication,
researchers have also proposed some novel methods based
on other biological features or physiological activities differ-
ing from the above, such as breathing [5], dental occlusion
[6], heartbeat [7] and ear canal shape [8]. However, theworks
[5], [6], [7] require users to consciously put devices close to
noses, mouths or chests, which degrades the user experience
especially in continuous authentication cases. Several previ-
ous work [8], [9], [10] are the most similar to ours which
makes use of ear canal structure as biometric feature. But
they follow a active sensing approachwhich utilizes amicro-
phone-speaker pair equipped in earphones to transmit and
receive pre-designed acoustic signals.

In this work, we pay attention to the user authentication
and identification problemwith smart earphones, considering
their increasing popularity in our daily life. Different from the
traditional problem, we not only care about whether a user is
legitimate or not, but also intend to know exactly who he/she
is if identified as legitimate. That is, we propose a system that
conducts user authentication first when a person tries it, and
further recognizes his/her identity if he/she is authenticated
as a registered one. The motivation of our consideration is
due to the characteristics of smart earphones. On one hand,
since earphones are a kind of private items, people are not
willing to share them with others except for closest friends or
family members. Thus, checking the legitimacy of a user is
necessary for guaranteeing private property. On the other
hand, people sometimes share their earphones with closest
friends or families. By identifying who the present user is,
smart earphones can switch to corresponding personal set-
tings and provide personalized services. Considering the
shortcomings of existing approaches as mentioned above, we
propose a truly passive sensing system bymaking use of low-
cost microphone sensors embedded in earphones to collect
acoustics caused by putting on earphones (i.e., behavioural
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acoustics) and body sounds spread out through ear canal (i.e.,
psychological acoustics). The underlying rationale of our
method are two-fold. For one thing, acoustics during putting
on earphones reflect behavioural patterns of different persons,
which can be explored to do user authentication similar to
other related work [5], [6]. For another thing, the collected
body sounds through ear canal are mostly produced by heart
beating which is a unique feature for different people [5], [7].
They propagate through body structures including ear canal
which act as a series of signal transformation systems. Due to
the differences of these structures, their transfer functions are
differentwhich exert different impacts on body sound signals.

However, there exist two key challenges in realizing this
idea. First, as the power of body sounds is minute, useful sig-
nals are likely to be submerged by ambient noises, especially
when users are in motion states. It is fairly challenging to
extract target signals accurately under different circumstan-
ces with conventional segmenting methods. Second, human
body sounds can be affected by many factors such as emo-
tions and moving states. It is necessary to build a robust
model that can learn intrinsic features from raw signals. As
for the first problem, we abandon conventional segmenting
and adopt random framing to avoid segmenting failures. As
for the second problem, we design a hybrid learning net-
work. In the implementation, since low-layer signals are not
accessible on commercial smart earphones, we first design
such a hardware systemwith a low-cost microphonemodule
and a EPS 32 MCU. The sensed data are transferred to a
smartphone for further processing via Bluetooth. Note that
the key contribution of our work is not proposing novel ear-
phones hardware. Instead, we propose a novel application
based on smart earphones that can be implanted on commer-
cial products similar to previous work [8]. But as commercial
earphones do not provide access to sensor data, we have to
design a hardware prototype to validate the idea of user
authentication with earphones. In other words, our pro-
posed system can be easily embedded on present earphones
if sensor data are available. We conduct extensive experi-
ments to evaluate the performance of EarID under different
environments. The results show that it can achieve satisfac-
tory authentication performance with false acceptance rate
and false rejection rate under 3% and 5%, respectively.

The remaining of this paper is organized as follows. In
Section 2, we introduce the related work. Section 3 presents
the details of EarID design. In Section 4, we introduce the
implementation and experiments. Section 5 gives the evalu-
ation of EarID performance. At last, we conclude this paper
in Section 6.

2 RELATED WORK

Ourwork ismost relatedwithmobile authenticationmethods
and in-ear sensing applications. In the following, we shall
give introduction to these two research areas anddemonstrate
the correlation between ourwork and existingworks.

2.1 Authentication on Mobile Devices

2.1.1 Biometric Methods

Biometric authentication relies on intrinsic human physio-
logical features to authenticate users [11]. Existing widely-
used biometric features on mobile devices mainly include

fingerprinting [12], face [13] and iris [4], [14]. Existing fin-
gerprinting systems on mobile devices are mostly designed
with capacitive sensors considering the trade-off of size,
cost and efficiency. But this method usually fails to work
when there exist dirty wastes, water, cuts or bruises on fin-
gers and thus requires users to try over and over again [15].
Moreover, limited by sensor manufacturing, existing finger-
printing systems require additional space for sensor place-
ment such as Home key on smartphones. Face and iris
recognition are also emerging authentication methods on
mobile devices which rely on image processing techniques
to extract biometric features [13]. However, their perfor-
mance are easily affected by light conditions and user’s pos-
tures [16]. More importantly, most tiny smart devices such
as smartwatches and smart earphones are not equipped
with image sensors due to energy consumption and sensor
size concern. Moreover, researchers also propose body
structure-based authentication scheme such as the works
[8], [9], [10], [17]. The works [8], [9], [10] share similar ideas
which take advantage of the uniqueness ear canal structure.
But they follow a active sensing approach which programs
a speaker to emit sounds. By analyzing echoes bounced
back by ear canal, those works accomplish user authentica-
tion. Compared with them, our work follows a passive sens-
ing approach which only needs a microphone. This not only
consumes less energy but also provides a more quiet user
experience. Moreover, this work deals with a more difficult
problem. That is, it achieves user authentication and identi-
fication of legitimate users at the same time.

