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Abstract—Depression significantly impacts mental health,
severely disrupting patients’ daily lives. During depressive
episodes, individuals may experience symptoms such as excessive
guilt, self-harm, and suicidal ideation. Compared to proprietary
devices like brain electrode caps, wearable technologies for depres-
sion detection have gained attention due to their affordability and
portability—enabling real-time monitoring of depressive states.
However, challenges such as low-quality data from ubiquitous
devices, individual variability, and the complexity of multimodal
physiological signal analysis limit model generalizability. To ad-
dress these issues, we present DepGuard, a novel ubiquitous wear-
able system for depression assessment based on multimodal physi-
ological signals. DepGuard performs a two-stage detection process:
depression recognition and real-time episode monitoring. For de-
pression recognition, we propose an unsupervised domain adapta-
tion method to reduce the domain gap between source and target
subjects. For episode monitoring, we employ a few-shot learning
strategy to enable personalized modeling. Both approaches en-
hance cross-subject generalization. Our system achieves 90.75%
accuracy in cross-subject depression recognition using 30 unlabeled
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samples per target subject, and 93.52% accuracy in episode moni-
toring using 15 labeled samples per class.

Index Terms—Wearable devices, depression recognition,
unsupervised domain adaptation, depressive episode monitoring.

I. INTRODUCTION

D EPRESSION is a common mental disorder affecting ap-
proximately 280 million people worldwide [1]. It is

characterized by persistent sadness, insomnia, loss of interest,
and reduced ability to carry out daily activities for at least
two weeks [2]. Without timely treatment, individuals are at
increased risk of suicidal behavior. The Lancet Psychiatry, a
leading journal in the field, emphasizes that early recognition
and intervention targeting lifestyle habits and risk factors are
critical for effective prevention [3]. However, continuous super-
vision by doctors or family members is not feasible, making
early detection of depressive episodes essential to improving
patient outcomes and reducing the risk of self-harm or suicide.
Real-time monitoring, coupled with timely communication to
healthcare professionals, plays a vital role in ensuring prompt
and appropriate care. This proactive approach not only helps
prevent adverse events but also enhances overall mental health
management.

In recent years, depression recognition research has increas-
ingly combined individual-level insights with advanced tech-
nologies to enable objective, passive assessment of depressive
states. Specifically, given the characteristic patterns of negative
affect and social withdrawal in individuals with depression,
mental states can be inferred through the analysis of lifestyle
data, including sleep patterns [4], [5], [6], social connectiv-
ity [7], [8], [9], behavioral records [10], [11], [12], [13]. How-
ever, behavior-based methods for depression detection are often
hindered by individuals intentionally or unintentionally con-
cealing their symptoms. Similarly, traditional self-report scales
suffer from subjectivity and typically lack robust quantitative
analysis. Physiological signal monitoring offers a promising
alternative. Depression-related symptoms such as emotional
instability and physical fatigue often manifest as measurable
physiological changes that are difficult to consciously control,
making them less susceptible to self-report bias [14]. High-end
commercial wearable devices can capture rich physiological
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data-such as electroencephalography (EEG), electrocardiogra-
phy (ECG), and magnetoencephalography (MEG) [15], but their
high cost, limited accessibility, and operational complexity re-
strict widespread application. In contrast, ubiquitous wearable
devices offer low-cost and portable solutions, but they tend
to capture only shallow physiological patterns, which weak-
ens their effectiveness in depression recognition and episode
monitoring. Consequently, proprietary equipment remains the
standard for high-accuracy detection [16], [17], [18], despite its
impracticality for everyday use [19], [20].

Recent research has begun to explore the potential of ubiq-
uitous devices for mental health monitoring [21], [22], [23],
[24], though their application in depression detection remains in
its early stages. For instance, Hassantabar et al. [21] introduce
MHDeep, a framework that integrates wearable sensor data with
artificial neural networks to classify mental health disorders.
Their model utilizes multimodal inputs such as galvanic skin
response, skin temperature, inter-beat interval, and tri-axial
acceleration, collected from smartwatches and smartphones.
Similarly, Hu et al. [23] develop an ensemble machine learning
model that classifies users as depressed or non-depressed based
on sleep data from wearable devices. Ahmed et al. [25] propose
a multimodal framework that combines convolutional neural
networks, attention mechanisms, and random forests to assess
affective states and depression. Despite these advancements,
several key challenges remain unresolved.

C1: How can depressive episodes be detected quickly to
provide timely interventions? Much of the existing research
focuses solely on depression recognition at the model level,
using either professional or consumer-grade equipment, with
limited attention to real-time monitoring of depressive episodes.
However, the progression from diagnosis to ongoing monitor-
ing is a continuous process, inherently linking detection with
treatment. These tasks are causally and practically connected in
real-world settings. To alleviate the substantial burden placed
on healthcare providers and family members during inpatient
care, a comprehensive systems approach is needed—one that
enables timely intervention and mitigates the psychological risks
associated with depressive episodes.

C2: How can we improve model adaptability to achieve high-
accuracy detection for new subjects? Existing research often
overlooks cross-domain challenges, limiting model performance
on unseen individuals. Due to the uniqueness of individual phys-
iological traits and emotional responses, even those with similar
mental health conditions may exhibit different physiological
signal patterns. This challenge is compounded by limited data
and scarce annotations, highlighting the need for models to learn
more discriminative and generalizable patterns.

To address the aforementioned challenges, we introduce Dep-
Guard, a depression assessment system that analyzes multi-
modal physiological signals to identify both depressive disorders
and ongoing depressive episodes. To tackle the issue of real-time
episode monitoring, DepGuard integrates a dedicated module
that operates in the system’s second phase. Users wear a wrist-
worn device that continuously collects physiological data, which
is then transmitted via Bluetooth to a paired mobile application.
A lightweight and personalized model is deployed within the

app to perform real-time predictions and deliver results to the
user. Given the device’s limited computational resources, we
employ a knowledge distillation strategy to compress the model,
thereby reducing its complexity while maintaining predictive
performance.

To address the second challenge, we design task-specific
strategies that align with the unique requirements of each ob-
jective. For depression recognition, we utilize an unsupervised
domain adaptation approach to transfer knowledge from the
source domain (i.e., labeled data from known subjects) to the
target domain (i.e., unseen subject), thereby improving general-
ization. For depressive episode monitoring, we apply few-shot
learning to enhance adaptability with minimal labeled data. By
integrating transfer learning and few-shot learning, our system
effectively mitigates inter-individual variability and enables ro-
bust, cross-subject depression assessment and monitoring.

Our main contributions can be summarized as follows.
� We present DepGuard, a wearable depression assessment

system designed for both depression diagnosis and real-
time monitoring of depressive episodes. Evaluated under
cross-subject testing on a real-world dataset, DepGuard
achieves 90.75% accuracy in depression recognition and
93.52% in depressive episode monitoring.

� We propose an unsupervised domain adaptation method
for depression recognition that bridges the gap between
source and target domains. This approach minimizes data
and training overhead for new subjects while maintaining
high recognition accuracy.

� We propose a few-shot learning approach combined with
a knowledge distillation strategy for depressive episode
monitoring, aiming to build high-performance personal-
ized models on edge devices with minimal computational
cost.

� To facilitate this line of the research,1 we collect a real-
world dataset from individuals diagnosed with depression
by certified psychiatrists at our partner hospital.

The remainder of the paper is conducted as follows. Section
II reviews the related works about different types of devices and
cross-subject detection of depression. Subsequently, Section III
introduces the two-stage procedure of DepGuard. Then, Section
IV conducts the implementation of our proposals. Section V
evaluates the effectiveness of DepGuard. Finally, Sections VI
and VII discuss and conclude our works.

