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Abstract—Depression significantly impacts mental health,
severely disrupting patients’ daily lives. During depressive
episodes, individuals may experience symptoms such as excessive
guilt, self-harm, and suicidal ideation. Compared to propri-
etary devices like brain electrode caps, wearable technologies
for depression detection have gained attention due to their
affordability and portability—enabling real-time monitoring of
depressive states. However, challenges such as low-quality data
from ubiquitous devices, individual variability, and the com-
plexity of multimodal physiological signal analysis limit model
generalizability. To address these issues, we present DepGuard,
a novel ubiquitous wearable system for depression assessment
based on multimodal physiological signals. DepGuard performs a
two-stage detection process: depression recognition and real-time
episode monitoring. For depression recognition, we propose an
unsupervised domain adaptation method to reduce the domain
gap between source and target subjects. For episode monitoring,
we employ a few-shot learning strategy to enable personalized
modeling. Both approaches enhance cross-subject generalization.
Our system achieves 90.75% accuracy in cross-subject depression
recognition using 30 unlabeled samples per target subject, and
93.52% accuracy in episode monitoring using 15 labeled samples
per class.
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I. INTRODUCTION

Depression is a common mental disorder affecting ap-
proximately 280 million people worldwide [1]. It is char-
acterized by persistent sadness, insomnia, loss of interest,
and reduced ability to carry out daily activities for at least
two weeks [2]. Without timely treatment, individuals are at
increased risk of suicidal behavior. The Lancet Psychiatry, a
leading journal in the field, emphasizes that early recognition
and intervention targeting lifestyle habits and risk factors
are critical for effective prevention [3]. However, continuous
supervision by doctors or family members is not feasible,
making early detection of depressive episodes essential to
improving patient outcomes and reducing the risk of self-
harm or suicide. Real-time monitoring, coupled with timely
communication to healthcare professionals, plays a vital role in
ensuring prompt and appropriate care. This proactive approach
not only helps prevent adverse events but also enhances overall
mental health management.

In recent years, depression recognition research has in-
creasingly combined individual-level insights with advanced
technologies to enable objective, passive assessment of de-
pressive states. Specifically, given the characteristic patterns
of negative affect and social withdrawal in individuals with
depression, mental states can be inferred through the analysis
of lifestyle data, including sleep patterns [4], [S], [6], social
connectivity [7], [8], [9], behavioral records [10], [11], [12],
[13]. However, behavior-based methods for depression detec-
tion are often hindered by individuals intentionally or uninten-
tionally concealing their symptoms. Similarly, traditional self-
report scales suffer from subjectivity and typically lack robust
quantitative analysis. Physiological signal monitoring offers a
promising alternative. Depression-related symptoms such as
emotional instability and physical fatigue often manifest as
measurable physiological changes that are difficult to con-
sciously control, making them less susceptible to self-report
bias [14]. High-end commercial wearable devices can cap-
ture rich physiological data-such as electroencephalography
(EEG), electrocardiography (ECG), and magnetoencephalog-
raphy (MEG) [15], but their high cost, limited accessibility,
and operational complexity restrict widespread application.
In contrast, ubiquitous wearable devices offer low-cost and
portable solutions, but they tend to capture only shallow
physiological patterns, which weakens their effectiveness in
depression recognition and episode monitoring. Consequently,
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proprietary equipment remains the standard for high-accuracy
detection [16], [17], [18], despite its impracticality for every-
day use [19], [20].

Recent research has begun to explore the potential of
ubiquitous devices for mental health monitoring [21], [22],
[23], [24], though their application in depression detection
remains in its early stages. For instance, Hassantabar et al. [21]
introduce MHDeep, a framework that integrates wearable
sensor data with artificial neural networks to classify mental
health disorders. Their model utilizes multimodal inputs such
as galvanic skin response, skin temperature, inter-beat interval,
and tri-axial acceleration, collected from smartwatches and
smartphones. Similarly, Hu et al. [23] develop an ensemble
machine learning model that classifies users as depressed or
non-depressed based on sleep data from wearable devices.
Ahmed et al. [25] propose a multimodal framework that com-
bines convolutional neural networks, attention mechanisms,
and random forests to assess affective states and depression.
Despite these advancements, several key challenges remain
unresolved.

C1: How can depressive episodes be detected quickly
to provide timely interventions? Much of the existing re-
search focuses solely on depression recognition at the model
level, using either professional or consumer-grade equipment,
with limited attention to real-time monitoring of depressive
episodes. However, the progression from diagnosis to ongoing
monitoring is a continuous process, inherently linking detec-
tion with treatment. These tasks are causally and practically
connected in real-world settings. To alleviate the substantial
burden placed on healthcare providers and family members
during inpatient care, a comprehensive systems approach is
needed—one that enables timely intervention and mitigates
the psychological risks associated with depressive episodes.

C2: How can we improve model adaptability to achieve
high-accuracy detection for new subjects? Existing research
often overlooks cross-domain challenges, limiting model per-
formance on unseen individuals. Due to the uniqueness of indi-
vidual physiological traits and emotional responses, even those
with similar mental health conditions may exhibit different
physiological signal patterns. This challenge is compounded
by limited data and scarce annotations, highlighting the need
for models to learn more discriminative and generalizable
patterns.

To address the aforementioned challenges, we introduce
DepGuard, a depression assessment system that analyzes
multimodal physiological signals to identify both depressive
disorders and ongoing depressive episodes. To tackle the
issue of real-time episode monitoring, DepGuard integrates a
dedicated module that operates in the system’s second phase.
Users wear a wrist-worn device that continuously collects
physiological data, which is then transmitted via Bluetooth
to a paired mobile application. A lightweight and personal-
ized model is deployed within the app to perform real-time
predictions and deliver results to the user. Given the device’s
limited computational resources, we employ a knowledge
distillation strategy to compress the model, thereby reducing
its complexity while maintaining predictive performance.

To address the second challenge, we design task-specific

strategies that align with the unique requirements of each
objective. For depression recognition, we utilize an unsuper-
vised domain adaptation approach to transfer knowledge from
the source domain (i.e., labeled data from known subjects)
to the target domain (i.e., unseen subject), thereby improving
generalization. For depressive episode monitoring, we apply
few-shot learning to enhance adaptability with minimal labeled
data. By integrating transfer learning and few-shot learning,
our system effectively mitigates inter-individual variability
and enables robust, cross-subject depression assessment and
monitoring.
Our main contributions can be summarized as follows.

e We present DepGuard, a wearable depression assessment
system designed for both depression diagnosis and real-
time monitoring of depressive episodes. Evaluated under
cross-subject testing on a real-world dataset, DepGuard
achieves 90.75% accuracy in depression recognition and
93.52% in depressive episode monitoring.

o We propose an unsupervised domain adaptation method
for depression recognition that bridges the gap between
source and target domains. This approach minimizes data
and training overhead for new subjects while maintaining
high recognition accuracy.

o We propose a few-shot learning approach combined with
a knowledge distillation strategy for depressive episode
monitoring, aiming to build high-performance personal-
ized models on edge devices with minimal computational
cost.

« To facilitate this line of the research!, we collect a real-
world dataset from individuals diagnosed with depression
by certified psychiatrists at our partner hospital.

The remainder of the paper is conducted as follows. Sec. II
reviews the related works about different types of devices and
cross-subject detection of depression. Subsequently, Sec. III
introduces the two-stage procedure of DepGuard. Then,
Sec. IV conducts the implementation of our proposals. Sec. V
evaluates the effectiveness of DepGuard. Finally, Sec. VI and
Sec. VII discuss and conclude our works.

II. RELATED WORKS

A. Depression Detection with Different Devices

Proprietary devices such as EEG [16], [17], [26],
ECG [18], [27], MEG [28], functional near-infrared spec-
troscopy (fNIRS) [29] and functional magnetic resonance
imaging (fMRI) [30] are commonly used to detect physio-
logical signals. The high resolution, precision, and stability of
these devices allow for the detection of subtle physiological
changes, providing researchers with reliable, high-quality data.
However, these devices require complex operations when
worn. For example, Huang et al. [28] use a bulky whole-
head 306-channel Elekta Neuronmag Vectorview to capture
MEG signals. Pange et al. [31] using EEG and ECG signals
require conductive gel and power connections, making the
setup inconvenient for users.