2.1.2 Behavioral Methods

Behavioral authentication refers to authenticating users by
their certain unique behaviors. Existing behavioral methods
onmobile devicesmainlymake use of touching and/ormov-
ing gestures on screens [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27]. Some researchers also come up with gait-
based authentication by means of inertial sensors in mobile
devices [11], [28], [29], [30]. However, inertial sensor-based
gait authentication is easily affected by body movements.
Some other methods have also been proposed for user
authentication on mobile devices, such as eye movement-
based [31], [32], [33] and breathing-based [5], finger tap-
ping/touching [34], [35], walking[36], dental occlusion [6]
and heartbeat [7]. But they either require specialized hard-
ware [31], [32], [33], communication signals [37], [38], need a
user to participate in consciously [6], [7], [34], [35]. In con-
trast, our method only uses ubiquitous microphone sensor
and works quietly even without a user’s notice, since natural
behavioural and psychological activities are utilized.

2.2 In-Ear Sensing Applications

With the prosperity of ear-mounted smart devices, researchers
have shown increasing interest in developing in-ear sensing
applications. Apart from user authentication as mentioned
above, these applications can be categorized into vital sign
monitoring [39], [40], [41], [42], emotion recognition [43], activ-
ity recognition including sleeping [44], [45], eating [46], [47]
and movements of other body parts [48], [49], [50]. These
applications make use of specialized sensors such as EEG/
EMG electrodes, conductive rubber electrodes, microoptic
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reflective sensor and etc.. In contrast, our system is built with
low-cost and ubiquitousmicrophone sensor which can be eas-
ily deployed in commercial earphones.

3 EarID DESIGN

3.1 System Overview

Fig. 1 shows the overview of EarID0s data processing pipe-
line. EarID system consists of two parts, namely, earphones
hardware and a self-designed mobile application on a
smartphone. The earphones hardware consists a micro-
phone, speaker, audio amplifier, Bluetooth module and
micro controller. As the raw sensor signals are not accessi-
ble on commercial earphones, we implement the hardware
by ourselves with low-cost sensors and modules which will
be detailedly introduced in Section 4.1. When a user starts
putting on earphones, the embedded microphone immedi-
ately activates and senses data until completes an authenti-
cation trial. This data collection process actually contains
two stages, one is during putting on earphones, and the
other is when earphones are worn in ears. In the former
stage, the collected signals by a microphone are mainly
caused by user’s putting on activity, while signals in the fol-
lowing stage mainly depict activities of viscera such as
heart, lung and etc.. As a result, we actually make use of
both behavioral characteristics and physiological features
for user authentication in EarID.

Before transmission, the collected acoustic signals are
first sent an amplifier in order to boost SNR. After that, sig-
nals are transmitted to the smartphone continuously via an
embedded Bluetooth unit. At the smartphone end, the
application is responsible for data communication and the
whole processing pipeline. Specifically, when the applica-
tion receives data, it first performs power interference filter-
ing to remove powerline interference and its harmonics.
After that, we perform segmentation technique on the
cleaned signal sequence to extract signals corresponding to
two different stages. This is because we make use of differ-
ent deep learning models to extract features on two parts of
signals which shall be demonstrated in Section 3.3. Follow-
ing that, we design a hybrid learning network which
extracts features and accomplish authentication and identi-
fication at one time. In the following, we shall give detailed
introduction to each part.

3.2 Signal Preprocessing

3.2.1 Signal Denoising

Due to the interference of power line, the collected signals
contain 50 Hz components and corresponding odd harmon-
ics. To reduce them, we first perform FFT on the obtained
signal sequences and set the coefficients corresponding to
those components to be zeros, and then transform the FFT
coefficients back to time-domain signal sequences. The rea-
son why we do not make use of notching filters to is that
they consume more computing resources and time, which
makes them less appropriate on mobile devices.

3.2.2 Wearing Event Detection

As mentioned above, a whole signal sequence is composed
of two parts, namely, signals corresponding to putting on
earphones and activities of body viscera respectively. As
shown in Fig. 2, signals within [1,2] second indicate the
wearing event and the following part are body sounds. As
we utilize different models to extract features from these
two parts, we first need to segment these two parts. Here
we make use of a likelihood ratio test (LRT) and Hidden
Markov Model (HMM)-based event detection module [51]
to achieve this. This method is widely used in audio proc-
essing and has proven to be effective. It consists of the fol-
lowing main steps. Given two hypotheses as follows:

H0 : wearing event absence : XX ¼ NN

H1 : wearing event presence : XX ¼ S þNS þN

where SS, NN and XX represent L dimensional discrete Fourier
transform (DFT) coefficient vectors of acoustic signals,
noises and noisy signals with their kth elements Sk, Nk and
Xk respectively. Then the probability density functions con-
ditioned on the above two hypotheses are given by

pðXXjH0Þ ¼
YL�1

k¼0

1

p�NðkÞ exp
(

� jXkj2
�NðkÞ

)
(1)

pðXXjH1Þ ¼
YL�1

k¼0

1

p½�NðkÞ þ �SðkÞ� exp
(

� jXkj2
�NðkÞ þ �SðkÞ

)
;

(2)

where �NðkÞ and �SðkÞ represent the variances ofNk and Sk,
respectively. Thus, the likelihood ratio for the kth frequency
band is

Lk ¼def pðXXjH0Þ
pðXXjH1Þ ¼

1

1þ �k
exp

gk�k
1þ �k

)
;

(
(3)

Fig. 1. The system overview of EarID.