II. RELATED WORKS

A. Depression Detection With Different Devices

Proprietary devices such as EEG [16], [17], [26],
ECG [18], [27], MEG [28], functional near-infrared spec-
troscopy (fNIRS) [29] and functional magnetic resonance imag-
ing (fMRI) [30] are commonly used to detect physiological
signals. The high resolution, precision, and stability of these
devices allow for the detection of subtle physiological changes,
providing researchers with reliable, high-quality data. However,

1Our source code is available at https:// github.com/ ISAC-GROUP/ AFFC-
DepGuard.
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these devices require complex operations when worn. For ex-
ample, Huang et al. [28] use a bulky whole-head 306-channel
Elekta Neuronmag Vectorview to capture MEG signals. Pange
et al. [31] using EEG and ECG signals require conductive gel
and power connections, making the setup inconvenient for users.

For depression detection based on portable devices, several
studies [11] have indicated that the great significance of utilizing
sensor data from smartphones and wearable devices, such as
Fitbit and Microsoft Band, can effectively represent the features
of depression defined in the DSM-5 diagnostic criteria [2].
These sensors data encompass various dimensions including
phone usage patterns, acceleration, GPS, sleep duration, and
audio recordings, providing a comprehensive understanding of
subjects physical activity, social interactions, and attention levels
in daily life. Analyzing this data opens new possibilities for
precision medicine in diagnosing and treating depression. As
a result, portable devices are explored for physiological signal
detection and further utilized to predict depression. Specifically,
Tazawa et al. [32] apply machine learning to screen and assess
depression severity using Silmee W20 wristband data, achieving
76% accuracy. Moshe et al. [33] utilize Oura Ring data on
activity, sleep, and heart rate variability to predict depression,
revealing significant correlations with depressive symptoms.
Moreover, Hassantabar et al. [21] collect physiological signals
from both the E4 smartwatch and Samsung smartphone, achiev-
ing an average accuracy of 87.3% in distinguishing healthy and
depressive instances. Based on a lightweight TN1012/ST Pulse
Transducer, the research [22] develops a pulse rate variability
detection model to identify depression with the highest accuracy
of 98.46%. However, data collected by portable devices face
technical constraints, including low temporal resolution and
noise susceptibility, which collectively impact prediction reli-
ability. These limitations motivate the development of a wrist-
worn device equipped with multi-source physiological sensors.
Furthermore, due to inter-individual variability, research on
depression recognition remains underdeveloped and requires
further progress.

B. Cross-Subject Depression Detection

Individual-independent detection tasks have become a central
research challenge. In depression detection, physiological and
psychological variations, such as differences in neural activity,
mood fluctuations, and cognitive responses, pose substantial ob-
stacles to the generalization of models trained on source domain
data when applied to target domains. As a result, to enhance the
accuracy and robustness of cross-subject tasks, some of the re-
search is directed towards employing advanced techniques such
as domain adaptation [34], [35] and domain generalization [36],
which aim to mitigate the domain shift between source and target
data distributions, improving the accuracy and robustness of
cross-subject models. For instance, Zhang et al. [36] propose a
novel EEG-based Graph Neural Network for depression detec-
tion. In their proposal, domain generalization based on adver-
sarial training is adapted to the model, and a secondary subject
partitioning method is proposed to group subjects with similar
data distributions into the same domain with a shared domain la-
bel. Fang et al. [37] present an unsupervised cross-domain fMRI

Fig. 1. The overview of the data-processing pipeline.

adaptation framework (UFA-Net), addressing heterogeneity in
major depressive disorder detection. This approach leverages
graph convolutional networks and maximum mean discrepancy
for feature alignment, improving model generalizability across
domains without target labels. Chen et al. [35] introduce a
Graph Neural Network-based Semi-supervised Domain Adap-
tation (GNN-SDA) framework for major depressive disorder
detection. The GNN-SDA addresses semantic misalignment and
class imbalance issues by aligning domains at an individual level
and optimizing pseudo-labels, enhancing the model’s ability to
generalize across different datasets without relying on target
labels. Zhang et al. [38] introduce a multi-classification model,
DepL-GCN, that employs a graph convolutional network (GCN)
and domain generalization to classify depression levels from
EEG data. This model addresses subject variability and sample
imbalance across categories by integrating a penalty coefficient
for smaller classes, enhancing its ability to generalize and accu-
rately detect varying degrees of depression without relying on
target domain labels.

As for our design, we adopt targeted cross-domain techniques
tailored to the distinct characteristics of the two task modules:
depression recognition and depressive episode monitoring. The
first phase focuses on depression recognition. Given the absence
of labeled data in the target domain, we employ an unsupervised
domain adaptation module, UDA-DR, which transfers knowl-
edge from the source domain while effectively minimizing the
distribution gap without relying on target domain labels. In the
second phase, a small amount of labeled data is available due to
the subjects diagnosed with depression. To maximize the utility
of this data, we propose the FSL-DEM module based on few-shot
learning, which enables rapid adaptation to new individuals
and supports personalized monitoring of depressive episodes.
By combining unsupervised and few-shot learning, DepGuard
enhances model generalization and adapts to varying levels
of data availability. This dual approach is a key advantage of
the DepGuard system in addressing cross-individual depression
detection challenges.

III. SYSTEM DESIGN

In this section, we introduce DepGuard system for recogniz-
ing depression and monitoring depressive episodes. As shown
in Fig. 1, the system pipeline begins with the collection of
multimodal physiological signal data via a wrist-worn device,
which is transmitted to software for specialized preprocessing.
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The processed data is then used for initial-stage depression
detection. If depression is detected, the system proceeds to
monitor depressive episodes in the second stage. Otherwise, the
results are directly displayed. The depressive episode monitoring
task involves real-time analysis of the multimodal physiological
signals collected from the patient, providing an assessment of
whether the patient is currently in a depressive state.

A. Data Preprocessing

Due to the prohibitive costs of off-the-shelf commercial
devices for collecting physiological signals and the lack of
available data interfaces, we develop our hardware and software
solutions to facilitate data collection and other tasks.

Heart rate signal: To mitigate PPG signal drift caused by
varying ambient light, we apply a Detrended Fluctuation Anal-
ysis (DFA) with a time window length of 20 to remove trend
components. The PPG signal comprises two main frequency
bands: low-frequency components (0.05 to 0.5 Hz), which reflect
sympathetic nerve activity, fluid regulation, and changes in respi-
ration and blood pressure; and high-frequency components (0.5
to 4 Hz), which are primarily associated with parasympathetic
nerve activity and short-term heart rate variability (HRV). To
remove noise and other interferences, we apply a Butterworth
band-pass filter with a frequency range of 0.05 to 4 Hz.

Blood oxygen saturation signal: On the collected infrared
and red light signal data, we first apply a Short-time Fourier
Transform (STFT) to analyze the signal’s frequency compo-
nents. Then, we use a Butterworth band-pass filter (0.1 ∼ 4 Hz)
to remove noise and improve signal quality.

Galvanic skin response signal: GSR signals primarily show
low-frequency conductivity changes. To focus on physiological
arousal and sweat gland activity, we apply STFT and a second-
order Butterworth filter with a cutoff frequency set at 0.3 Hz.

Skin temperature signal: The trend in skin temperature signal
(SKT) is relatively subtle. We apply an STFT and find that
the primary components are predominantly within the effective
frequency range. Additionally, power frequency interference
can be introduced into the sensor signal, affecting the accuracy
of the skin temperature sensor. To mitigate power frequency
interference, we use a Butterworth filter to truncate the frequency
of the skin temperature signal.

After processing the physiological signals, we use sliding
processing with a window size of 1 and a stride size of 1. And
then, (1) is used to normalize each data channel to a range of −1
to 1.

ynorm = 2
x− xmin

xmax − xmin
− 1 (1)

B. Unsupervised Domain Adaptation for Depression
Recognition

Poor performance in cross-subject depression recognition is
primarily attributed to the lack of data from new subjects during
the training phase, which fails to capture the heterogeneity of
individual physiological signals. This diversity is crucial for
accurate model training. Without incorporating this range of
individual differences, the model struggles to adapt to the unique

physiological patterns of new subjects, thus reducing its effec-
tiveness in recognizing depression across individuals. Addition-
ally, depression is a complex mental illness typically diagnosed
through clinical evaluations, making the acquisition of labeled
data challenging. The nature of depression recognition prevents
us from acquiring labeled target-domain (i.e., target subject) data
in the fine-tuning stage, leaving us to depend solely on unlabeled
data. Therefore, we propose an unsupervised domain adaptation
for depression recognition (UDA-DR) to enhance cross-subject
performance. Fig. 2 shows the structure of UDA-DR, which
adopts a two-phase training process of pre-training followed by
fine-tuning. The method primarily consists of three modules:
encoder, class classifier, and domain classifier. The encoder
ensures that the class classifier performs well during pre-training
and that the domain classifier cannot distinguish between source
and target domain data during fine-tuning. The class classifier
aims to correctly categorize the data based on features extracted
by the encoder, while the domain classifier distinguishes whether
the data originates from the source or target domain.