'Our source code is available at https://github.com/ISAC-GROUP/AFFC-
DepGuard.
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For depression detection based on portable devices, several
studies [11] have indicated that the great significance of
utilizing sensor data from smartphones and wearable devices,
such as Fitbit and Microsoft Band, can effectively represent
the features of depression defined in the DSM-5 diagnostic
criteria [2]. These sensors data encompass various dimen-
sions including phone usage patterns, acceleration, GPS, sleep
duration, and audio recordings, providing a comprehensive
understanding of subjects physical activity, social interactions,
and attention levels in daily life. Analyzing this data opens
new possibilities for precision medicine in diagnosing and
treating depression. As a result, portable devices are explored
for physiological signal detection and further utilized to predict
depression. Specifically, Tazawa et al. [32] apply machine
learning to screen and assess depression severity using Silmee
W20 wristband data, achieving 76% accuracy. Moshe et
al. [33] utilize Oura Ring data on activity, sleep, and heart
rate variability to predict depression, revealing significant cor-
relations with depressive symptoms. Moreover, Hassantabar
et al. [21] collect physiological signals from both the E4
smartwatch and Samsung smartphone, achieving an average
accuracy of 87.3% in distinguishing healthy and depressive in-
stances. Based on a lightweight TN1012/ST Pulse Transducer,
the research [22] develops a pulse rate variability detection
model to identify depression with the highest accuracy of
98.46%. However, data collected by portable devices face
technical constraints, including low temporal resolution and
noise susceptibility, which collectively impact prediction reli-
ability. These limitations motivate the development of a wrist-
worn device equipped with multi-source physiological sensors.
Furthermore, due to inter-individual variability, research on
depression recognition remains underdeveloped and requires
further progress.

B. Cross-subject Depression Detection

Individual-independent detection tasks have become a cen-
tral research challenge. In depression detection, physiological
and psychological variations, such as differences in neural
activity, mood fluctuations, and cognitive responses, pose
substantial obstacles to the generalization of models trained
on source domain data when applied to target domains. As a
result, to enhance the accuracy and robustness of cross-subject
tasks, some of the research is directed towards employing
advanced techniques such as domain adaptation [34], [35] and
domain generalization [36], which aim to mitigate the domain
shift between source and target data distributions, improving
the accuracy and robustness of cross-subject models. For
instance, Zhang et al. [36] propose a novel EEG-based Graph
Neural Network for depression detection. In their proposal,
domain generalization based on adversarial training is adapted
to the model, and a secondary subject partitioning method is
proposed to group subjects with similar data distributions into
the same domain with a shared domain label. Fang et al. [37]
present an unsupervised cross-domain fMRI adaptation frame-
work (UFA-Net), addressing heterogeneity in major depressive
disorder detection. This approach leverages graph convolu-
tional networks and maximum mean discrepancy for feature

alignment, improving model generalizability across domains
without target labels. Chen et al. [35] introduce a Graph Neural
Network-based Semi-supervised Domain Adaptation (GNN-
SDA) framework for major depressive disorder detection.
The GNN-SDA addresses semantic misalignment and class
imbalance issues by aligning domains at an individual level
and optimizing pseudo-labels, enhancing the model’s ability to
generalize across different datasets without relying on target
labels. Zhang et al. [38] introduce a multi-classification model,
DepL-GCN, that employs a graph convolutional network
(GCN) and domain generalization to classify depression levels
from EEG data. This model addresses subject variability and
sample imbalance across categories by integrating a penalty
coefficient for smaller classes, enhancing its ability to gen-
eralize and accurately detect varying degrees of depression
without relying on target domain labels.

As for our design, we adopt targeted cross-domain tech-
niques tailored to the distinct characteristics of the two task
modules: depression recognition and depressive episode mon-
itoring. The first phase focuses on depression recognition.
Given the absence of labeled data in the target domain, we
employ an unsupervised domain adaptation module, UDA-
DR, which transfers knowledge from the source domain while
effectively minimizing the distribution gap without relying on
target domain labels. In the second phase, a small amount
of labeled data is available due to the subjects diagnosed
with depression. To maximize the utility of this data, we
propose the FSL-DEM module based on few-shot learning,
which enables rapid adaptation to new individuals and supports
personalized monitoring of depressive episodes. By combin-
ing unsupervised and few-shot learning, DepGuard enhances
model generalization and adapts to varying levels of data
availability. This dual approach is a key advantage of the
DepGuard system in addressing cross-individual depression
detection challenges.

III. SYSTEM DESIGN

In this section, we introduce DepGuard system for recogniz-
ing depression and monitoring depressive episodes. As shown
in Fig. 1, the system pipeline begins with the collection of
multimodal physiological signal data via a wrist-worn device,
which is transmitted to software for specialized preprocessing.
The processed data is then used for initial-stage depression
detection. If depression is detected, the system proceeds to
monitor depressive episodes in the second stage. Otherwise,
the results are directly displayed. The depressive episode
monitoring task involves real-time analysis of the multimodal
physiological signals collected from the patient, providing an
assessment of whether the patient is currently in a depressive
state.

A. Data Preprocessing

Due to the prohibitive costs of off-the-shelf commercial
devices for collecting physiological signals and the lack of
available data interfaces, we develop our hardware and soft-
ware solutions to facilitate data collection and other tasks.
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Fig. 1. The overview of the data-processing pipeline

Heart rate signal: To mitigate PPG signal drift caused
by varying ambient light, we apply a Detrended Fluctuation
Analysis (DFA) with a time window length of 20 to remove
trend components. The PPG signal comprises two main fre-
quency bands: low-frequency components (0.05 to 0.5 Hz),
which reflect sympathetic nerve activity, fluid regulation, and
changes in respiration and blood pressure; and high-frequency
components (0.5 to 4 Hz), which are primarily associated
with parasympathetic nerve activity and short-term heart rate
variability (HRV). To remove noise and other interferences, we
apply a Butterworth band-pass filter with a frequency range
of 0.05 to 4 Hz.

Blood oxygen saturation signal: On the collected infrared
and red light signal data, we first apply a Short-time Fourier
Transform (STFT) to analyze the signal’s frequency compo-
nents. Then, we use a Butterworth band-pass filter (0.1 ~ 4
Hz) to remove noise and improve signal quality.

Galvanic skin response signal: GSR signals primarily
show low-frequency conductivity changes. To focus on physi-
ological arousal and sweat gland activity, we apply STFT and
a second-order Butterworth filter with a cutoff frequency set
at 0.3 Hz.

Skin temperature signal: The trend in skin temperature
signal (SKT) is relatively subtle. We apply an STFT and
find that the primary components are predominantly within
the effective frequency range. Additionally, power frequency
interference can be introduced into the sensor signal, affecting
the accuracy of the skin temperature sensor. To mitigate power
frequency interference, we use a Butterworth filter to truncate
the frequency of the skin temperature signal.

After processing the physiological signals, we use sliding
processing with a window size of 1 and a stride size of 1.
And then, Eq. (1) is used to normalize each data channel to a
range of —1 to 1.

T — Tmin

-1 (1)

Ynorm = 2
Tmax — Tmin

B. Unsupervised Domain Adaptation for Depression Recog-
nition

Poor performance in cross-subject depression recognition
is primarily attributed to the lack of data from new subjects
during the training phase, which fails to capture the hetero-
geneity of individual physiological signals. This diversity is
crucial for accurate model training. Without incorporating this

range of individual differences, the model struggles to adapt
to the unique physiological patterns of new subjects, thus
reducing its effectiveness in recognizing depression across
individuals. Additionally, depression is a complex mental ill-
ness typically diagnosed through clinical evaluations, making
the acquisition of labeled data challenging. The nature of
depression recognition prevents us from acquiring labeled
target-domain (i.e., target subject) data in the fine-tuning stage,
leaving us to depend solely on unlabeled data. Therefore, we
propose an unsupervised domain adaptation for depression
recognition (UDA-DR) to enhance cross-subject performance.
Fig. 2 shows the structure of UDA-DR, which adopts a two-
phase training process of pre-training followed by fine-tuning.
The method primarily consists of three modules: encoder, class
classifier, and domain classifier. The encoder ensures that the
class classifier performs well during pre-training and that the
domain classifier cannot distinguish between source and target
domain data during fine-tuning. The class classifier aims to
correctly categorize the data based on features extracted by
the encoder, while the domain classifier distinguishes whether
the data originates from the source or target domain.