Fig. 2. The deep learning network architecture designed for EarID.
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where �k ¼def �SðkÞ
�N ðkÞ and gk ¼def jXkj2

�N ðkÞ representing the priori and
posteriori signal-to-noise ratios. Consequently, the decision
rule is established from the geometric mean of the likeli-
hood ratios of different individual frequency bands, which
is given by

logL ¼ 1

L

XL�1

k¼0

logLk 5
H1

H0

h; (4)

where h is an empirically set threshold constant which
equals to 0.80 in our implementation of EarID. Applying this
method on our signal sequence, we can obtain the corre-
sponding event probability of each frame as shown in the
below subfigure of Fig. 2. We can see that except for wear-
ing earphones, there exist some other periods with high
event probability which indicate occurrence of other events
such as heartbeats. But the durations of those events are
much shorter. Thus, we add a constraint of event duration
(more than 1.5 second) to filter out other events and extract
wearing events precisely.

The following signal frames mainly contain body acous-
tics which show high uniqueness among different people.
Different from conventional operation, we do not perform
segmentation technique on this part of signals based on two-
fold considerations. For one thing, as we can see from Fig. 2,
due to the much lower SNR, it is rather difficult to accurately
detect each inner-body event, which probably results in
many misses in practice especially when the signals are more
noisy. This will degrade the system performance or adding a
user’s overhead by forcing him to trymore times. For another
thing, although the main components of body acoustics
sensed by our earphones are caused by heartbeat, other vis-
cera also contribute useful information which is hidden in
lower-power signals. As a result, for this part of signals, we
adopt a simple but effective strategy, that is, randomly sam-
pling the signals with a slidingwindow.

3.2.3 Signal Transformation

After obtaining signals corresponding to user behavioral
and psychological features, the following step is to find
proper representation of them. A straightforward idea is to
extract proper features manually to train a machine learning
model as done in previous work [8]. But this is not appro-
priate for our problem. Different from that work in which
the source signals are pre-designed, source signals that we
used are originated from a user’s natural behavior and psy-
chological activities. This makes it much more different to
model how signals are produced and propagated. As a
result, it lacks enough domain knowledge to extract proper

features. Inspired by image processing, we perform the
short-time Fourier transform (STFT) on two parts of signals
and obtain features both in time and frequency domains.
Specifically, we perform Hanning windowing and sliding
STFT on signal sequences with the window size and overlap
being 128 and 72 samples points, taking the trade-off
between accuracy and latency into account. Fig. 3 shows the
results of transforming five randomly selected participants’
denoised behavioural (i.e., putting on earphones) and psy-
chological (i.e., inner-organ activities) signals into spectro-
grams by STFT in the upper and lower rows, respectively.
We can clearly see that both kinds of signals, especially the
psychological signals, show unique patterns in spectro-
grams for different users. This indicates that it is feasible to
distinguish different persons with acoustic signals collected
by earphones.

3.3 Network Design for Classification

After transforming signals to two dimensional spectro-
grams, we design a deep learning network called EarNet as
shown in Fig. 4 for user authentication and identification,
which is reduced to a multi-label classification problem. The
network consists of two channels, one is for behavioural sig-
nals and the other is for psychological signals. As we can see,
spectrograms in two channels are fed to a LeNet-5 andMobil-
Net V2, both of whose fully connected (FC) layers are
removed, in order to extract features. Following this, we con-
catenate the obtained features from two channels,forming a
single feature vector, and feed it to a FC layer to finally achieve
multi-label classification. The considerations of designing
such a hybrid learning network are two fold. First, according
to our analysis, the signals caused by putting on earphones
are not powerful enough to characterize a use compared with
body sounds. Thus, we choose to use a more lightweight net-
work to extract features, for the sake of reducing computation
overhead and assigning lighter weight on this channel by out-
putting a shorter feature vector (i.e., 120 dimensions versus
1280 dimensions). Second, in each sampling session (i.e., put-
ting on earphones!sensing body sounds), sample points col-
lected in the first stage are much less than those in the second
stage, and randomly framing is performed merely on the sec-
ond part of signals. This results in a much smaller training
dataset in the first channel. Thus, a more lightweight network
is more appropriate. In Section 5.2, we shall evaluate and dis-
cuss the performance of different network implementations.
However, it is to be noted that in practical usage cases, each
time a user puts on earphones, the authentication can be con-
ducted continuously, with randomly selected frames on psy-
chological acoustics combining with the same behavioural
acoustic segment.

Fig. 3. The signal transformation of five randomly selected participants. Fig. 4. The deep learning network EarNet architecture designed for
EarID.
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4 IMPLEMENTATION AND EXPERIMENTS

4.1 System Implementation

The EarID system consists of two parts, one is the earphones
hardware and the other is a mobile application on a smart-
phone, tablet or any other smart devices. In the following,
we shall give details about these two parts.

4.1.1 Hardware

As present commercial earphones do not have in-ear micro-
phones and output raw data, we design a pair of smart ear-
phones with low-cost electret microphones which can be
bought by about 10 CNY online. We connect the microphone
with an acoustic signal amplifier MAX9814 which is a low-
cost, high-quality microphone amplifier with automatic gain
control (AGC) and low-noise microphone bias. It features a
low-noise preamplifier, variable gain amplifier (VGA), out-
put amplifier, microphone-bias-voltage generator and AGC
control circuitry. The micro-controller unit (MCU) we used
is an ESP32-S2, a low-cost and low-power system on a chip
with integrated Wi-Fi and dual-mode Bluetooth (BLE and
BT). The ESP32 series employ a Tensilica Xtensa LX6 micro-
processor in both dual-core and single-core variations and
includes built-in antenna switches, RF balun, power ampli-
fier, low-noise receive amplifier, filters, and power-manage-
ment modules. We connect MAX9814 with ESP32-S2 and
program it to collect acoustic signals with a sampling rate of
2000 Hz. The core hardware circuit of EarID is displayed in
Fig. 7 which mainly exhibits the microphone sensor and
ESP32module. The ambient light sensor is used as an indica-
tor of hardware states. Meanwhile, the MCU transmits
collected data to a self-developed mobile application via on-
board Bluetooth in real time. Although there is low energy
Bluetooth mode ESP32 board, we do not use this mode due
to the unstable data transmission to our smartphone. As it is
more a engineering problem, we leave it as one of our system
optimization in the future. To implement the prototype
design, we also print a plastic earbud to integrate the micro-
phone and speaker sensor as shown in Fig. 5.