1) Model Building: By processing data from five channels,
we extract time-domain feature samples. Fig. 2 presents a multi-
channel temporal network based on LSTM, CNN and attention
mechanism (LCMTN), serving as the backbone network for
Sections III-B and III-C. The LCMTN mainly consists of an
encoder and classifier, where the classifier uses a Multilayer
Perceptron (MLP). We first apply a Long Short-Term Memory
(LSTM) network for the feature encoder to extract local temporal
features from each channel.

Subsequently, to obtain the coupling of temporal dependen-
cies, we deploy a multi-head self-attention mechanism [39]
in LCMTN to enhance the derived representation of temporal
features. The multi-head self-attention mechanism enables the
model to simultaneously attend to different segments of the
input sequence, capturing diverse temporal dependencies and
enhancing the global representation of physiological signals
over time. Concretely, as shown in (2), given a feature repre-
sentation S ∈ RL×C fed into linear layers to generate query
space, key space and value space, represents learnable weighted
matrices, L and C denote the time series and the number of
channels, respectively. Next, one head of attention output is
formulated as shown in (3), where the softmax function is
applied to the scaled dot product of the query and key matrices
to produce attention scores. These scores are then used to weigh
the values in the value matrix V (S), resulting in an attention
head output that captures the importance of different temporal
components across the sequence. In (4), the output of multi-head
self-attentionMHA(S) is a repeated process for multiple heads
to jointly enable the model to focus on various aspects of
the input sequence, where WO ∈ RC×C denotes a learnable
weighted matrix, Concat is a concatenated operation, and k is
the number of attention heads.

Q(S) = S ·WQ,K(S) = S ·WK , V (S) = S ·WV (2)

hj = Softmax

(
Q(S)KT (S)√

dK

)
V (S) (3)
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Fig. 2. The architecture of UDA-DR network.

MHA(Q(S),K(S),V(S)) = Concat(h1, h2, . . ., hk)W
O

(4)

Finally, we need to integrate features from various channels
effectively, ensuring they complement each other for more
comprehensive feature information. Thus, we employ a Con-
volutional Neural Network to precisely capture the correlations
between different channels, providing a richer feature represen-
tation for the fusion process.

2) Pre-Training Phase: The primary objective of this phase
is to train LCMTN on large-scale datasets, aiming to obtain
a high-performance encoder and class classifier for the task
of depression recognition. In the pre-training phase, we only
utilize the data of source domain subjects for supervised training.
During the training of the network, the data of source domain
subjects is partitioned into a training set, validation set and test
set. The model parameters are updated through backpropagation
using the cross-entropy loss.

3) Fine-Tuning Phase: This phase is crucial for enhancing
cross-subject performance in depression recognition. During
Phase I, we train a high-performance encoder and class clas-
sifier optimized for depression recognition. The class classi-
fier demonstrates strong classification capabilities for this task.
However, the encoder is not exposed to the data features of
the target subject, resulting in poor performance when used
directly by the target subject. To address this, we employ un-
supervised domain adaptation, utilizing unlabeled data from
both source and target domain subjects to fine-tune the encoder.
By confusing source and target domain features, the encoder
learns domain-invariant features, enabling the class classifier to
perform more effectively on target subject data.

Specifically, we mark the source domain data as one category
of labels and the target domain data as another category of labels
before starting fine-tuning. Then, we introduce a domain clas-
sifier using an MLP and integrate it with the encoder obtained
in phase I to form an integrated network. The primary task of

this network is to determine whether the input data originates
from the source or target domain. A Gradient Reversal Layer
(GRL) is placed between the encoder and domain classifier to
align the encoder with the target domain data. The GRL inverts
the gradient flow during backpropagation, effectively confusing
the distinction between source and target domains. This design
mitigates domain differences, improving the encoder’s adapt-
ability to the target subject data. During the forward pass, the
network applies an identity transformation ((5)), while in the
backward pass, it reverses the gradient direction ((6)). Here, I
denotes the identity matrix, −I indicates reversed gradient flow
and λ is a hyperparameter that controls the gradient magnitude
during backpropagation.

Rλ(x) = x (5)

dRλ(x)

dx
= −I (6)

At the beginning of the fine-tuning, we input both the source
domain and target domain data into the network at a certain ratio
in each iteration. When passing through the GRL, it undergoes
an identity transformation as usual. The loss function of the
entire network is then formulated as:

Loss = − 1

N

N∑
i=1

C∑
c=1

yi,c log(pi,c)− 1

M

M∑
j=1

D∑
d=1

zj,d log(qj,d)

(7)
where the first term − 1

N

∑N
i=1

∑C
c=1 yi,c log(pi,c) de-

notes domain classifier loss Lsource and the second term
1
M

∑M
j=1

∑D
d=1 zj,d log(qj,d) denotes the target domain loss

Ltarget. N and M denote the number of source domain samples
and target domain samples, respectively. C represents the num-
ber of classes (depression or non-depression). D represents the
number of domains (source domain or target domain). yi,c and
pi,c are the true domain label indicator and predicted probability
of sample i belonging to class c, respectively. zj,d and qj,d
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Fig. 3. The architecture of FSL-DEM.

are the true domain label indicator and predicted probability
of the sample j belonging to domain d, respectively. During
backpropagation, the GRL causes the parameter gradients of
the encoder to be reversed. The gradient update formulas for the
domain classifier and the encoder are as follows:

θy = θy − μ
∂Ly

∂θy
(8)

θf = θf −
(
−μ

∂Ly

∂θf

)
(9)

Here, θy represents the parameters of the domain classifier and
θf represents the parameters of the encoder. Eqs. (8) and (9)
show that θy updates normally, but θf gradients are reversed.

4) Testing Phase: After pre-training and fine-tuning phases,
the classifier and the encoder are obtained. We combine these
to form a personalized depression recognition model for a new
subject. This approach not only adapts well to individual differ-
ences but also facilitates the creation of personalized models that
accurately fit new subjects with minimal data, thereby promoting
personalized depression detection.

C. Few-Shot Learning for Depressive Episode Monitoring

Depressive episode monitoring also presents a key challenge:
individual differences among subjects reduce cross-subject per-
formance. To address this, strategies such as unsupervised do-
main adaptation and few-shot learning are commonly used. Al-
though unsupervised domain adaptation is flexible for handling
distribution differences between source and target domains, it
may be less effective than few-shot learning methods in some
cases. In contrast, by leveraging the limited labeled samples
in the target domain, few-shot learning can directly guide the
model to learn specific patterns in the target domain. Meanwhile,
the monitoring task differs from depression recognition in that
it can yield limited labeled target domain data for enhancing
cross-domain performance. To this end, we propose a few-shot
learning method for depressive episode monitoring (FSL-DEM),
as shown in Fig. 3. The FSL-DEM consists of four modules:
task generator, meta-learning, knowledge distillation, and fine-
tuning.

1) Task Generator: Given that this task employs the meta-
learning method in few-shot learning, it is worth noting that the
basic unit of meta-learning training is the meta-task. The primary
goal of the task generator is to produce representative and
well-defined meta-tasks, ensuring excellent model performance

Fig. 4. Subject-based task generator.