1) Model building: By processing data from five channels,
we extract time-domain feature samples. Fig. 2 presents a
multi-channel temporal network based on LSTM, CNN and
attention mechanism (LCMTN), serving as the backbone
network for Sec. III-B and Sec. III-C. The LCMTN mainly
consists of an encoder and classifier, where the classifier uses
a Multilayer Perceptron (MLP). We first apply a Long Short-
Term Memory (LSTM) network for the feature encoder to
extract local temporal features from each channel.

Subsequently, to obtain the coupling of temporal dependen-
cies, we deploy a multi-head self-attention mechanism [39]
in LCMTN to enhance the derived representation of temporal
features. The multi-head self-attention mechanism enables the
model to simultaneously attend to different segments of the
input sequence, capturing diverse temporal dependencies and
enhancing the global representation of physiological signals
over time. Concretely, as shown in Eq. (2), given a feature
representation S € RY*C fed into linear layers to generate
query space, key space and value space, represents learnable
weighted matrices, L and C denote the time series and the
number of channels, respectively. Next, one head of attention
output is formulated as shown in Eq. (3), where the softmax
function is applied to the scaled dot product of the query and
key matrices to produce attention scores. These scores are then
used to weigh the values in the value matrix V' (.S), resulting
in an attention head output that captures the importance of
different temporal components across the sequence. In Eq. (4),
the output of multi-head self-attention M H A(S) is a repeated
process for multiple heads to jointly enable the model to focus
on various aspects of the input sequence, where W € RC*¢
denotes a learnable weighted matrix, C'oncat is a concatenated
operation, and k is the number of attention heads.

Q(S):SWQvK(S):SWK,V(S):SWV (2)

Q(S)KE™(S)

h; = Softmax
! < Vdg
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Fig. 2. The architecture of UDA-DR network

MHA (Q(S),K(S), V(S)) = Concat(hy, ha, ..., hx) WO (4)

Finally, we need to integrate features from various chan-
nels effectively, ensuring they complement each other for
more comprehensive feature information. Thus, we employ
a Convolutional Neural Network to precisely capture the
correlations between different channels, providing a richer
feature representation for the fusion process.

2) Pre-training phase: The primary objective of this phase
is to train LCMTN on large-scale datasets, aiming to obtain
a high-performance encoder and class classifier for the task
of depression recognition. In the pre-training phase, we only
utilize the data of source domain subjects for supervised
training. During the training of the network, the data of source
domain subjects is partitioned into a training set, validation
set and test set. The model parameters are updated through
backpropagation using the cross-entropy loss.

3) Fine-tuning phase: This phase is crucial for enhancing
cross-subject performance in depression recognition. During
Phase I, we train a high-performance encoder and class clas-
sifier optimized for depression recognition. The class classifier
demonstrates strong classification capabilities for this task.
However, the encoder is not exposed to the data features of
the target subject, resulting in poor performance when used
directly by the target subject. To address this, we employ unsu-
pervised domain adaptation, utilizing unlabeled data from both
source and target domain subjects to fine-tune the encoder.
By confusing source and target domain features, the encoder
learns domain-invariant features, enabling the class classifier
to perform more effectively on target subject data.

Specifically, we mark the source domain data as one cate-
gory of labels and the target domain data as another category
of labels before starting fine-tuning. Then, we introduce a
domain classifier using an MLP and integrate it with the
encoder obtained in phase I to form an integrated network.
The primary task of this network is to determine whether
the input data originates from the source or target domain.

A Gradient Reversal Layer (GRL) is placed between the
encoder and domain classifier to align the encoder with the
target domain data. The GRL inverts the gradient flow during
backpropagation, effectively confusing the distinction between
source and target domains. This design mitigates domain
differences, improving the encoder’s adaptability to the target
subject data. During the forward pass, the network applies an
identity transformation (Eq. (5)), while in the backward pass,
it reverses the gradient direction (Eq. (6)). Here, I denotes the
identity matrix, —I indicates reversed gradient flow and A is
a hyperparameter that controls the gradient magnitude during
backpropagation.

Ry(z) ==z )
dRx(z)
e ©6)

At the beginning of the fine-tuning, we input both the
source domain and target domain data into the network at
a certain ratio in each iteration. When passing through the
GRL, it undergoes an identity transformation as usual. The
loss function of the entire network is then formulated as:

1 N C 1 M D
Loss = N Z Z Yi,clog(pie) — M Z Z 2j,a10g(qj.q)

i=1 c=1 j=1d=1
(7N

where the first term —% f\]:l chzl Yiclog(pic) de-
notes domain classifier 10ss Lg,u-ce and the second term
i Z;\il S zj.alog(qj.a) denotes the target domain loss
Ligrget- N and M denote the number of source domain
samples and target domain samples, respectively. C' represents
the number of classes (depression or non-depression). D
represents the number of domains (source domain or target
domain). y; . and p; . are the true domain label indicator
and predicted probability of sample 7 belonging to class c,
respectively. z; 4 and g; 4 are the true domain label indicator
and predicted probability of the sample j belonging to domain
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Fig. 3. The architecture of FSL-DEM

d, respectively. During backpropagation, the GRL causes the
parameter gradients of the encoder to be reversed. The gradient
update formulas for the domain classifier and the encoder are
as follows:

oL

0, =0, — p—-2 ®)
Yy Y 891}
oL

Or =0 = (-gg,) ©)

Here, 0, represents the parameters of the domain classifier and
6 represents the parameters of the encoder. Egs. (8) and (9)
show that 6, updates normally, but 6, gradients are reversed.

4) Testing phase: After pre-training and fine-tuning phases,
the classifier and the encoder are obtained. We combine these
to form a personalized depression recognition model for a
new subject. This approach not only adapts well to individual
differences but also facilitates the creation of personalized
models that accurately fit new subjects with minimal data,
thereby promoting personalized depression detection.

C. Few-shot Learning for Depressive Episode Monitoring

Depressive episode monitoring also presents a key chal-
lenge: individual differences among subjects reduce cross-
subject performance. To address this, strategies such as un-
supervised domain adaptation and few-shot learning are com-
monly used. Although unsupervised domain adaptation is
flexible for handling distribution differences between source
and target domains, it may be less effective than few-shot
learning methods in some cases. In contrast, by leveraging the
limited labeled samples in the target domain, few-shot learning
can directly guide the model to learn specific patterns in the
target domain. Meanwhile, the monitoring task differs from
depression recognition in that it can yield limited labeled target
domain data for enhancing cross-domain performance. To this
end, we propose a few-shot learning method for depressive
episode monitoring (FSL-DEM), as shown in Fig. 3. The FSL-
DEM consists of four modules: task generator, meta-learning,
knowledge distillation, and fine-tuning.

1) Task generator: Given that this task employs the meta-
learning method in few-shot learning, it is worth noting that
the basic unit of meta-learning training is the meta-task. The
primary goal of the task generator is to produce representative
and well-defined meta-tasks, ensuring excellent model per-
formance during training. A common strategy for generating
meta-tasks involves random selection. This approach aggre-
gates data from all source domain subjects, shuffles it, and
then selects a subset to form each meta-task. It is important to
note that although we use data from source domain subjects

(Source Subjects)

Task Dataset
Label 1 Label 1 Label 2

[
J
)
i
i

Fig. 4. Subject-based task generator

in meta-learning, there still are significant differences in the
data of the same categories among different subjects. In fact,
the data from each individual can be considered as a unique
classification task dataset. This means that in the source
domain data, each individual has its unique characteristic and
pattern, forming multiple independent classification tasks. As
shown in Fig. 4, we treat each source domain subject as an
independent dataset and randomly select a certain number of
data samples for each category to form a meta-task. In this
manner, each source domain subject generates multiple meta-
tasks, with an equal number of samples for each category
within each meta-task. Meanwhile, we further divide each
meta-task into a support set and a query set. The support set is
used to train a temporary model for the corresponding meta-
task, while the query set is used with the temporary model to
compute the loss for updating the base model.

2) Meta learning: The goal of this phase is to obtain well-
initialized parameters so that the model can quickly adjust
its parameters when facing new subjects, enabling it to adapt
more quickly and effectively. Each meta-task consists of a
support set and a query set, of which the support set comprises
only a small portion. Additionally, the number of samples
for each category remains consistent within both the support
set and the query set. Fig. 5 illustrates the meta-learning
training process, which can be divided into two stages: the
inner training stage and the outer training stage.