4.1.2 Software

We develop a mobile application on Android platform
which is responsible for communicating data with ear-
phones via Bluetooth and executing the data processing
pipeline. Although we select a relatively lightweight deep
learning model, the training process still incurs excessive
computing burden for a smartphone. As a result, we shift
this part of work to a server since model training does not

frequently occur when the system is put into use. Specifi-
cally, the training data are uploaded to a cloud server with
specifications of 64 GB RAM, NVIDIA TITAN V GPU and
Intel(R) Xeon(R) E5-2650 CPU. When the training process is
finished, model parameters are transmitted back to the
smartphone application for completing model deployment.
It is noted that a remote server is needed only for model
trainingwhich is not supported byAndroid platform at pres-
ent and requires overwhelming computational resources.
Nevertheless, after this stage, EarID application can be
deployed on smartphones and directly put into use without
relying on the server, since the forward predication of
EarNet does not consume many resources. Even though
retraining is sometimes needed in order to update themodel,
it only involves adjusting model parameters in the last layer
and can be accomplished with a server when Internet is
available. The present version of EarID application also con-
tains other functions such as user enrollment and user guid-
ing. In our experiments, we mainly make use of a Huawei
Mate 9 smartphone with a Hisilicon Kirin 960 CPU, 6 GB
RAM, 128 GB ROM andAndroid 9 operating system.

4.2 Data Collection

We conduct comprehensive experiments with different set-
tings to evaluate EarID0s performance. We first recruit a total
number of 50 participants with 19 females and 31 males
(denoted by P1 � P50) from our university aged from 18 to 35
years old, including students, staffs and faculties. Each par-
ticipant is paid by 60 CNY per hour after experiments. Before
starting up, we tell participants about the details of experi-
ments to make sure that they clearly know what they should
do during experiments. And we also instruct them to use the
EarID system like charging the hardware when batteries run
out, installing applications on smartphones and using them
for data collection, and etc.. On the whole, our experimental
settings are determined according to four impact factors,
including noise level, user’s movement, wearing angle of
earphones and emotional state of a user. These influence
factors cover different aspects of potential interference in
real-world usage scenarios. In the following, we shall dem-
onstrate the details of each experimental setting.

4.2.1 Noise Level

To evaluate the impact of noise, we collect data in common
daily usage scenarios including home, workplaces, shop-
ping malls and public transportations. To clarify the impact
of different scenarios more clearly, we divide them into five
categories according to their noise levels, including a silent
workplace with noise less than 40 dB (i.e., N0), the same
workplace with people talking and walking (40� 5 dB, N1),
a cafe environment (50� 5 dB, N2), in a subway (70� 5 dB,
N3) and on a busy street (80� 5 dB, N4). The noise level is
measured by a SMART SENSOR Decibelmeter AS804. In
each of the above settings, participants collect data for 2
hours in total at different time intervals. We set N0 as the
baseline noise level setting.

4.2.2 Moving State

Further, since a user’s moving state affects the contact
between earphones and ear canal, it is meaningful to evaluate

Fig. 5. The hardware and software of EarID system.
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what effect this factor indeed has on the system performance.
To do this, we request each participant to collect data at seven
daily moving states including sitting static, typing keyboard,
shaking head, jaw movements, speaking, walking and running,
with other impact factors being set to be baseline values at the
same time. The baseline case of this impact factor is set to be sitting
static in our work.

4.2.3 Wearing Angle

Following the above, we also evaluate how the wearing
angle of earphones may affect the performance of EarID,
considering that a user may change the orientation of ear-
phones in practice. To accomplish this, we ask participants
to wear smart earphones at three different angles, i.e., 0�,
30� and 60�. Fig. 6 gives the schematic description of wear-
ing orientations of the earphones. We set 0� as the default
wearing angle of smart earphones.

4.2.4 Emotional State

At last, we evaluate the impact of a user’s emotion. The
underlying reason is that EarID relies on sensing of body
sounds originated from activities of organs which are
related with emotions. To clarify the impact, we utilize four
public emotion stimulation datasets, namely StimFilm [52],
EMDB [53], IADS [54] and SEED [55], which contain videos,
audios and pictures widely used for inducing certain kinds
of emotions in psychological experiments. we display these
emotion stimulating materials to each participant when
they are collecting data with EarID. According to the types
of stimulated emotions, these materials can be categorized
into four kinds including happiness, neutrality, sadness, and
mixed1. To ensure that the materials indeed stimulate corre-
sponding emotions, we also collect the self-report results
and filter the sensing data by combing with videos’ labels
and self reports. The baseline setting in terms of this factor is
when a person is in neutrality.