Fig. 5. The Meta-learning training process.

during training. A common strategy for generating meta-tasks
involves random selection. This approach aggregates data from
all source domain subjects, shuffles it, and then selects a subset
to form each meta-task. It is important to note that although we
use data from source domain subjects in meta-learning, there
still are significant differences in the data of the same categories
among different subjects. In fact, the data from each individual
can be considered as a unique classification task dataset. This
means that in the source domain data, each individual has its
unique characteristic and pattern, forming multiple independent
classification tasks. As shown in Fig. 4, we treat each source
domain subject as an independent dataset and randomly select
a certain number of data samples for each category to form a
meta-task. In this manner, each source domain subject generates
multiple meta-tasks, with an equal number of samples for each
category within each meta-task. Meanwhile, we further divide
each meta-task into a support set and a query set. The support
set is used to train a temporary model for the corresponding
meta-task, while the query set is used with the temporary model
to compute the loss for updating the base model.

2) Meta Learning: The goal of this phase is to obtain well-
initialized parameters so that the model can quickly adjust its
parameters when facing new subjects, enabling it to adapt more
quickly and effectively. Each meta-task consists of a support set
and a query set, of which the support set comprises only a small
portion. Additionally, the number of samples for each category
remains consistent within both the support set and the query set.
Fig. 5 illustrates the meta-learning training process, which can
be divided into two stages: the inner training stage and the outer
training stage.

For the inner training stage, we extract a subset of meta-tasks
as an inner training batch and only use the support sets of
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sampled tasks for model training. At the start of training, each
meta-task independently copies the base model to use as its
temporary model, allowing the temporary model to fit some
extent on the support set of each task. Subsequently, each
meta-task updates its temporary model parameters using the
cross-entropy loss function. Each meta-task has an independent
loss calculation process that does not interfere with each other,
and its parameter gradient update formula is:

θ′i = θ − α∇θLTi
(fθ) (10)

where θ represents the model parameters, α is the learning rate
during inner training, LTi

(fθ) is the loss function on task Ti,
and ∇θLTi

(fθ) is the gradient of the loss function with respect
to the model parameters. In the gradient update, second-order
derivatives are generally involved. However, the calculation of
the second-order derivatives increases the computational com-
plexity and cost. Therefore, to reduce computational cost, the
second-order partial derivative in the formula is approximated to
zero, and only the first-order derivative is calculated in practical
applications.

The outer training stage is primarily evaluated using a query
set of specific tasks and updates the base model parameters. In
the inner training stage, we obtain the updated temporary model
parameters corresponding to each meta-task. We use the query
set of each meta-task for forward propagation in the correspond-
ing temporary model, obtaining the loss for each meta-task. As
shown in (11), we sum up these loss to obtain a total loss, which
is used to update the parameters of the base model. Subsequently,
cosine annealing is employed to continuously adjust the learning
rate, which is used to update the parameters of the base model
during the outer training stage. Since the goal of meta-learning
is to find well-initialized parameters that enable rapid adaptation
to new tasks, it is essential to dynamically adjust the learning
rate during training to ensure the model converges quickly on
different tasks. Cosine annealing precisely offers this dynamic
adjustment mechanism, helping the model better escape local
optima during the learning process and improving generalization
ability. As shown in (12), cosine annealing reduces the learning
rate by using a cosine function.

Ltotal =

m∑
i=1

LTi
(fθ) (11)

βt = βmin +
1

2
(βmax − βmin)

(
1 + cos

(
Tcur

Tmax
π

))

(12)

where βt is the learning rate at step t, βmax and βmin are the
maximum and minimum values of the learning rate, defining
the range of the learning rate. Tcur refers to the current iteration
count, and Tmax refers to the total number of iterations within
one cycle. This formula is designed to make the learning rate
decrease slowly at the beginning of a cycle, then drop rapidly,
and finally decrease slowly again.

3) Knowledge Distillation: This phase of knowledge distilla-
tion serves as an optional module. The task of depressive episode
monitoring requires real-time performance. If this monitoring
module is embedded in devices with limited hardware resources,

Fig. 6. Feature-based knowledge distillation.

the knowledge distillation module becomes particularly im-
portant. Generally, there are three methods of knowledge dis-
tillation: feature-based knowledge distillation, response-based
knowledge distillation, and relation-based knowledge distil-
lation. When knowledge distillation targets the encoder, the
smaller model inherits the representational capacity of the
larger model while avoiding overfitting. In contrast, distilling
the classifier may cause the student model to overfit to the
teacher’s predictive behavior, potentially disregarding the true
data distribution. To address this, we adopt a feature-based
knowledge distillation strategy. As illustrated in Fig. 6, we use
the base model trained with meta-learning as the teacher, and
a redesigned, lightweight encoder with reduced complexity and
fewer parameters as the student. The input data still comes from
the source domain, and the loss between the feature vectors
output by the encoder of the teacher model and the encoder of
the student model is calculated using (13). Subsequently, only
the parameters of the encoder in the student model are updated
using the obtained loss. The encoder of the trained student model
is combined with the classifier of the teacher model to form a
new student model.

Loss =
1

n

n∑
1

(fteacher(xi)− fstudent(xi))
2 (13)

where fteacher(xi) is the feature vector output by the encoder
of teacher model, fstudent(xi) is the feature vector output by
the encoder of student model, and n is the length of the feature
vectors. The formula calculates the �2 loss between fteacher(xi)
and fstudent(xi). When updating the encoder parameters of the
student model through this method, the focus is on minimizing
the difference in feature representations.

In the knowledge distillation module, we introduce a pa-
rameter τ to control the degree of distillation. This parameter
determines the extent to which knowledge from the teacher
model is transferred to the student model. A higher τ signifies
that the student model prioritizes the integration of knowledge
distilled from the teacher model, whereas a lower value con-
versely leads the student model to rely more heavily on the
original training dataset for parameter updates. The parameter
τ is systematically optimized in Section V-F3 to balance robust
generalization capability of the student model with mitigation
of over-reliance on the teacher’s supervisory signals.

4) Fine-Tuning Phase: After meta-learning or knowledge
distillation training, the base model has acquired well-initialized
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TABLE I
SPECIFICATIONS OF DIFFERENT SENSORS

parameters. In this phase, the new subject provides a small
amount of data to fine-tune the base model, further adapting
it to the characteristics of the target domain data. We divide
the fine-tuning process into two stages based on the number of
iterations. In the first stage, we update the model parameters
with a high learning rate, but the model has not yet reached its
best convergence position. In the second stage, a small learning
rate is used to update the model parameters to further optimize
the model towards the optimal solution and take into account the
stability of optimization. In this way, each new subject obtains a
customized model tailored to individual characteristics, thereby
better adapting to their personalized needs in the depressive
episode monitoring task.

IV. SYSTEM IMPLEMENTATION

A. Hardware Design

The hardware part of the DepGuard is a wrist-worn device,
including four parts: control module, sensor module, communi-
cation module, and power module. The control module utilizes
STM32, which offers precise data processing and maintains
stable performance in low-power mode. The sensor module inte-
grates four ubiquitous biometric sensors for collecting data such
as heart rate, blood oxygen saturation, galvanic skin response,
and skin temperature.

Table I presents the sensors and their parameters to ensure
efficient and accurate acquisition of various environmental data
by the DepGuard. The communication module uses the Blue-
tooth BLE5.0 version protocol. The power module employs the
SY8089DC-DC buck converter and a TP4054 charging circuit
for a maximum 500 mA charge, effectively managing power for
the wristband device.

Fig. 7 presents the overall hardware architecture of Dep-
Guard. The system comprises a custom-designed motherboard
integrated with four ubiquitous biometric sensors, forming a
compact, wrist-worn device. The onboard microprocessor col-
lects physiological signals and transmits the data to the compan-
ion app via Bluetooth.