For the inner training stage, we extract a subset of meta-
tasks as an inner training batch and only use the support sets
of sampled tasks for model training. At the start of training,
each meta-task independently copies the base model to use
as its temporary model, allowing the temporary model to fit
some extent on the support set of each task. Subsequently,
each meta-task updates its temporary model parameters using
the cross-entropy loss function. Each meta-task has an inde-
pendent loss calculation process that does not interfere with
each other, and its parameter gradient update formula is:

0, =0 — aVoLr,(f5)

where 0 represents the model parameters, « is the learning rate
during inner training, L, (fy) is the loss function on task T;,
and Vo L, (fp) is the gradient of the loss function with respect
to the model parameters. In the gradient update, second-order
derivatives are generally involved. However, the calculation
of the second-order derivatives increases the computational
complexity and cost. Therefore, to reduce computational cost,
the second-order partial derivative in the formula is approxi-
mated to zero, and only the first-order derivative is calculated
in practical applications.

(10)
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The outer training stage is primarily evaluated using a query
set of specific tasks and updates the base model parameters.
In the inner training stage, we obtain the updated temporary
model parameters corresponding to each meta-task. We use
the query set of each meta-task for forward propagation in the
corresponding temporary model, obtaining the loss for each
meta-task. As shown in Eq. (11), we sum up these loss to
obtain a total loss, which is used to update the parameters of
the base model. Subsequently, cosine annealing is employed to
continuously adjust the learning rate, which is used to update
the parameters of the base model during the outer training
stage. Since the goal of meta-learning is to find well-initialized
parameters that enable rapid adaptation to new tasks, it is
essential to dynamically adjust the learning rate during training
to ensure the model converges quickly on different tasks.
Cosine annealing precisely offers this dynamic adjustment
mechanism, helping the model better escape local optima dur-
ing the learning process and improving generalization ability.
As shown in Eq. (12), cosine annealing reduces the learning
rate by using a cosine function.
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Fig. 5. The Meta-learning training process
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where (3, is the learning rate at step ¢, Bae and Bmin
are the maximum and minimum values of the learning rate,
defining the range of the learning rate. 1., refers to the
current iteration count, and 7, refers to the total number of
iterations within one cycle. This formula is designed to make
the learning rate decrease slowly at the beginning of a cycle,
then drop rapidly, and finally decrease slowly again.

3) Knowledge distillation: This phase of knowledge distil-
lation serves as an optional module. The task of depressive
episode monitoring requires real-time performance. If this
monitoring module is embedded in devices with limited hard-
ware resources, the knowledge distillation module becomes
particularly important. Generally, there are three methods
of knowledge distillation: feature-based knowledge distilla-
tion, response-based knowledge distillation, and relation-based
knowledge distillation. When knowledge distillation targets
the encoder, the smaller model inherits the representational
capacity of the larger model while avoiding overfitting. In
contrast, distilling the classifier may cause the student model
to overfit to the teacher’s predictive behavior, potentially disre-
garding the true data distribution. To address this, we adopt a

Teacher Model

Student Model

Fig. 6. Feature-based knowledge distillation

feature-based knowledge distillation strategy. As illustrated in
Fig. 6, we use the base model trained with meta-learning as the
teacher, and a redesigned, lightweight encoder with reduced
complexity and fewer parameters as the student. The input data
still comes from the source domain, and the loss between the
feature vectors output by the encoder of the teacher model and
the encoder of the student model is calculated using Eq. (13).
Subsequently, only the parameters of the encoder in the student
model are updated using the obtained loss. The encoder of the
trained student model is combined with the classifier of the
teacher model to form a new student model.

n

Loss = % Z(fteache?“ (.Tz) - fstudent (3)1))2

1

13)

where fieacher(2;) is the feature vector output by the encoder
of teacher model, fstudent(2;) is the feature vector output
by the encoder of student model, and n is the length of the
feature vectors. The formula calculates the ¢2 loss between
freacher(®;) and  fpudent(x;). When updating the encoder
parameters of the student model through this method, the focus
is on minimizing the difference in feature representations.

In the knowledge distillation module, we introduce a pa-
rameter 7 to control the degree of distillation. This parameter
determines the extent to which knowledge from the teacher
model is transferred to the student model. A higher 7 signifies
that the student model prioritizes the integration of knowledge
distilled from the teacher model, whereas a lower value
conversely leads the student model to rely more heavily on the
original training dataset for parameter updates. The parameter
T is systematically optimized in Sec. V-F3 to balance robust
generalization capability of the student model with mitigation
of over-reliance on the teacher’s supervisory signals.

4) Fine-tuning phase: After meta-learning or knowledge
distillation training, the base model has acquired well-
initialized parameters. In this phase, the new subject provides
a small amount of data to fine-tune the base model, further
adapting it to the characteristics of the target domain data. We
divide the fine-tuning process into two stages based on the
number of iterations. In the first stage, we update the model
parameters with a high learning rate, but the model has not yet
reached its best convergence position. In the second stage, a
small learning rate is used to update the model parameters to
further optimize the model towards the optimal solution and
take into account the stability of optimization. In this way, each
new subject obtains a customized model tailored to individual
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TABLE I
SPECIFICATIONS OF DIFFERENT SENSORS
Signal type Sensor model  Sampling rate Data type Price
Heart rate Pulse sensor 400 Hz RaWdZ;a]Og 3425 %
Blood oxygen Red light
Y8 Max30102 400 Hz and infrared light ~ 0.959 $
saturation . :
intensity data
Galvanic skin response Grove GSR 200 Hz . VolFagc 8219 %
simulation data
Skin temperature LMT70 100 Hz . Voltage 3425%
simulation data
/77" Hardware Composition

Pulse Sensor Grove GSR

@@ :-/.r.f'.

~

Heartrate | 1 :
2 | Blood oxygen :
Galvanic skin | 3 1

4 | Temperature :

Motherboard | 5 |

Fig. 7. The design of our wrist-worn device

characteristics, thereby better adapting to their personalized
needs in the depressive episode monitoring task.

IV. SYSTEM IMPLEMENTATION
A. Hardware Design

The hardware part of the DepGuard is a wrist-worn device,
including four parts: control module, sensor module, com-
munication module, and power module. The control module
utilizes STM32, which offers precise data processing and
maintains stable performance in low-power mode. The sen-
sor module integrates four ubiquitous biometric sensors for
collecting data such as heart rate, blood oxygen saturation,
galvanic skin response, and skin temperature.

Table I presents the sensors and their parameters to ensure
efficient and accurate acquisition of various environmental
data by the DepGuard. The communication module uses
the Bluetooth BLES.0 version protocol. The power module
employs the SY8089DC-DC buck converter and a TP4054
charging circuit for a maximum 500 mA charge, effectively
managing power for the wristband device.

Fig. 7 presents the overall hardware architecture of Dep-
Guard. The system comprises a custom-designed motherboard
integrated with four ubiquitous biometric sensors, forming
a compact, wrist-worn device. The onboard microprocessor
collects physiological signals and transmits the data to the
companion app via Bluetooth.

B. Software Development

We develop a mobile app for smartphones to complement
the DepGuard hardware, offering features like physiological
monitoring, self-assessment, and depression tracking, making

up the full DepGuard system. Fig. 8(a)-(e) shows the main
interface of the app, highlighting its three core functions.
Fig. 8(a) shows the main interface for monitoring physio-
logical data with Bluetooth and real-time display. The app
connects to the hardware via Bluetooth, receives real-time data
and stores it for later analysis. When the subjects want to
know more about specific physiological data, they can click
the icon on the interface to access the corresponding display
page. Fig. 8(b) and Fig. 8(c) visualize the heart rate and
blood oxygen saturation, plotting their trends and displaying
live data. Fig. 8(d) shows the self-assessment interface with
personal info and questionnaires including PHQ-9, GAD-7,
BDI-II and so on. Users can complete these questionnaires,
and their scores, along with severity information for some
scales, will be shown on their personal page. Fig. 8(e) is
the depressive episode recording interface, which aims to
collect the time periods when individuals with depression
experience the symptoms described in their medical records.
It is important to note that the functionality of this page is
only used when we are collecting data on depressive episodes
of patients.

The aforementioned interface is integrated into a mobile
app and tested on the Huawei Mate 40 Pro smartphone,
powered by HiSilicon Kirin 9000 chipset, 4400 mAh battery,
and 8 GB RAM. Integrating software and hardware enables
DepGuard to systematically record the subject’s physiological
and psychological conditions.