4.2.5 Baseline Setting

Since all the above factors affect the performance of EarID, it
is impractical and unacceptable to re-train the model (i.e.,
EarNet) with data collected under each usage scenario.
Instead, we train a universal model (i.e., called baseline
model) with data collected in only one basic setting (i.e.,
called baseline setting) with a specific combination of impact
factors, and then evaluate it under various settings. In other
words, we only train EarNet once with data collected in the

baseline setting, and then directly put the system into use in
any settings without re-training the model. Our design is
based on two-fold considerations. On one hand, practical
usage scenarios contain an explosive number of combina-
tions of the above impact factors such as noise level, moving
state, and the like. Consider our experimental settings, there
are five noise levels, five moving states, four emotional
states and three wearing angles. Consequently, there exist a
total number of 300 (i.e., 5� 5� 4� 3) different settings,
which indicates that it is rather cumbersome for users to
feedback training samples and retrain the model. On the
other hand, it is fairer to evaluate the system performance
with a universal model instead of a case-by-case model.

As a result, it is necessary to define a baseline setting in
which the training dataset is collected to train EarNet. In
our work, the baseline setting is defined based on the consid-
eration of the aforementioned four impact factors, namely,
noise level, moving state, wearing angle, and emotional
state, according to earphones’ most frequent usage condi-
tions in real-world scenarios. Specifically, in terms of the
above factors, the baseline setting is with noise level below 40
dB, users staying static, earphones worn at 0�, and keeping a neu-
tral emotional state. After training EarNet with data collected
in such a specific setting, we can test its cross-setting perfor-
mance in any other settings (including the baseline setting).

4.2.6 Specifications of Data

Since we train a baseline model and test its performance in all
different settings, we request each participant to collect data
in the baseline setting for a total number of 120 times (i.e.,
called epochs). Each complete data collection epoch starts
from putting earphones into ears and then lasts for a certain
period of time, with a total duration of 30 seconds. As a
result, in this stage each participant collects a total period of
60 minutes’ data at a sampling rate of 2000 Hz in the base-
line case. To construct the training dataset, for each signal
sequence collected in an epoch, we first extract the segment
corresponding to a putting event (see Section 3.2.2) and
then randomly frame the following part into 100 pieces
with each lasting for 2 seconds. We shall also evaluate the
impact of these two parameters in Section 5.5. Different
from the training stage, when EarID is put into practical use,
it detects putting-on events in real-time and samples physi-
ological signals with a two-second window.

In our problem, suppose m participants are treated as
legitimate (i.e., registered users) and the remaining ones are
impostors (i.e., non-registered users), we partition the dataset
as follows to train the baseline model. For each legitimate
user, 80% of his/her data are used for model training and
the remaining are for model evaluation. For impostors, we
utilize data from n (30 in our final model) of them in the
training process, and the data of remaining p impostors for
attack tests. The reason for such a data partition operation is
to avoid data leakage. In Section 5, we shall give detailed
analysis of the impact of m and n. There are several points
to be noted about the model training process. First, since we
attain authentication and identification at once, each legiti-
mate user represents a individual class while all the impos-
tors are treated as one class. Second, to avoid bias of the
classification model, we balance the number of samples

Fig. 6. Application scenarios of EarID.

1. The mixed emotion means an emotional state that can not be clas-
sified into any one of the above.
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from legitimate and invalid users in the training stage. After
obtaining the baseline model, we test our system under differ-
ent settings by varying each impact factor as mentioned
above including the baseline case. In this stage, we request
each legitimate user and impostor to try EarID for 20 times
by varying each factor individually in order to evaluate its
impact.

5 EarID PERFORMANCE

In this part, we present the performance evaluation of EarID
system. Before displaying the results, we make a brief intro-
duction to the evaluation metrics.

5.1 Evaluation Metrics

As EarID accomplishes user authentication and identifica-
tion at once, it is necessary to evaluate both aspects with
properly and clearly formulated metrics considering our
problem. Throughout the evaluation, we mainly adopt five
widely used metrics including false acceptance rate (FAR),
false rejection rate (FRR), precision, recall and F1 score. As for
FAR and FRR, we treat multi-class legitimate users as one
group when we calculating them. This is reasonable since
these two metrics focus on evaluating the security of a sys-
tem and do not care about the identity of each legitimate
user. On the other hand, when we evaluate how accurately
EarID can recognize legitimate users, we regard this task as
a multi-label classification problem and utilize commonly
used metrics namely precision, recall and F1 score.

5.2 Network Selection

In order to select an appropriate network model, we imple-
ment EarID with different models including multilayer per-
ceptron (MLP) [56], LSTM [57], MobileNet [58] and our
hybrid network architecture as shown in Fig. 4. In addition,
we also evaluate system performance with different model
implementation by utilizing signals caused by putting on
earphones (denoted by wearing for short), or body sounds
signals (without additional notation by default), or both of
them (denoted by 2ch for short). In LSTM-based implemen-
tations, we set key network parameters including time step,
input size, size of hidden layers and number of layers to be
18, 200, 128 and 2, respectively. When both parts of signals
are used (i.e., the 2ch case), we first feed them into the LSTM
network individually to extract feature vectors, then concat-
enate them together, and connect with a FC layer for classifi-
cation at last. As for MobileNet-based implementations, we
need to transform one dimensional time series into two
dimensional spectrograms by short-time Fourier transform
(STFT) before sending them into the networks.