B. Software Development

We develop a mobile app for smartphones to complement the
DepGuard hardware, offering features like physiological moni-
toring, self-assessment, and depression tracking, making up the
full DepGuard system. Fig. 8(a)–(e) shows the main interface of
the app, highlighting its three core functions. Fig. 8(a) shows the
main interface for monitoring physiological data with Bluetooth

Fig. 7. The design of our wrist-worn device.

and real-time display. The app connects to the hardware via
Bluetooth, receives real-time data and stores it for later analysis.
When the subjects want to know more about specific physiolog-
ical data, they can click the icon on the interface to access the
corresponding display page. Fig. 8(b) and (c) visualize the heart
rate and blood oxygen saturation, plotting their trends and dis-
playing live data. Fig. 8(d) shows the self-assessment interface
with personal info and questionnaires including PHQ-9, GAD-7,
BDI-II and so on. Users can complete these questionnaires, and
their scores, along with severity information for some scales,
will be shown on their personal page. Fig. 8(e) is the depressive
episode recording interface, which aims to collect the time peri-
ods when individuals with depression experience the symptoms
described in their medical records. It is important to note that the
functionality of this page is only used when we are collecting
data on depressive episodes of patients.

The aforementioned interface is integrated into a mobile app
and tested on the Huawei Mate 40 Pro smartphone, powered
by HiSilicon Kirin 9000 chipset, 4400 mAh battery, and 8 GB
RAM. Integrating software and hardware enables DepGuard to
systematically record the subject’s physiological and psycho-
logical conditions.

V. EXPERIMENT AND EVALUATION

A. Data Collection

We have undertaken a 3-month data collection and pre-
processing process to facilitate the execution of this study. The
experimental participants consist of two distinct groups: individ-
uals without depression and those with depression. Before the
experiment, all participants agree to sign the Institutional Review
Board (IRB) agreement [40]. The data collection process for
these two groups diverges; For the group without depression,
potential participants are recruited from Shenzhen University.
Each participant fills out PHQ-9, GAD-7, BDI-II, and other
questionnaires on the software before the experiment. After-
ward, participants are selected based on questionnaire scores
and criteria to confirm they are “healthy.” Then, we choose a
quiet conference room for data collection from non-depressed
individuals, keeping them free from distractions. Before starting,
participants should get used to the DepGuard system to avoid
any impact on their physical or mental condition. Subsequently,
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Fig. 8. The main interfaces of our mobile application.

they are given a 1-minute buffer to regulate their emotions to
ensure reaching a calm state. On the other side, we collect
physiological data from clinically diagnosed depressed patients
in Guangdong Second Provincial General Hospital to ensure
data authenticity. Patients are informed about the study and sign
consent forms. They learn about the DepGuard system and are
briefed on collection precautions.

Depressive episode data are collected only for patients with
diagnosed depression. In the formal phase of data collection, we
collect physiological data when the patient is in a state of both
physical and mental tranquility. When the patient experiences
an episode, they click the ‘Attack’ button on the corresponding
interface of the software. When the patient returns to a calm
state from the episode, they click the ‘Calm’ button. In this
way, the segment of the depressive episode is recorded. Notably,
the process of collecting data on depressive episodes described
above is used only for the training phase of the model. In real
scenarios, the DepGuard system collects physiological signals
in real-time without clicking on the ‘Attack’ or ‘Calm’ button.
Besides, during all of the above data collection procedures,
we ask the subjects to remain in a resting state in order to
prevent body movement artifacts from being generated. Data
on depressive episodes is especially collected in the presence of
a healthcare professional. Finally, we recruit 35 participants (20
males, 15 females) with 17 individuals from the healthy control
group and 18 patients diagnosed with depression. The ages of
the participants range from 14 to 53 years old, with the mean and
standard deviation of 23.14 and 7.06, respectively. As for their
occupations, twenty-eight participants are still in education, four
are currently workers, technicians, or self-employed, and one is
retired. The remaining participant does not provide occupational
information.

The length of data for subjects with depression recognition
and depressive episode detection is inconsistent, ranging from
594 to 7444 seconds. Concretely, the total amount of data for

depression recognition is 42206 seconds. And the total amount
of data for the depressive episodes is 38659 seconds, of which
48.7% (18839 seconds) are depressive samples.

B. Evaluation Metrics

For depression recognition, we assess performance using
accuracy, detection rate, and misdiagnosis rate. Accuracy, as
represented in Equation 14, is the ratio of correctly predicted
samples to the total number of samples. Detection rate, as
represented in Equation 15, is the ratio of correctly predicted
depression samples to the total number of depression samples.
Misdiagnosis rate, as represented in Equation 16, is the ratio of
incorrectly predicted non-depression samples to the total number
of non-depression samples.

Accuracy =
npre

ntrue
· 100% (14)

Detection rate =
npre=dep

ntrue=dep
· 100% (15)

Misdiagnosis rate =

(
1− npre=non−dep

ntrue=non−dep

)
· 100% (16)

For depressive episode monitoring, we use precision, recall,
F1 score, and accuracy as performance evaluation metrics.
Among them, precision, recall, and F1 score are all calculated
using the macro-average method, which means taking the aver-
age of evaluation metrics for each category.

C. Details of Evaluation

In both tasks, the single-subject setting involves randomly
partitioning each subject’s data into training (60%), validation
(20%), and testing (20%) sets. For cross-subject evaluation, we
employ Leave-One-Subject-Out Cross-Validation (LOSO-CV),
a specific form of K-Fold cross-validation where K equals the
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number of subjects (K = 35 for depression recognition; K =
17 for depressive episode monitoring). In each iteration, one
subject is designated as the test set, while the remaining K − 1
subjects constitute the training set. This exhaustive approach
ensures that each subject is used once as the test set, providing a
comprehensive assessment of the model’s generalization across
individuals.

All evaluations are implemented with the environment of
Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30 GHz, NVIDIA
Tesla A6000 GPU. We harness the computational prowess of
the cuDNN library to expedite GPU-accelerated processing.
The training process involves the Adam optimizer [41], with
a learning rate of 1e− 4, a batch size of 128, and 200 epochs
to ensure robust convergence. The attention head is set to 4 in
the MHA module. Random dropping ratio of 0.3 in the Dropout
layer.

D. Baseline Methods

We compare the performance of DepGuard with the following
baseline methods.
� DANN [42] is a classic unsupervised domain adaptation

method based on adversarial learning. Its main idea is
to reduce the distribution discrepancy between the source
domain and the target domain by introducing domain ad-
versarial training, thereby improving the model’s general-
ization ability on the target domain.

� ADDA [43] is an unsupervised domain adaptation method
that combines GAN loss. It employs a different training
strategy with DANN to reduce the distribution discrepancy
between the source domain and the target domain, thus
improving the model’s generalization performance.

� DFA-MCD [44] is a state-of-the-art unsupervised domain
adaptation method that introduces a Gaussian-guided latent
alignment approach to align the latent feature distributions
of the two domains under the guidance of the prior distri-
bution.

� SWL-Adapt [45] is an unsupervised domain adaptation
method tailored for temporal input features, incorporating
sample weight learning. It calculates sample weights ac-
cording to the classification loss and domain discrimination
loss of each sample with a parameterized network.

� CDFSL-V [46] is an effective few-shot learning method
for recognizing new categories with only a few labeled
examples. The method employs a masked autoencoder-
based self-supervised training objective to learn from both
source and target data in a self-supervised manner. Then,
a progressive curriculum balances learning the discrimina-
tive information from the source dataset with the generic
information learned from the target domain.

� PN [47] is a state-of-the-art few-shot learning method for
the image dataset CUB-200-2011, where a classifier must
generalize to new classes not seen in the training set, given
only a small number of examples of each new class. It learns
a metric space in which classification can be performed by
computing distances to prototype representations of each
class.

Fig. 9. The cross-subject results of depression subjects.

Fig. 10. The results of cross-subject for different methods.

� PN(-T) is an ablation method for the PN based on a random
task generation strategy.

� FD(-A) is an ablation method for the FSL-DEM based on
using only easily obtainable non-episode samples.

� FD(-F) is an ablation method for the FSL-DEM based on
not using fine-tuning module and employing meta-learning
training.

� FD(-T) is an ablation method for the FSL-DEM based on
random task generation strategy.