V. EXPERIMENT AND EVALUATION
A. Data Collection

We have undertaken a 3-month data collection and pre-
processing process to facilitate the execution of this study.
The experimental participants consist of two distinct groups:
individuals without depression and those with depression.
Before the experiment, all participants agree to sign the
Institutional Review Board (IRB) agreement [40]. The data
collection process for these two groups diverges; For the
group without depression, potential participants are recruited
from Shenzhen University. Each participant fills out PHQ-
9, GAD-7, BDI-II, and other questionnaires on the software
before the experiment. Afterward, participants are selected
based on questionnaire scores and criteria to confirm they
are “healthy.” Then, we choose a quiet conference room for
data collection from non-depressed individuals, keeping them
free from distractions. Before starting, participants should get
used to the DepGuard system to avoid any impact on their
physical or mental condition. Subsequently, they are given a
1-minute buffer to regulate their emotions to ensure reaching
a calm state. On the other side, we collect physiological data
from clinically diagnosed depressed patients in Guangdong
Second Provincial General Hospital to ensure data authenticity.
Patients are informed about the study and sign consent forms.
They learn about the DepGuard system and are briefed on
collection precautions.

Depressive episode data are collected only for patients with
diagnosed depression. In the formal phase of data collection,
we collect physiological data when the patient is in a state
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(a) Main interface

(b) Heart rate signal

Fig. 8. The main interfaces of our mobile application

of both physical and mental tranquility. When the patient
experiences an episode, they click the ‘Attack’ button on the
corresponding interface of the software. When the patient
returns to a calm state from the episode, they click the
‘Calm’ button. In this way, the segment of the depressive
episode is recorded. Notably, the process of collecting data
on depressive episodes described above is used only for the
training phase of the model. In real scenarios, the DepGuard
system collects physiological signals in real-time without
clicking on the ‘Attack’ or ‘Calm’ button. Besides, during
all of the above data collection procedures, we ask the sub-
jects to remain in a resting state in order to prevent body
movement artifacts from being generated. Data on depressive
episodes is especially collected in the presence of a healthcare
professional. Finally, we recruit 35 participants (20 males, 15
females) with 17 individuals from the healthy control group
and 18 patients diagnosed with depression. The ages of the
participants range from 14 to 53 years old, with the mean and
standard deviation of 23.14 and 7.06, respectively. As for their
occupations, twenty-eight participants are still in education,
four are currently workers, technicians, or self-employed, and
one is retired. The remaining participant does not provide
occupational information.

The length of data for subjects with depression recognition
and depressive episode detection is inconsistent, ranging from
594 to 7444 seconds. Concretely, the total amount of data for
depression recognition is 42206 seconds. And the total amount
of data for the depressive episodes is 38659 seconds, of which
48.7% (18839 seconds) are depressive samples.

B. Evaluation Metrics

For depression recognition, we assess performance using
accuracy, detection rate, and misdiagnosis rate. Accuracy, as
represented in Equation 14, is the ratio of correctly predicted
samples to the total number of samples. Detection rate, as
represented in Equation 15, is the ratio of correctly predicted
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depression samples to the total number of depression samples.
Misdiagnosis rate, as represented in Equation 16, is the ratio
of incorrectly predicted non-depression samples to the total
number of non-depression samples.

Accuracy = ere 100% (14)
Nitrue
. Npre=dep
Detection rate = 2" . 100% (15)

Ntrue=dep

Npre=non—dep ) . 100% (16)

Misdiagnosis rate = (1 —
Ntrue=non—dep

For depressive episode monitoring, we use precision, recall,
F1 score, and accuracy as performance evaluation metrics.
Among them, precision, recall, and F1 score are all calculated
using the macro-average method, which means taking the
average of evaluation metrics for each category.

C. Details of Evaluation

In both tasks, the single-subject setting involves randomly
partitioning each subject’s data into training (60%), validation
(20%), and testing (20%) sets. For cross-subject evaluation,
we employ Leave-One-Subject-Out Cross-Validation (LOSO-
CV), a specific form of K-Fold cross-validation where K
equals the number of subjects (K = 35 for depression
recognition; K = 17 for depressive episode monitoring). In
each iteration, one subject is designated as the test set, while
the remaining K — 1 subjects constitute the training set. This
exhaustive approach ensures that each subject is used once
as the test set, providing a comprehensive assessment of the
model’s generalization across individuals.

All evaluations are implemented with the environment of
Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz, NVIDIA
Tesla A6000 GPU. We harness the computational prowess of
the cuDNN library to expedite GPU-accelerated processing.
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The training process involves the Adam optimizer [41], with
a learning rate of le — 4, a batch size of 128, and 200 epochs
to ensure robust convergence. The attention head is set to 4
in the MHA module. Random dropping ratio of 0.3 in the
Dropout layer.

D. Baseline Methods

We compare the performance of DepGuard with the follow-
ing baseline methods.

o DANN [42] is a classic unsupervised domain adaptation
method based on adversarial learning. Its main idea is to
reduce the distribution discrepancy between the source
domain and the target domain by introducing domain
adversarial training, thereby improving the model’s gen-
eralization ability on the target domain.

o ADDA [43] is an unsupervised domain adaptation method
that combines GAN loss. It employs a different training
strategy with DANN to reduce the distribution discrep-
ancy between the source domain and the target domain,
thus improving the model’s generalization performance.

o DFA-MCD [44] is a state-of-the-art unsupervised domain
adaptation method that introduces a Gaussian-guided
latent alignment approach to align the latent feature
distributions of the two domains under the guidance of
the prior distribution.

o SWL-Adapt [45] is an unsupervised domain adaptation
method tailored for temporal input features, incorporating
sample weight learning. It calculates sample weights
according to the classification loss and domain discrimi-
nation loss of each sample with a parameterized network.

o CDFSL-V [46] is an effective few-shot learning method
for recognizing new categories with only a few labeled
examples. The method employs a masked autoencoder-
based self-supervised training objective to learn from
both source and target data in a self-supervised manner.
Then, a progressive curriculum balances learning the
discriminative information from the source dataset with
the generic information learned from the target domain.

o PN [47] is a state-of-the-art few-shot learning method
for the image dataset CUB-200-2011, where a classifier
must generalize to new classes not seen in the training
set, given only a small number of examples of each new
class. It learns a metric space in which classification
can be performed by computing distances to prototype
representations of each class.

e PN(-T) is an ablation method for the PN based on a
random task generation strategy.

e FD(-A) is an ablation method for the FSL-DEM based
on using only easily obtainable non-episode samples.

o FD(-F) is an ablation method for the FSL-DEM based
on not using fine-tuning module and employing meta-
learning training.

o FD(-T) is an ablation method for the FSL-DEM based
on random task generation strategy.

E. Depression Recognition Results

1) Performance of Cross-subject: We evaluate cross-subject
depression recognition using LCMTN and UDA-DR, as de-
picted in Fig. 9. where Ul to Ul7 denote non-depressed
subjects, and U18 - U35 denote depressed subjects. The overall
average accuracy of LCMTN is 68.85%, while that of UDA-
DR is 90.75%. UDA-DR enhances cross-subject recognition
accuracy by 21.9% over LCMTN. Notably, the accuracy for
the non-depression subject U6 and the depression subject
U35 decreased. For U6, the depression scale scores are near
the threshold for diagnosis. And for U35, the professional
psychologist diagnoses fewer and milder symptoms. Moreover,
Fig. 10 compares the cross-subject recognition performance of
DANN [42], ADDA [43], DFA-MCD [44], SWL-Adapt [45],
and UDA-DR under various shot conditions. UDA-DR excels
in the 15-shot and 30-shot target domain scenarios due to its
effectiveness with limited unlabeled data.

2) Analysis of Performance Influencing Factors: Further-
more, we test four key factors for optimizing the cross-
subject recognition performance of UDA-DR: the number of
target subject data samples and the number of fine-tuning
iterations, the number of source domain subjects, and the
batch proportion size between the source domain and the target
domain.

The number of target subject data samples: Fig. 11
displays the metrics performance for target subject unlabeled
data across 5, 10, 20, 30, and 60 shots. Accuracy increases
with the increase in the amount of unlabeled data provided
to the target subjects. With 5 shots, the accuracy is 80.89%,
and the accuracy remains stable and unchanged after 30 shots.
Although the detection rate at 30 and 60 shots is slightly lower
than at 20 shots, the misdiagnosis rate is significantly better
than at 20 shots. Thus, we set a minimum of 30 shots of
unlabeled data per target subject.