We evaluate these networks from different aspects
besides authentication and recognition performance. Table 1
shows the evaluation results. Comparing with different net-
work models, we can see that our hybrid network (i.e.,
LeNet and MobileNet) achieves the best performance in
terms of FAR, FRR, precision and recall which are up to
3:4%, 4:9%, 96:0% and 95:1%. But it also has the largest
parameters’ size (i.e., 2.98 Mb) and longest training time (i.e.,
380 seconds). Compared with other networks, the model

TABLE 1
The Performance of EarID With Different Network Implementations

Perf.
Params (Mb) Training time (s) FAR � std (%) FRR � std (%) Precision (%) Recall (%) F1 score � std (%)

Model

MLP 0.47 94.0 43.9 � 6.8 18.6 � 2.9 62.7 � 4.4 67.5 � 4.2 64.2 � 4.4
LSTM 0.30 130 10.4 � 5.6 6.4 � 1.3 91.1 � 3.6 92.2 � 1.8 91.5 � 2.7
MobileNet 2.23 302 4.5 � 2.0 7.4 � 1.3 94.6 � 1.5 93.1 � 1.1 93.8 � 1.2
MobileNet (wearing) 2.23 302 15.7 � 4.2 27.5 � 5.2 78.3 � 5.6 73.1 � 5.3 75.2 � 5.4
LSTM (2ch) 0.6 250 12.8 � 7.5 10.3 � 4.9 89.4 � 4.7 89.1 � 4.3 88.9 � 4.5
MobileNet (2ch) 2.23 255 6.3 � 2.4 13.2 � 2.5 91.9 � 2.6 88.3 � 2.6 89.9 � 2.5
EarNet 2.98 380 3.4 � 1.2 4.9 � 2.1 96.0 � 1.3 95.1 � 1.7 95.5 � 1.5

Fig. 7. The core hardware circuit of EarID system.
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size and training time are still affordable for present smart-
phones. On the other hand, from the perspective of utilized
data, we can obviously observe that although the first part of
signals (i.e., wearing signals) indeed provide useful informa-
tion for user authentication (FAR = 15:7%, FRR = 27:5%), they
are not equivalently efficient to the second part of signals (i.e.,
body sounds) which achieves much lower FAR (4:5%) and
FRR (7:4%) with the samenetwork implementation (i.e., Mobi-
leNet). This indicates that both parts of signals can contribute
to our purpose but with different weights. And this may be a
possible explanation to the result that our hybrid network per-
forms better than MobileNet and LSTM, since we use a shal-
lower network to extract features and limit the length of
feature vector smaller.

5.3 Number of Non-Registered Users

We consider two cases of the impact of the number of non-
enrolled users. In the first case, we vary the number of non-
enrolled users whose data are used for model training. This
evaluation is helpful for determining how many illegal
users are needed in constructing the training dataset. In
evaluation, we feed the model with data from 5 to 30 illegal
users and train it respectively. In the evaluation phase, we
feed the trained models with data from the remaining par-
ticipants and get the results as shown in Fig. 8. As we can
see, the FAR decreases notably from 19:8% to 6:9% with the
number of non-enrolled users increasing from 5 to 30. At
the same time, the FRR remains almost the same. This is
because with data of more illegal users are used, the model
can more effectively learn the differences between biometric
features of legal and illegal users, which contributes to
decreasing the FAR. But since the number of legitimate
users is fixed (i.e., to be 3 in evaluation), increasing the

number of illegal users can not enhance its ability of recog-
nizing legitimate users. Similarly, the recognition perfor-
mance also improves with the number of illegal users.
Consequently, we set the default number of illegal users to
be 30 in our system implementation considering the total
number of participants is 50.

5.4 Number of Legitimate Users

We also consider that how the performance of EarID varies
when smart earphones are set sharable to different number
of close friends or families, i.e., legitimate users. As a
result, when we train the models, we utilize data from 1 to
10 participants as positive samples, and data from another
30 ones as negative samples. As we can from Fig. 9, with
more legitimate users are considered, the FAR and FRR
increase from 5:8% to 16:6%, 2:8% to 5:9% respectively.
This is because increasing the number of legitimate users
reduces the difference between positive and negative sam-
ples, and thus magnifies the difficulty of distinguishing
them correctly. At the same time, when more legitimate
users are considered, it is more difficult to separate them
from each other which causes the precision and recall
decrease simultaneously as shown in Fig. 9b. Considering
a typical family in China has three members, we set the
number of legitimate users when training the model to be
3, under which circumstance the FAR, FRR and F1 score
are 7:0%, 3:9% and 94:4%, respectively.

5.5 Impact of Training Data Parameters

We also evaluate the impact of parameters of training data
set, including the number of repetitions, number of seg-
ments and size of sliding window.

Fig. 8. The performances of EarID with data collected from different number of non-enrolled users in the training stage.

Fig. 9. The performances of EarID with different number of legitimate users.
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5.5.1 Impact of Sample Size

In our work, the sample size is defined as the number of
repetitions of putting on earphones. During a repetition,
each participant puts on smart earphones and collects data
for certain time. We evaluate its impact by varying its value
from 5 to 100 as shown in Fig. 10. It is clear that the overall
performance of EarID improves when the sample size
increases, in terms of all evaluation metrics. The reason is
more related to the characteristics of deep learning models.
That is, with more training data are used, the model can be
tunned more optimally. However, there exists a trade-off
between user experience and system performance, since col-
lecting too many training samples brings about heavy bur-
den for a user. In our work, we set this parameter to be 100
which can be further improved during the usage of EarID.

5.5.2 Impact of Number of Segments

For each signal episode, we randomly segment it into a cer-
tain number of segments. To assure a proper number, we
test the performance of EarID by varying this value from 5 to
100 as shown in Fig. 11.With the increasing of number of seg-
ments, the system performance improves with FAR and FRR
decreasing from 9:3% and 8:9% to 3:4% and 4:9%, respec-
tively. At the same time, the identification performance
improves in terms of precision and recall from 91:0% and
90:6% to 96:0% and 95:1%. The reason is straightforward. For
a given signal sequence, extracting more segments means
providing more training data samples for the deep learning
model, which is helpful for tunning it more optimally and
offering more powerful generalization capability. But we
can also notice that with the number of segments reaches

100, the promotion of system performance becomes much
slower. This is because for a fixed-length signal sequence,
randomly sampling it with a fixed window size for excessive
times produces many overlaps, which does not further con-
tribute data diversity to the model learning and thus can not
boost the system notably any more. As a result, considering
the model training overhead, we set this value to be 100 in
our implementation of EarID.