E. Depression Recognition Results

1) Performance of Cross-Subject: We evaluate cross-subject
depression recognition using LCMTN and UDA-DR, as de-
picted in Fig. 9. where U1 to U17 denote non-depressed sub-
jects, and U18 - U35 denote depressed subjects. The overall
average accuracy of LCMTN is 68.85%, while that of UDA-
DR is 90.75%. UDA-DR enhances cross-subject recognition
accuracy by 21.9% over LCMTN. Notably, the accuracy for
the non-depression subject U6 and the depression subject U35
decreased. For U6, the depression scale scores are near the
threshold for diagnosis. And for U35, the professional psy-
chologist diagnoses fewer and milder symptoms. Moreover,
Fig. 10 compares the cross-subject recognition performance of
DANN [42], ADDA [43], DFA-MCD [44], SWL-Adapt [45],
and UDA-DR under various shot conditions. UDA-DR excels
in the 15-shot and 30-shot target domain scenarios due to its
effectiveness with limited unlabeled data.

2) Analysis of Performance Influencing Factors: Further-
more, we test four key factors for optimizing the cross-subject
recognition performance of UDA-DR: the number of target
subject data samples and the number of fine-tuning iterations,
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Fig. 11. The performance of different target subject data samples.

Fig. 12. The performance with the number of fine-tuning iterations.

the number of source domain subjects, and the batch proportion
size between the source domain and the target domain.

The number of target subject data samples: Fig. 11 displays
the metrics performance for target subject unlabeled data across
5, 10, 20, 30, and 60 shots. Accuracy increases with the increase
in the amount of unlabeled data provided to the target subjects.
With 5 shots, the accuracy is 80.89%, and the accuracy remains
stable and unchanged after 30 shots. Although the detection
rate at 30 and 60 shots is slightly lower than at 20 shots, the
misdiagnosis rate is significantly better than at 20 shots. Thus,
we set a minimum of 30 shots of unlabeled data per target subject.

The number of fine-tuning iterations: In the fine-tuning phase,
we fine-tune the target subject data samples of 30 shots with 1,
3, 5, 10, 15, 20, and 25 iterations respectively. Fig. 12 shows
the accuracy, detection rate, and misdiagnosis rate results for
different fine-tuning numbers. With the continuous increase in
the number of fine-tuning, the accuracy shows a gradual upward
trend. When fine-tuning is performed 20 times, the accuracy
reaches its optimal state. However, further increasing the number
of fine-tuning led to a downward trend in accuracy performance.
This is because the increase in the number of fine-tuning causes
the model to overlearn the specific local structure in the new
subject data while ignoring the overall pattern of the data.
Although the detection rate of fine-tuning 20 times is slightly
lower than that of fine-tuning 25 times, the misdiagnosis rate
performance is significantly better than fine-tuning 25 times.
Therefore, we fixed the number of fine-tunings to 20 times.

The number of source-domain subjects: The diversity of
subjects is closely related to the generalization performance of
the model. In the pre-training phase, apart from each individual
subject, we randomly select 3, 5, 7, 10, 15 subjects respectively
from the remaining subjects in each category as source domain
subjects. As shown in Fig. 14, as the number of source domain

Fig. 13. The results of different channel combinations.

Fig. 14. The performance of different numbers of source domain subjects per
category.

Fig. 15. The performance of different batch proportion between source and
target domain.

subjects is continuously increased, the accuracy is gradually
improving, and the misdiagnosis rate keeps dropping. When
three source domain subjects are provided for each category
to all source domain subjects except the target subject, the
recognition accuracy increases from 66.4% to 90.75%, and
its performance gradually nears the single-subject performance
under the LCMTN. It further indicates that although subject
diversity is related to model generalization performance, the
number of source domain subjects currently used in UDA-DR is
already sufficient. Even if the number of source domain subjects
is further increased, the space for improvement in recognition
performance is limited while the data cost continues to increase.

The batch proportion across domains: In domain adaptation,
the batch proportion refers to the ratio of source to target domain
samples during fine-tuning, balancing the model’s ability to
learn discriminative features from the source domain with its
adaptability to the target domain. In this phase, we set the batch
size of the target domain to a fixed 20, and then respectively
set the batch proportion size of the source domain to the target
domain as 0.5, 1, 1.5, 2, 3, and 4. As shown in Fig. 15, as the batch
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Fig. 16. The accuracy distribution results of different channel combinations
for various subjects.

proportion size increases, the misdiagnosis rate continuously
decreases, approaching zero. When the batch proportion size
is from 0.5 to 2, the accuracy continuously improves. This is
because increasing the batch proportion size causes an excessive
focus on the source domain data while neglecting the features of
the target domain data. As the batch proportion size continues
to increase, the accuracy begins to show a downward trend. This
is because when increasing the batch proportion size, there is an
excessive focus on the source domain data, while neglecting
the feature of the target domain data. Therefore, we fix the
target domain batch size at 20 during the fine-tuning phase while
setting the source domain batch size to be twice that of the target
domain batch size.

3) Comparison of Different Channel Combinations: In order
to explore the impact of different channel combinations on
recognition performance, we further conduct a feature ablation
study. For the five channels: PPG, IR, Red, GSR, SKT, we use
one-channel, two-channel, three-channel, and four-channel re-
spectively to perform cross-subject depression recognition. Due
to the certain correlation between IR and Red, only the IR chan-
nel in the blood oxygen signal is used for multi-channel combi-
nation in the feature ablation study. Figs. 13 and 16 summarize
the results. For one-channel, it can be seen that different channels
have varying abilities in recognizing depression. We find that the
PPG channel is the most important, with an accuracy of 75.53%,
while the SKT channel performs poorly, with an accuracy of
only 51.61%. For two-channel, the performance of channel
combinations is mostly better than that of sub-channels. Among
them, the combination of PPG and SKT channels performs the
best, with an accuracy of 82.14%. However, the combination of
PPG and GSR channels has reduced the performance of the PPG
single channel. For three-channel, the performance of channel
combinations is superior to that of the sub-single channel. The
combination of PPG, IR, and GSR channels performs the best,
with an accuracy of 81.57%, but it does not perform as well
as the combination of PPG and SKT channels. This indicates
that when using two or three channels, the best choice is the
two channels composed of PPG and SKT. For the four-channel
combination composed of PPG, IR, GSR, and SKT or the
five-channel combination with the addition of Red, the recog-
nition performance of depression using multi-channel combi-
nations is generally better than one-channel, two-channel, and
three-channel combinations. This indicates that multi-channel
fusion can obtain more comprehensive and multi-angle infor-
mation, which helps in accurately recognizing depression.

TABLE II
THE COMPARISON WITH RELATED WORK IN DEPRESSION RECOGNITION

4) Comparison With Related Work: We present a systematic
comparison of related work in depression recognition in Table II.
Several studies have explored depression detection using tradi-
tional machine learning methods [16], [17], [18], [22], [27], [48],
[52], while others have adopted deep learning approaches [21],
[26], [49], [50], [51]. Generally, single-subject experiments tend
to yield higher accuracy than cross-subject evaluations. For
instance, traditional machine learning models have achieved
up to 100% accuracy in single-subject settings [16]. However,
performance drops significantly in cross-subject scenarios—for
example, the work [18] reports only 74.4% accuracy using
SVM and recursive feature elimination on heart rate variability
data. This discrepancy stems from the limitations of traditional
models in effectively learning complex physiological features.
While expert-crafted features can be useful, they often fail
to capture the full spectrum of depression-related patterns. In
contrast, the automatic feature extraction capabilities of deep
learning have led to growing interest in these methods. For
example, the work [50] proposes a multi-scale spatio-temporal
contrastive representation framework, and the work [51] intro-
duces a Transformer-based multimodal fusion model combined
with a multitask learning scheme using standardized question-
naires. These methods have improved the granularity of de-
pression representation through sophisticated architectures and
multimodal signal analysis. Nevertheless, most of these works
focus primarily on signal fusion and fine-grained representation,
overlooking the challenges posed by inter-subject variability. In
contrast, our proposed UDA-DR addresses cross-subject gen-
eralization by employing a gradient reversal layer within an
adversarial domain adaptation framework, effectively mitigating
performance degradation due to individual heterogeneity.