The number of fine-tuning iterations: In the fine-tuning
phase, we fine-tune the target subject data samples of 30 shots
with 1, 3, 5, 10, 15, 20, and 25 iterations respectively. Fig. 12
shows the accuracy, detection rate, and misdiagnosis rate
results for different fine-tuning numbers. With the continuous
increase in the number of fine-tuning, the accuracy shows
a gradual upward trend. When fine-tuning is performed 20
times, the accuracy reaches its optimal state. However, further
increasing the number of fine-tuning led to a downward trend
in accuracy performance. This is because the increase in
the number of fine-tuning causes the model to overlearn the
specific local structure in the new subject data while ignoring
the overall pattern of the data. Although the detection rate of
fine-tuning 20 times is slightly lower than that of fine-tuning
25 times, the misdiagnosis rate performance is significantly
better than fine-tuning 25 times. Therefore, we fixed the
number of fine-tunings to 20 times.

The number of source-domain subjects: The diversity of
subjects is closely related to the generalization performance of
the model. In the pre-training phase, apart from each individual
subject, we randomly select 3, 5, 7, 10, 15 subjects respectively
from the remaining subjects in each category as source domain
subjects. As shown in Fig. 14, as the number of source domain
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Fig. 9. The cross-subject results of depression subjects

subjects is continuously increased, the accuracy is gradually
improving, and the misdiagnosis rate keeps dropping. When
three source domain subjects are provided for each category
to all source domain subjects except the target subject, the
recognition accuracy increases from 66.4% to 90.75%, and its
performance gradually nears the single-subject performance
under the LCMTN. It further indicates that although subject
diversity is related to model generalization performance, the
number of source domain subjects currently used in UDA-DR
is already sufficient. Even if the number of source domain
subjects is further increased, the space for improvement in
recognition performance is limited while the data cost contin-
ues to increase.

The batch proportion across domains: In domain adapta-
tion, the batch proportion refers to the ratio of source to target
domain samples during fine-tuning, balancing the model’s
ability to learn discriminative features from the source domain
with its adaptability to the target domain. In this phase, we
set the batch size of the target domain to a fixed 20, and
then respectively set the batch proportion size of the source
domain to the target domain as 0.5, 1, 1.5, 2, 3, and 4. As
shown in Fig. 15, as the batch proportion size increases, the
misdiagnosis rate continuously decreases, approaching zero.
When the batch proportion size is from 0.5 to 2, the accuracy
continuously improves. This is because increasing the batch
proportion size causes an excessive focus on the source domain
data while neglecting the features of the target domain data. As
the batch proportion size continues to increase, the accuracy
begins to show a downward trend. This is because when
increasing the batch proportion size, there is an excessive focus
on the source domain data, while neglecting the feature of the
target domain data. Therefore, we fix the target domain batch
size at 20 during the fine-tuning phase while setting the source
domain batch size to be twice that of the target domain batch
size.

3) Comparison of Different Channel Combinations: In or-
der to explore the impact of different channel combinations
on recognition performance, we further conduct a feature
ablation study. For the five channels: PPG, IR, Red, GSR,
SKT, we use one-channel, two-channel, three-channel, and
four-channel respectively to perform cross-subject depression
recognition. Due to the certain correlation between IR and
Red, only the IR channel in the blood oxygen signal is used
for multi-channel combination in the feature ablation study.
Fig. 13 and Fig. 16 summarize the results. For one-channel,
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Fig. 10. The results of cross-subject for different methods

it can be seen that different channels have varying abilities in
recognizing depression. We find that the PPG channel is the
most important, with an accuracy of 75.53%, while the SKT
channel performs poorly, with an accuracy of only 51.61%.
For two-channel, the performance of channel combinations
is mostly better than that of sub-channels. Among them, the
combination of PPG and SKT channels performs the best, with
an accuracy of 82.14%. However, the combination of PPG
and GSR channels has reduced the performance of the PPG
single channel. For three-channel, the performance of channel
combinations is superior to that of the sub-single channel. The
combination of PPG, IR, and GSR channels performs the best,
with an accuracy of 81.57%, but it does not perform as well
as the combination of PPG and SKT channels. This indicates
that when using two or three channels, the best choice is the
two channels composed of PPG and SKT. For the four-channel
combination composed of PPG, IR, GSR, and SKT or the five-
channel combination with the addition of Red, the recognition
performance of depression using multi-channel combinations
is generally better than one-channel, two-channel, and three-
channel combinations. This indicates that multi-channel fusion
can obtain more comprehensive and multi-angle information,
which helps in accurately recognizing depression.

4) Comparison with Related Work: We present a system-
atic comparison of related work in depression recognition
in Table II. Several studies have explored depression detec-
tion using traditional machine learning methods [16], [17],
[18], [48], [22], [27], [52], while others have adopted deep
learning approaches [26], [21], [49], [50], [51]. Generally,
single-subject experiments tend to yield higher accuracy than
cross-subject evaluations. For instance, traditional machine
learning models have achieved up to 100% accuracy in single-
subject settings [16]. However, performance drops signifi-
cantly in cross-subject scenarios—for example, the work [18]
reports only 74.4% accuracy using SVM and recursive feature
elimination on heart rate variability data. This discrepancy
stems from the limitations of traditional models in effectively
learning complex physiological features. While expert-crafted
features can be useful, they often fail to capture the full
spectrum of depression-related patterns. In contrast, the au-
tomatic feature extraction capabilities of deep learning have
led to growing interest in these methods. For example, the
work [50] proposes a multi-scale spatio-temporal contrastive
representation framework, and the work [51] introduces a
Transformer-based multimodal fusion model combined with a
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TABLE I
THE COMPARISON WITH RELATED WORK IN DEPRESSION RECOGNITION

Participant

Relevant work (Dep/Non-dep) Signal Accuracy
single-subject
1 channel 76.08%
(16] 24729 EEG 13 channels 83.96%
128 channels 100%
[26] 21724 EEG single-subject 99.1%
[17] 34 /58 EEG single-subject 89%
[18] 371741 ECG cross-subject 74.4%
[48] 7116 ECG single-subject 87%
GSR, SKT, . .
[21] 10/ 25 IBL, IMU single-subject 87.3%
[22] 33732 PPG single-subject 98.46%
single-subject
[49] 26 /24 EEG EDRA dataset 98.33%
MODMA dataset 97.56%
[27] 22 /27 ECG cross-subject 70%
[50] 24 /29 EEG, fNIRS single-subject 86.7%
[51] 46 / 51 EEG cross-subject 86.84%
[52] 58/ 58 PPG. GSR. G sle-subject at most 90%
acceleration
PPG, SpO2, .
UDA-DR (ours) 18/ 17 GSR, SKT cross-subject 90.75%

multitask learning scheme using standardized questionnaires.
These methods have improved the granularity of depression
representation through sophisticated architectures and multi-
modal signal analysis. Nevertheless, most of these works focus
primarily on signal fusion and fine-grained representation,
overlooking the challenges posed by inter-subject variability.
In contrast, our proposed UDA-DR addresses cross-subject
generalization by employing a gradient reversal layer within an
adversarial domain adaptation framework, effectively mitigat-
ing performance degradation due to individual heterogeneity.

In terms of physiological signal types, EEG-based propri-
etary devices remain widely used in depression recognition due
to their high precision. For example, the work [22] focuses on
single-modality signals, limiting its ability to comprehensively
capture an individual’s peripheral physiological state. In the
work [52], manually extracted features are used to construct
dynamic representations, followed by a random forest model
for prediction. Similarly, the work [48] employs a basic deep
neural network, which struggles to effectively fuse multimodal
physiological signals. However, their high cost, limited acces-
sibility, and operational complexity significantly hinder real-
world application. In contrast, our approach offers superior
portability, broader applicability, and enhanced performance,
making it more suitable for practical deployment.

F. Depressive Episode Monitoring Results

1) Performance of Single-subject and Cross-subject: In
order to verify the feasibility of depressive episode monitoring,
we only conduct single-subject and cross-subject depressive
episode monitoring evaluations through the LCMTN. As
shown in Table III, we observe that all metrics for single-
subject results are vastly higher than cross-subject results,
with an accuracy difference of 43.5%. The accuracy range
for single-subject results is around 99.28%, indicating a
consistently high performance. For cross-subject results, the
range is from 53.93% to 55.78%. These results indicate the
feasibility of depressive episode monitoring. However, we
need to solve the issue of subject variability to improve cross-
subject performance for depressive episode monitoring.