5.5.3 Impact of Window Size

We also evaluate the impact of window size (i.e., frame
length) when sampling the signal sequence. As shown in
Fig. 12, when the window size reaches 2 seconds, the system
achieves satisfactory performance with FAR, FRR, precision
and recall being 3:4%, 4:9%, 95:5% and 95:1%, respectively.
Compared with the case of window size being 1 second, the
performance has notably improvement in all the evaluation
metrics. But incrementing the window size over 2 seconds
does not further improve the performance. The reason is
very subtle. Asmentioned previously, the second part of sig-
nals (i.e., body acoustics) mainly caused by heartbeats with
about 1 second per cycle. Since we do not perform segmenta-
tion but randomly framing it with awindow, it probably

5.6 Impact of Noises

Fig. 13 shows the quantitative impact of five different noise
levels. As we can see, although the overall system perfor-
mance decreases with the increasing noise level, when it is
below 70 dB, the FAR and FRR stay relatively stable around
8% and 5% respectively. Meanwhile, the user identification
performance in terms of precision and recall remain about

Fig. 10. The performances of EarID with different number of samples.

Fig. 11. The performances of EarID with different number of segments.
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92:7% and 94:1% respectively. This indicates that EarID can
perform well in most daily life scenarios which usually con-
tain noises below 70 dB. We can also notice that when the
noise level goes up to 80 dB,the system performance
degrades with FAR and FRR increasing to 10:3% and 9:4%
respectively.

5.7 Impact of Emotions

Fig. 14 shows the evaluation results of EarID when users are
under five different emotion states. From the results, we can
obtain several key points as follows. First, emotions show
more obvious impact on FRR than FAR especially in sad-
ness and anger, since FAR keeps about 8% in different sates
while FRR varies between 3:9% and 17:6%. This is because
for different persons, emotions can still induce unique body
sounds to distinguish them. But for the same person, emo-
tions bring about changes of body sounds and make it more
difficult to identify him/her. Second, except for sadness
and anger, the other three kinds of emotions, especially neu-
trality and mixed show more negligible effect on the system

performance. We speculate that this is because the intensi-
ties of these three emotions are less than those of sadness
and anger. Third, the identification performance shows sim-
ilar trends as in Fig. 14b.

5.8 Impact of Wearing Angles

Fig. 15 shows the influence of different wearing angles
including 0�, 30� and 60� by rotating earphones along Y
axis. As we can see, the average FAR and FRR at three cases
are 3:4%, 5:4%, 4:0% and 4:9%, 6:7%, 6:2% respectively. The
largest gap of FAR and FRR are 2:0% and 1:8% respectively.
This gap is just comparable with variances of results. As for
identification performance, the precision and recall drop by
about 2% at most, from 96:0% to 94:1%, and 95:1% to 93:3%
respectively. This is a notable advantage of EarID compared
with EarEcho [8] whose recall drops by about 14% when
rotating the earphones by 50� along Y axis. The underlying
reason is that EarEcho makes use of the spatial structure
between earphones and ear canals which is closely related
with thewearing angles of earphones. In contrast, our system

Fig. 12. The performances of EarID with different window sizes.

Fig. 13. The performances of EarID under different noise levels.

Fig. 14. The performances of EarID with a user in different emotional states.
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relies on a user’s behavioral and psychological features
which aremore intrinsic and robust.

5.9 Impact of Motion States

Fig. 16 shows the system performance when a user is in
seven motion states. As we can see, different motions show
variant impacts of which running and talking bring about
more obvious performance deterioration. Compared with
the baseline setting, the FAR and FRR in these two cases
increase by about 9:0% and 28:1% in average, respectively.
Correspondingly, the precision and recall decrease by about
27:4% and 33:8%, respectively. This indicates that EarID is
more sensitive to running and talking activities. This is
because these two activities have significant impact on the
contact between earphones and ear canals, which makes it
unstable for microphones to collect data. In contrast, the
other five activities are more moderate and have slight
impact on evaluation metrics with less than 8% and 11%
decreases in FAR and FRR. More importantly, motion states

show more slight impact on FAR than FRR, which means
they mainly degrade the user experience of EarID instead of
its security.

5.10 Impact of Sampling Rate

To evaluate the impact of different sampling rates, we down-
sampling the collected data from 2000 Hz to 1000 Hz, 500 Hz,
250 Hz and 125 Hz, and test EarID0s performance. As we can
see from Fig. 17, increasing the sampling rate is helpful for
boosting system performance. This is because although the
biometric information contained in body sounds spans a
wide frequency range. Increasing the sampling rate can effec-
tively add the information. However, we can also see that
when the sampling rate exceeds 1000 Hz, the performance
increase is not obvious, which indicates most useful informa-
tion distributes below 1000 Hz. Further increasing sampling
rate induces more energy consumption. Thus, in our system
implementation, we set the sampling rate to be 2000 Hz.
Compared with active sensing scheme [8], our sampling rate

Fig. 15. The performances of EarID with earphones are worn at different angles.

Fig. 16. The performances of EarID with a user in different motion states.

Fig. 17. The performance of EarID at different sampling rates.
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is much lower (i.e., 2000 Hz versus 44100 Hz) which is benefi-
cial for reducing the computing overhead and energy con-
sumption on resource-constrainedmobile devices.