In terms of physiological signal types, EEG-based proprietary
devices remain widely used in depression recognition due to
their high precision. For example, the work [22] focuses on
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TABLE III
THE PERFORMANCE OF LCMTN FOR SINGLE-SUBJECT AND CROSS-SUBJECT

Fig. 17. The results of cross-subject for LCMTN and FSL-DEM.

single-modality signals, limiting its ability to comprehensively
capture an individual’s peripheral physiological state. In the
work [52], manually extracted features are used to construct
dynamic representations, followed by a random forest model for
prediction. Similarly, the work [48] employs a basic deep neural
network, which struggles to effectively fuse multimodal physi-
ological signals. However, their high cost, limited accessibility,
and operational complexity significantly hinder real-world ap-
plication. In contrast, our approach offers superior portability,
broader applicability, and enhanced performance, making it
more suitable for practical deployment.

F. Depressive Episode Monitoring Results

1) Performance of Single-Subject and Cross-Subject: In or-
der to verify the feasibility of depressive episode monitoring,
we only conduct single-subject and cross-subject depressive
episode monitoring evaluations through the LCMTN. As shown
in Table III, we observe that all metrics for single-subject results
are vastly higher than cross-subject results, with an accuracy dif-
ference of 43.5%. The accuracy range for single-subject results is
around 99.28%, indicating a consistently high performance. For
cross-subject results, the range is from 53.93% to 55.78%. These
results indicate the feasibility of depressive episode monitoring.
However, we need to solve the issue of subject variability
to improve cross-subject performance for depressive episode
monitoring.

To evaluate the cross-subject performance of FSL-DEM, we
use the LCMTN and the FSL-DEM method designed in Section
III-C. Fig. 17 shows the accuracy of LCMTN and FSL-DEM
for each subject. It can be clearly seen that the performance of
FSL-DEM is better than that of LCMTN across all subjects.
The average accuracy of FSL-DEM is 93.52%, representing a
39.14% increase compared to LCMTN. Among them, subject
U7 shows the largest improvement, with accuracy increasing
from 30.39% to 93.17%.

Fig. 18. The performance of cross-subject for different methods.

Fig. 19. The performance of different numbers of data samples per category.

Additionally, Fig. 18 shows the cross-subject depressive
episode monitoring results using the unsupervised domain adap-
tation methods DANN [42], UDA-DR, the few-shot learning
methods CDFSL-V [46], PN [47], FSL-DEM, as well as ablation
versions of PN and FSL-DEM. The results show that the perfor-
mance of unsupervised domain adaptation has largely improved
compared to using only LCMTN for cross-subject performance.
The FSL-DEM exhibits the best performance compared to the
other two few-shot learning methods. Furthermore, we conduct
an additional ablation study on FSL-DEM. From the comparison
between PN and PN(-T), as well as FD and FD(-T), utiliz-
ing a subject-based task generation strategy can enhance the
cross-subject performance of FSL-DEM. Comparing FD and
FD(-F), it is evident that the fine-tuning module is indispensable.
The pre-training approach based on meta-learning is superior to
the conventional training method. Comparing FD and FD(-A),
solely utilizing readily available non-episode samples does not
improve performance.

2) Analysis of Performance Influencing Factors: To better
select appropriate hyperparameters, we also evaluate four in-
fluencing factors affecting the cross-subject performance of
FSL-DEM: the number of internal training, the number of data
samples per category, the number of fine-tuning iterations, and
the number of source domain subjects.

The number of data samples per category: In the fine-tuning
phase, we provide 3, 5, 10, 15, 20, 25, and 30 labeled samples
for each category. For fine-tuning, the number of fine-tuning
iterations is fixed. As shown in Fig. 19, the performance metrics
of precision, recall, F1 score, and accuracy increase as the
number of samples provided by the target subject increases.
When providing 3 samples for each category, the accuracy can
reach 81.43%. After providing 15 samples for each category, the
performance metrics tend to stabilize. During the experimental
phase of collecting data on depressive episode, it was found that
each episode of patients lasted at least 15 seconds. Therefore,
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Fig. 20. The performance of different numbers of fine-tuning iterations.

Fig. 21. The performance of different numbers of internal training.

considering both the cost of target subject data and the per-
formance of depressive episode monitoring, setting 15 labeled
samples for each category as the minimum required data from
the target subject is advisable.

The number of fine-tuning iterations: In the fine-tuning phase,
we fix the number of samples provided by the target subject for
each category at 15 and set fine-tuning iterations to 1, 3, 5, 10,
15, 20, 25, and 30, respectively. Observing from Fig. 20, it can be
noted that the performance metrics of precision, recall, F1 score,
and accuracy exhibit a rapid increase followed by a gradual
stabilization as the number of fine-tuning iterations increases.
After 15 fine-tuning iterations, the performance improvement
is small. Specifically, the accuracy rates are 91.66%, 92.17%,
92.68%, and 93.52% for fine-tuning iterations of 15, 20, 25, and
30, respectively. Therefore, we fixed the number of fine-tunings
to 20 times.

The number of internal training: In the meta-learning phase,
the number of internal training not only affects the training
duration but also influences the model performance. Specifically,
we conduct performance evaluations for depressive episode
monitoring by setting the internal training iterations to 1, 2, 3, 4,
5, and 10. As shown in Fig. 21, precision, recall, F1 score, and
accuracy all decrease as the number of internal training iterations
increases, but the decrease is very small. This is because the
increase in the number of internal training iterations leads to
overfitting of the model on specific tasks. Among them, when
the number of internal training iterations is 1, all performance
metrics are optimal. Therefore, choosing an internal training it-
eration of 1 not only reduces meta-learning training time but also
results in better performance in depressive episode monitoring.

The number of source domain subjects: The diversity of
subjects is closely related to the generalization performance of
the model. In the meta-learning phase, apart from each individual
subject, we randomly select 3, 5, 7, 10, 15, 17 subjects from
the remaining subjects as source domain subjects. As shown in

Fig. 22. The performance of different numbers of source domain subjects.

Fig. 23. The results of FSL-DEM and FSL-DEM (KD).

Fig. 22, as the number of source domain subjects increases,
the performance of depressive episode monitoring gradually
improves. With only three source domain subjects, the accuracy
of depressive episode monitoring reaches 84.26%, which is a
29.8% improvement compared to the cross-subject accuracy of
the LCMTN. From having 3 source domain subjects to 15, the
accuracy increases from 84.26% to 92.1%. Further increasing
to include all source domain subjects results in only a 1.42%
improvement in accuracy. Even if the number of source do-
main subjects is further increased, the room for performance
improvement is extremely limited while the data cost continues
to increase.

3) Impact of Knowledge Distillation: A knowledge distilla-
tion module is designed to reduce computational complexity
and memory usage, while ensuring the performance of depres-
sive episode monitoring. The distillation degree τ refers to a
parameter that quantifies the intensity of knowledge distillation
during the knowledge distillation process. In this regard, we use
FSL-DEM and FSL-DEM (KD) with a distillation degree of 10
for the encoder. As shown in Fig. 23, the accuracy after distilla-
tion for most subjects is slightly lower than the accuracy before
distillation. The average accuracy before and after distillation is
93.52% and 90.53, with a difference of only 2.99%. Addition-
ally, subjects U4, U9, and U10 have improved accuracy through
knowledge distillation, indicating that knowledge distillation
can optimize performance for certain subjects. Furthermore,
we evaluate the impact of knowledge distillation at different
degrees on the performance of depressive episode monitoring.
We respectively set the degrees of knowledge distillation for
the encoder to 5, 10, 20, and 40, and obtain the results shown
in Fig. 24. It can be observed that as the degree of knowl-
edge distillation increases, various performance metrics show
a gradual decrease. It is worth noting that although the degree of
knowledge distillation increases from 5 to 40, the performance
has declined slightly, but not significantly. Therefore, when

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 24,2025 at 16:15:54 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DEPGUARD: DEPRESSION RECOGNITION AND EPISODE MONITORING SYSTEM 211

Fig. 24. The performance of different distillation degrees.

Fig. 25. The accuracy distribution results of different channel combinations
for various subjects.

Fig. 26. The performance of different channel combinations.

selecting the degree of knowledge distillation, it is necessary to
strike a balance between model performance and computational
resources.