To evaluate the cross-subject performance of FSL-DEM,
we use the LCMTN and the FSL-DEM method designed in
Sec. III-C. Fig. 17 shows the accuracy of LCMTN and FSL-
DEM for each subject. It can be clearly seen that the per-
formance of FSL-DEM is better than that of LCMTN across

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 29,2025 at 15:21:18 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3591096

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, ZZ 2025

100
= 80
< S
> S 60
‘% 2 40
<
&8’ &
> 20
W LCMTN
117 [ |FSL-DEM| oL LA |
N s
Ry \B\Q\S\\Q\"/\S\“’o\b‘ 0\50\50\'\0\% QV? Q? Q“r‘g}’
User ID ©
Fig. 17. The results of cross-subject for LCMTN Fig. 18.

and FSL-DEM different methods

The performance of cross-subject for

5 10 15 20
Number of data samples per category

Fig. 19. The performance of different numbers of
data samples per category

100

90

80

70

Rate (%)

60

50

1 305 10 15 20 25 30 1 2
Number of fine-tuning iterations

Fig. 20. The performance of different numbers of

fine-tuning iterations internal training

100

Number of internal training

Fig. 21. The performance of different numbers of

100

90
~
& 80
g
2 70 [ |Precision
60 I Recall
[ |Fi score
I:l Accuracy
4 5 10 50

3 5 7 10 15 17
Number of source domain users

Fig. 22. The performance of different numbers of
source domain subjects

100

3
S

90

=N
S

80

e
Rate (%)

Accuracy (%)

70

[ )
S

=)

60-

User ID

Fig. 23. The results of FSL-DEM and FSL-DEM
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all subjects. The average accuracy of FSL-DEM is 93.52%,
representing a 39.14% increase compared to LCMTN. Among
them, subject U7 shows the largest improvement, with accu-
racy increasing from 30.39% to 93.17%.

Additionally, Fig. 18 shows the cross-subject depressive
episode monitoring results using the unsupervised domain
adaptation methods DANN [42], UDA-DR, the few-shot learn-
ing methods CDFSL-V [46], PN [47], FSL-DEM, as well
as ablation versions of PN and FSL-DEM. The results show
that the performance of unsupervised domain adaptation has
largely improved compared to using only LCMTN for cross-
subject performance. The FSL-DEM exhibits the best perfor-
mance compared to the other two few-shot learning methods.
Furthermore, we conduct an additional ablation study on FSL-
DEM. From the comparison between PN and PN(-T), as well
as FD and FD(-T), utilizing a subject-based task generation
strategy can enhance the cross-subject performance of FSL-
DEM. Comparing FD and FD(-F), it is evident that the fine-
tuning module is indispensable. The pre-training approach
based on meta-learning is superior to the conventional training
method. Comparing FD and FD(-A), solely utilizing readily
available non-episode samples does not improve performance.
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Fig. 25. The accuracy distribution results of dif-
ferent channel combinations for various subjects

TABLE III
THE PERFORMANCE OF LCMTN FOR SINGLE-SUBJECT AND
CROSS-SUBJECT.

foemooy

Single-subject

Cross-subject

Precision 99.28% 56.39%

Recall 99.28% 56.16%
F1 score 99.27% 53.93%
Accuracy 99.28% 55.78%

2) Analysis of Performance Influencing Factors: To better
select appropriate hyperparameters, we also evaluate four
influencing factors affecting the cross-subject performance of
FSL-DEM: the number of internal training, the number of data
samples per category, the number of fine-tuning iterations, and
the number of source domain subjects.

The number of data samples per category. In the fine-
tuning phase, we provide 3, 5, 10, 15, 20, 25, and 30 labeled
samples for each category. For fine-tuning, the number of fine-
tuning iterations is fixed. As shown in Fig. 19, the performance
metrics of precision, recall, F1 score, and accuracy increase as
the number of samples provided by the target subject increases.
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When providing 3 samples for each category, the accuracy
can reach 81.43%. After providing 15 samples for each
category, the performance metrics tend to stabilize. During the
experimental phase of collecting data on depressive episode,
it was found that each episode of patients lasted at least 15
seconds. Therefore, considering both the cost of target subject
data and the performance of depressive episode monitoring,
setting 15 labeled samples for each category as the minimum
required data from the target subject is advisable.

The number of fine-tuning iterations. In the fine-tuning
phase, we fix the number of samples provided by the target
subject for each category at 15 and set fine-tuning iterations
to 1, 3, 5, 10, 15, 20, 25, and 30, respectively. Observing
from Fig. 20, it can be noted that the performance metrics
of precision, recall, F1 score, and accuracy exhibit a rapid
increase followed by a gradual stabilization as the number of
fine-tuning iterations increases. After 15 fine-tuning iterations,
the performance improvement is small. Specifically, the accu-
racy rates are 91.66%, 92.17%, 92.68%, and 93.52% for fine-
tuning iterations of 15, 20, 25, and 30, respectively. Therefore,
we fixed the number of fine-tunings to 20 times.

The number of internal training. In the meta-learning
phase, the number of internal training not only affects the
training duration but also influences the model performance.
Specifically, we conduct performance evaluations for depres-
sive episode monitoring by setting the internal training itera-
tions to 1, 2, 3, 4, 5, and 10. As shown in Fig. 21, precision,
recall, F1 score, and accuracy all decrease as the number
of internal training iterations increases, but the decrease is
very small. This is because the increase in the number of
internal training iterations leads to overfitting of the model
on specific tasks. Among them, when the number of internal
training iterations is 1, all performance metrics are optimal.
Therefore, choosing an internal training iteration of 1 not only
reduces meta-learning training time but also results in better
performance in depressive episode monitoring.

The number of source domain subjects. The diversity of
subjects is closely related to the generalization performance
of the model. In the meta-learning phase, apart from each
individual subject, we randomly select 3, 5, 7, 10, 15, 17
subjects from the remaining subjects as source domain sub-
jects. As shown in Fig. 22, as the number of source domain
subjects increases, the performance of depressive episode
monitoring gradually improves. With only three source do-
main subjects, the accuracy of depressive episode monitoring
reaches 84.26%, which is a 29.8% improvement compared
to the cross-subject accuracy of the LCMTN. From having 3
source domain subjects to 15, the accuracy increases from
84.26% to 92.1%. Further increasing to include all source
domain subjects results in only a 1.42% improvement in
accuracy. Even if the number of source domain subjects is
further increased, the room for performance improvement is
extremely limited while the data cost continues to increase.

3) Impact of Knowledge Distillation: A knowledge distil-
lation module is designed to reduce computational complexity
and memory usage, while ensuring the performance of depres-
sive episode monitoring. The distillation degree 7 refers to a
parameter that quantifies the intensity of knowledge distillation
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Fig. 26. The performance of different channel combinations

during the knowledge distillation process. In this regard, we
use FSL-DEM and FSL-DEM (KD) with a distillation degree
of 10 for the encoder. As shown in Fig. 23, the accuracy
after distillation for most subjects is slightly lower than the
accuracy before distillation. The average accuracy before and
after distillation is 93.52% and 90.53, with a difference of
only 2.99%. Additionally, subjects U4, U9, and Ul0 have
improved accuracy through knowledge distillation, indicat-
ing that knowledge distillation can optimize performance
for certain subjects. Furthermore, we evaluate the impact of
knowledge distillation at different degrees on the performance
of depressive episode monitoring. We respectively set the
degrees of knowledge distillation for the encoder to 5, 10,
20, and 40, and obtain the results shown in Fig. 24. It can be
observed that as the degree of knowledge distillation increases,
various performance metrics show a gradual decrease. It is
worth noting that although the degree of knowledge distillation
increases from 5 to 40, the performance has declined slightly,
but not significantly. Therefore, when selecting the degree
of knowledge distillation, it is necessary to strike a balance
between model performance and computational resources.

4) Performance with Different Channel Combinations: In
order to explore the impact of different channel combinations
on depressive episode monitoring performance, we further
conduct a feature ablation study. The evaluation settings are
consistent with Sec. V-E3. Fig. 25 and Fig. 26 summarize the
results. For one-channel, it can be observed that the SKT chan-
nel performs the best, with an accuracy of 81.61%. This find-
ing suggests that depressed subjects exhibit significant changes
in body temperature during depressive episodes. For two-
channel, the performance of channel combinations is better
than of sub-channels. When the SKT channel is combined with
other channels, it significantly enhances the performance of the
other channels. Especially, the combination of SKT and GSR
exhibits the best performance, with an accuracy of 87.72%.
For three-channel and four-channel, channel combinations’
performance is better than sub-channel combinations. These
results indicate that integrating information from different
channels can complement and enhance the performance of the
model in cross-subject depressive episode monitoring.