5.11 System Running Performance

In this part, we evaluate the running performance of EarID

application on mobile phones in terms of CPU and memory
occupation, battery consumption, and response time. As it is
related with phones’ hardware specifications, we conduct
evaluation experiments on four kinds of smartphones includ-
ing Xiaomi 4C, Xiaomi 8, Huawei Mate9, and Huawei P20.
Apart from the evaluation results, we also list some basic
information of them such as the releasing year on the market,
CPUmodel, and total battery capacity as shown in Table 2.

5.11.1 Computing Resources Occupation

We also evaluate the system running performance of EarID

which includes the response time, memory occupation and
power consumption on the smartphone end. The response
time represents how much time EarID takes to finish an
authentication process. To evaluate it, we insert a piece of
codes in the application to measure the time duration of an
complete authentication process. Meanwhile, we make use
of Android Studio Profiler to record the memory and CPU
occupation when running EarID. We turn off any other
third-party applications such as location services and net-
working connection, and set the screen lightness to be the
lowest level. We conduct measurements with ten randomly
selected participants, each of whom tries EarID for twenty
times on each smartphone. The average results of response
time, memory and CPU occupation are shown in Table 2.
We can see that EarID0s average response time on different
smartphones is very close, with an average value about 2.1 s
with a maximum standard deviation of 69 ms on the most
out-of-date device (i.e., Xiaomi 4C). It is noted that this
response time consists of both the sampling duration (i.e.,
window size of 2 seconds as discussed in Section 5.5.3) and
the forward inference time (i.e., about 31 � 159 millisec-
onds). It indicates that the predication overhead of EarNet
is totally affordable for present commercial smartphones.
We can also notice that although increasing the window
size is beneficial for accuracy, it makes the authentication
process slower. Besides the response time, we also display
the memory and CPU occupation in Table 2. We can see
that the average memory and CPU cost when running EarID

application on Huawei P20 is about 104.5 MB and 41:1%,
respectively. With the increasing of CPU capacity, the occu-
pation percentage of CPU cost decreases from 71:7% to
41:1% accordingly.

5.11.2 Energy Consumption

What is more, we also test the power consumption of EarID
application on the four smartphones. Except for EarID APP
and Bluetooth connection, we turn off all the other running
applications and kill unnecessary background programs such
as WiFi and cellular networking, location services and etc..
The screen lightness is also set to be the lowest level during
experiments.We run EarID application for user authentication
and identification on each smartphone continuously with an
experimenter wears earphones, and record its battery level
every five minutes with Android API until it decreases to
50%. The recorded battery levels of different phones during
testing are shown in Fig. 18. We can see that the battery level
decreases almost linearly with EarID application running on a
smartphone. It takes about 2.3 hours, 2.5 hours, 3.3 hours, and
2.8 hours for the four smartphones to decrease by about 50%
of battery level. During this process, a total number of 3850,
4360, 5263, and 4857 authentication testing repetitions have
been accomplished on Mi 4C, Mi 8, Mate 9, and P20, respec-
tively. As a result, we can further calculate the average energy
cost of each testing repetition (i.e., energy per trial) as shown
in the sixth column Table 2. However, in real-world usage
cases, authentication is performed once in a while instead of
continuously. For example, when a user has passed authenti-
cation test and begins to listen to music, there is no need to
conduct authentication incessantly. Actually, the frequency of
authentication trials can be greatly less, which in turn results
inmuch less energy consumption over the same duration.

To gain clearer knowledge of the power consumption
level, we also conduct a comparative experiment as follows.
We turn off all the applications including EarID and only let
Bluetooth connected with hardware but without data trans-
mission in experiments. The recored battery consumption
with time is shown by the purple line in Fig. 18. We can see
that in this setting the battery level decreases by 9% in three

TABLE 2
The Real-Time Running Performance of EarID

Metric
Release CPUmodel Battery (mAh) Response (ms) Energy/trial (mAh) Memory (MB) CPU cost (%)

Smartphone

XiaoMi 4C 2015 Snapdragon 808 3080 2124 � 69 0.40 93.8 � 0.6 71.7 � 4.2
XiaoMi 8 2018 Snapdragon 845 3400 2031 � 24 0.39 129.4 � 3.5 56.0 � 5.5
HUAWEI Mate 9 2016 Kirin 960 4000 2153 � 31 0.38 96.2 � 6.0 42.4 � 3.8
HUAWEI P20 2018 Kirin 970 3400 2159 � 33 0.35 104.5 � 2.3 41.1 � 2.7

Fig. 18. The energy consumption of EarID application on smartphones.
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hours which is 24% smaller than the case of running EarID

application. The energy performance of EarID system can be
further optimized in future work. For example, we can
make use of the latest Bluetooth 5.0 which possesses much
higher energy efficiency and fast enough data transmission
rate compared with Bluetooth 2.0 that we used in this work.

6 CONCLUSION

Considering the increasing popularity of smart earphones,
the privacy concern has been considered by researchers
recently. In this work, we consider a different problem of
accomplishing user authentication and identification simulta-
neously, taking both high privacy and limited shareability of
earphones into account. Motivated by this, we propose a pas-
sive sensing-based system, namely, EarID that makes use of
ubiquitousmicrophone sensor to collect behavioural and psy-
chological acoustics, and design a hybrid learning network to
extract intrinsic features. We design customized wireless
smart earphone system with low-cost hardware and develop
a mobile application on Android platform to showcase its
usability in practice. With comprehensive experiments, we
evaluate the performance of our system under different set-
tings, and show that EarID can achieve high performance of
authenticating users and identifying legitimate users.
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