4) Performance With Different Channel Combinations: In
order to explore the impact of different channel combinations on
depressive episode monitoring performance, we further conduct
a feature ablation study. The evaluation settings are consistent
with Section V-E3. Figs. 25 and 26 summarize the results. For
one-channel, it can be observed that the SKT channel performs
the best, with an accuracy of 81.61%. This finding suggests that
depressed subjects exhibit significant changes in body temper-
ature during depressive episodes. For two-channel, the perfor-
mance of channel combinations is better than of sub-channels.
When the SKT channel is combined with other channels, it
significantly enhances the performance of the other channels.
Especially, the combination of SKT and GSR exhibits the best
performance, with an accuracy of 87.72%. For three-channel
and four-channel, channel combinations’ performance is better
than sub-channel combinations. These results indicate that in-
tegrating information from different channels can complement
and enhance the performance of the model in cross-subject
depressive episode monitoring.

Fig. 27. Battery consumption.

TABLE IV
EVALUATION OF FLOPS AND LATENCY FOR TEACHER AND STUDENT MODELS

G. Evaluation of System Running Performance

1) Battery Consumption: At the outset of our assessment,
we confirm that both the smartphone and wearable hardware
are powered up to 100%. Participants are instructed to equip
the hardware and keep the corresponding app active on their
smartphones, with all other apps shut down. This two-hour
assessment offers key insights into battery performance. We
utilize the Android Debug Bridge, a valuable tool for retrieving
the device’s live battery status. Fig. 27 shows that after two
hours, the battery of the smartphone and the wearable device
drop by 19% and 38%, respectively. According to this trend, the
entire system can run continuously for over five hours. To further
enhance its usability and adapt it to daily usage habits, we also
introduce a low power mode (LPM) for the wearable hardware.
In this mode, the data transfer rate is reduced and messages
are sent every 5 minutes. The results show that the wearable
device consumes 20% less power when running in the LPM for
two hours, with the battery level dropping by 18%. At the same
time, the smartphone experiences a 14% battery drop in the LPM
over two hours, representing a 5% power saving compared to
normal mode. These findings indicate that the hardware system
can run in the LPM for over twelve hours, which demonstrates
remarkable endurance capability.

2) FLOPs and Latency: To further validate the effectiveness
of knowledge distillation when deploying models on edge de-
vices, we test the floating point operations (FLOPs) and in-
ference latency of the student model and the teacher model in
the inference stage with two different lengths of physiological
signals as input. As shown in Table IV, the teacher model ex-
hibits significantly higher computational demands with FLOPs
reaching 2.04× 108 for an input length of 32 seconds and
4.09× 108 for 64 seconds. Accordingly, its latency is also much
higher, with 2.586 seconds for an input length of 32 seconds and
4.061 seconds for an input length of 64 seconds. In contrast, the
student model demonstrates superior efficiency, requiring only
1.53× 107 FLOPs and 3.06× 107 for two inputs, respectively.
The latency is also reduced to 0.806 seconds and 0.961 seconds,
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Fig. 28. CPU and memory load.

TABLE V
THE COMPARISON OF OUR SELF-DESIGNED HARDWARE

WITH COMMERCIAL DEVICES

respectively. These results highlight the student model’s suitabil-
ity for edge deployment, emphasizing the benefits of knowledge
distillation for resource-constrained devices.

3) CPU and Memory Load: In this experiment, we demon-
strate the dynamics of the CPU and memory footprint of a
student model deployed on an edge device for acquisition. All
other applications and services are closed to ensure accurate
measurements of CPU and memory load. Android Profiler in
USB debug mode is used to monitor real-time CPU and memory
usage for a duration of 110 seconds. As shown in Fig. 28, the
results are mainly divided into three phases. In the initial stage
of the silent state (highlighted in gray), CPU usage remains
minimal, and memory usage stabilizes at around 240 MB. Dur-
ing the data acquisition and visualization phase (highlighted in
yellow), memory usage rises to approximately 550 MB, while
CPU load increases slightly to 10%. We acquire 60 seconds
of physiological signaling data during this phase. In the data
processing and model prediction phase (highlighted in blue),
which lasts about 3 seconds, resource consumption surges, with
memory usage reaching about 720 MB and CPU utilization
peaking at 92%, highlighting the computational intensity of the
predictive modeling process.

VI. DISCUSSION AND FUTURE WORK

In this section, we discuss some important details of our device
and the future work.

A. Wearable Devices

As shown in Table V, we compare our self-designed hardware
with existing commercial devices in terms of size, weight, cost,
and data interface. We can see that these commercial devices
are much more expensive than ours or do not provide access
to sensor data. This is why we need to design such a device
by ourselves instead of using commercial ones. Specifically,
the cost of our device (Ver 1.0) encompasses not only the four
sensors detailed in Table I but also expenditures of the PCB
circuit board (0.70 $) and 3D-printed casing (6.382 $). The

entire hardware is encapsulated within a custom-designed 3D
printed enclosure with dimensions of 7 cm× 4cm× 2.5cm. We
can also see that our device (Ver 1.0) is larger and heavier than
other commercial devices, as our design incorporates several
physiological sensors through an embedded system approach.
However, by enhancing the integration density of hardware
circuits and optimizing the lightweight design of the enclosure,
we have enabled the device (Ver 2.0) to achieve more compact
size and reduced weight, as shown in Table V.

It is worth noting that, despite our device’s affordability, it
still achieves accurate depression detection recognition for two
key reasons. On the one hand, as detailed in Table I, our device
supports much higher sampling rates for four kinds of sensors
than commercial devices such as Empatica E4 with a maximum
sampling rate of 64 Hz. The high sampling rates allow us to
capture higher resolution and more detailed temporal signals.
On the other hand, we have proposed novel methods to address
the issue of human heterogeneity and enhance cross-subject
recognition performance.

B. Real-World Adaptation

Although disease recognition and monitoring increasingly
depend on data from real-world, dynamic environments in the
current era of ubiquitous computing, our study remains limited
in adapting to this trend.

(1) Environmental inconsistencies and noise interference:
The differences of data-collection environments create signif-
icant challenges. Real-world deployment faces unpredictable
factors, including environmental noise, device variability, and
patients’ daily routines. At present, we require subjects to remain
in a resting state during data collection, while noises generated
by human motion artifacts inevitably affect the data quality
of the physiological signals. In the future, we will explore
reasonable artifact noise processing algorithms (e.g., wavelet
algorithm) to mitigate motion artifacts and enhance robustness
under naturalistic conditions.

(2) Model generalizability and adaptability: Model adaptabil-
ity is also an important issue. Models optimized for specific tasks
and data distributions in controlled environments may struggle
with the diverse and dynamic conditions and requirements in
real-world settings. For example, a model trained to extract
depression-related features from particular physiological signals
may not promptly recognize and adjust to the wider range of
symptoms and behaviors exhibited by patients in the wild, po-
tentially resulting in suboptimal effectiveness. We will continue
to improve the DepGuard by enhancing its flexibility and adapt-
ability to a broader population and more dynamic conditions,
potentially drawing on recent advances in multi-modal federated
learning system [53].

(3) Longitudinal validation: Due to the short hospitalization
time of depressed patients, our work lacks a cross-session test to
validate longitudinal performance across time. This limitation
hinders our understanding of model consistency and reliability
over extended periods. In future work, we aim to distribute
the hardware and software to experimenters, enabling them to
collect richer data and achieve real-time monitoring in their daily
lives. This will facilitate long-term evaluation and validation.
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VII. CONCLUSION

In summary, we present DepGuard, a wearable depression
assessment system that integrates a wrist-worn device with
a mobile app for both depression recognition and real-time
monitoring of depressive episodes. The system is designed for
potential clinical application to help alleviate the workload of
healthcare professionals. To address cross-domain generaliza-
tion challenges, we employ unsupervised domain adaptation and
few-shot learning techniques. Extensive experiments validate
the effectiveness of our approach. Results indicate a strong cor-
relation between heart rate and depression recognition, as well
as between skin temperature and depressive episode detection,
further reinforcing findings in psychiatric research.
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