G. Evaluation of System Running Performance

1) Battery Consumption: At the outset of our assessment,
we confirm that both the smartphone and wearable hardware
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are powered up to 100%. Participants are instructed to equip
the hardware and keep the corresponding app active on their
smartphones, with all other apps shut down. This two-hour
assessment offers key insights into battery performance. We
utilize the Android Debug Bridge, a valuable tool for retrieving
the device’s live battery status. Fig. 27 shows that after two
hours, the battery of the smartphone and the wearable device
drop by 19% and 38%, respectively. According to this trend,
the entire system can run continuously for over five hours. To
further enhance its usability and adapt it to daily usage habits,
we also introduce a low power mode (LPM) for the wearable
hardware. In this mode, the data transfer rate is reduced and
messages are sent every 5 minutes. The results show that
the wearable device consumes 20% less power when running
in the LPM for two hours, with the battery level dropping
by 18%. At the same time, the smartphone experiences a
14% battery drop in the LPM over two hours, representing
a 5% power saving compared to normal mode. These findings
indicate that the hardware system can run in the LPM for
over twelve hours, which demonstrates remarkable endurance
capability.

2) FLOPs and Latency: To further validate the effective-
ness of knowledge distillation when deploying models on edge
devices, we test the floating point operations (FLOPs) and
inference latency of the student model and the teacher model in
the inference stage with two different lengths of physiological
signals as input. As shown in Table IV, the teacher model ex-
hibits significantly higher computational demands with FLOPs
reaching 2.04 x 108 for an input length of 32 seconds and
4.09 x 108 for 64 seconds. Accordingly, its latency is also
much higher, with 2.586 seconds for an input length of 32
seconds and 4.061 seconds for an input length of 64 seconds.
In contrast, the student model demonstrates superior efficiency,
requiring only 1.53 x 107 FLOPs and 3.06 x 107 for two inputs,
respectively. The latency is also reduced to 0.806 seconds
and 0.961 seconds, respectively. These results highlight the
student model’s suitability for edge deployment, emphasizing
the benefits of knowledge distillation for resource-constrained
devices.

3) CPU and Memory Load: In this experiment, we demon-
strate the dynamics of the CPU and memory footprint of a
student model deployed on an edge device for acquisition. All
other applications and services are closed to ensure accurate
measurements of CPU and memory load. Android Profiler
in USB debug mode is used to monitor real-time CPU and
memory usage for a duration of 110 seconds. As shown in
Fig. 28, the results are mainly divided into three phases. In
the initial stage of the silent state (highlighted in gray), CPU
usage remains minimal, and memory usage stabilizes at around
240 MB. During the data acquisition and visualization phase
(highlighted in yellow), memory usage rises to approximately
550 MB, while CPU load increases slightly to 10%. We
acquire 60 seconds of physiological signaling data during this
phase. In the data processing and model prediction phase
(highlighted in blue), which lasts about 3 seconds, resource
consumption surges, with memory usage reaching about 720
MB and CPU utilization peaking at 92%, highlighting the
computational intensity of the predictive modeling process.

TABLE IV
EVALUATION OF FLOPS AND LATENCY FOR TEACHER AND STUDENT
MODELS
Model Input Length (s) FLOPs Latency (s)
Teacher 32 2.04 x 108 2.586
(1.66 M parameters) 64 4.09 x 108 4.061
Student 32 1.53 x 107 0.806
(0.14 M parameters) 64 3.06 x 107 0.961
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VI. DISCUSSION AND FUTURE WORK

In this section, we discuss some important details of our
device and the future work.

A. Wearable Devices

As shown in Table V, we compare our self-designed
hardware with existing commercial devices in terms of size,
weight, cost, and data interface. We can see that these com-
mercial devices are much more expensive than ours or do
not provide access to sensor data. This is why we need to
design such a device by ourselves instead of using commercial
ones. Specifically, the cost of our device (Ver 1.0) encom-
passes not only the four sensors detailed in Table I but also
expenditures of the PCB circuit board (0.70 $) and 3D-printed
casing (6.382 $). The entire hardware is encapsulated within
a custom-designed 3D printed enclosure with dimensions of
7 cmx4 cmx2.5 cm. We can also see that our device (Ver
1.0) is larger and heavier than other commercial devices, as
our design incorporates several physiological sensors through
an embedded system approach. However, by enhancing the
integration density of hardware circuits and optimizing the
lightweight design of the enclosure, we have enabled the
device (Ver 2.0) to achieve more compact size and reduced
weight, as shown in Table V.

It is worth noting that, despite our device’s affordability,
it still achieves accurate depression detection recognition for
two key reasons. On the one hand, as detailed in Table I, our
device supports much higher sampling rates for four kinds
of sensors than commercial devices such as Empatica E4
with a maximum sampling rate of 64 Hz. The high sampling
rates allow us to capture higher resolution and more detailed
temporal signals. On the other hand, we have proposed novel
methods to address the issue of human heterogeneity and
enhance cross-subject recognition performance.

Zhttps://product.tdk.com/
3https://store.google.com/tw/product
“https://www.empatica.com/en-int/research/e4/
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TABLE V
THE COMPARISON OF OUR SELF-DESIGNED HARDWARE WITH
COMMERCIAL DEVICES

Device Size (cm) Mass (g)  Price ($) Data Interface
Silmee W20 2 2.05 x 6.5 x 1.25 27.5 538.56 not available
Fitbit Versa 4 3 4.05 x 4.05 x 1.12 37.64 120 not available
Empatica B4 * 4.4 % 4x19 25 1080 3p“y 1080 $ for

-year data access
Ours (Ver 1.0) Tx4x25 120 23.56 available
Ours (Ver 2.0) 3.8x38x1.1 28.6 18.57 available

B. Real-world Adaptation

Although disease recognition and monitoring increasingly
depend on data from real-world, dynamic environments in the
current era of ubiquitous computing, our study remains limited
in adapting to this trend.

(1) Environmental inconsistencies and noise interference.
The differences of data-collection environments create signif-
icant challenges. Real-world deployment faces unpredictable
factors, including environmental noise, device variability, and
patients’ daily routines. At present, we require subjects to
remain in a resting state during data collection, while noises
generated by human motion artifacts inevitably affect the data
quality of the physiological signals. In the future, we will
explore reasonable artifact noise processing algorithms (e.g.,
wavelet algorithm) to mitigate motion artifacts and enhance
robustness under naturalistic conditions.

(2) Model generalizability and adaptability. Model adapt-
ability is also an important issue. Models optimized for
specific tasks and data distributions in controlled environments
may struggle with the diverse and dynamic conditions and
requirements in real-world settings. For example, a model
trained to extract depression-related features from particular
physiological signals may not promptly recognize and adjust
to the wider range of symptoms and behaviors exhibited
by patients in the wild, potentially resulting in suboptimal
effectiveness. We will continue to improve the DepGuard
by enhancing its flexibility and adaptability to a broader
population and more dynamic conditions, potentially drawing
on recent advances in multi-modal federated learning system
[53].

(3) Longitudinal validation. Due to the short hospitaliza-
tion time of depressed patients, our work lacks a cross-session
test to validate longitudinal performance across time. This
limitation hinders our understanding of model consistency
and reliability over extended periods. In future work, we
aim to distribute the hardware and software to experimenters,
enabling them to collect richer data and achieve real-time
monitoring in their daily lives. This will facilitate long-term
evaluation and validation.

VII. CONCLUSION

In summary, we present DepGuard, a wearable depression
assessment system that integrates a wrist-worn device with
a mobile app for both depression recognition and real-time
monitoring of depressive episodes. The system is designed for
potential clinical application to help alleviate the workload

of healthcare professionals. To address cross-domain general-
ization challenges, we employ unsupervised domain adapta-
tion and few-shot learning techniques. Extensive experiments
validate the effectiveness of our approach. Results indicate a
strong correlation between heart rate and depression recog-
nition, as well as between skin temperature and depressive
episode detection, further reinforcing findings in psychiatric
research.
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