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CHAR: Composite Head-Body Activities
Recognition With a Single Earable Device
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Abstract—The increasing popularity of earable devices stimu-
lates great academic interest to design novel head gesture-based
interaction technologies. But existing works simply consider it as
a singular activity recognition problem. This is not in line with
practice since users may have different body movements such as
walking and jogging along with head gestures. It is also beneficial
to recognize body movements during human-device interaction
since it provides useful context information. As a result, it is
significant to recognize such composite activities in which actions
of different body parts happen simultaneously. In this paper, we
propose a system called CHAR to recognize composite head-body
activities with a single IMU sensor. The key idea of our solution
is to make use of the inter-correlation of different activities and
design a multi-task learning network to extract shared and specific
representations. We implement a real-time prototype and conduct
extensive experiments to evaluate it. The results show that CHAR
can recognize 60 kinds of composite activities (12 head gestures and
5 body movements) with high accuracies of 89.7% and 85.1% in
sufficient data and insufficient data cases, respectively.

Index Terms—Composite activity recognition, earable device,
multi-task learning.

I. INTRODUCTION

UMAN activity recognition (HAR) has become a
hotspot in academia due to its great significance for
various intelligent services in our daily life such as healthcare,
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personalized recommendation, and human-computer interaction
(HCI). Researchers have proposed a variety of HAR methods
with different sensing modalities including radio frequency
(RF) signals [1], [2], [3], acoustic sensors [4], [5], [6], and
inertial measurement unit (IMU) [7], [8], [9], [10]. These works
have considered a wide range of daily activities including
walking [11], sleeping [12], eating [13], and etc.. In spite of
good recognition performance, these works share a common
shortcoming, that is, only considering singular activities and
outputting a single activity type.

Singular activities usually involve a single body part such as
a hand or head, or treat all the body parts as a whole. In singular
activities recognition, researchers do not care about what actions
are performed of different body parts. As a result, existing
works usually assume that the whole body is static while a user
is performing activities/gestures with her head or hand. But this
is inconsistent with the characteristics of human activities, most
of which consist of different actions of multiple body parts. For
example, when people are walking, they may wave hands or nod
heads to interact with others. In this process, walking and waving
hands (or nodding heads) are independent activities of which
both have meaningful and distinguishable semantic information.
For another example, when people go upstairs, they may also
pick up phone calls at the same time. Although such compos-
ite activities can be monitored with multiple sensors attached
on different body parts as done in previous works [14], [15],
[16], this is obviously not realistic and appealing in real-world
scenarios as people may not be willing to wear multiple devices
with them. Considering this, we pay attention to a more complex
and practical HAR problem, that is, how fo recognize composite
activities with a single wearable sensor. Formally, we define
composite activities as simultaneous actions of different body
parts in this paper.

Composite activities have significant and practical value for
human-computer interaction in real world. A typical example is
shown in Fig. 1. When a user is doing exercises, she can perform
head gestures to interact with smart earphones such as turning up
volume, picking up calls, and switching songs. At the same time,
the smart earphones can recommend exercises-related music or
audiovisual programs if doing exercises is recognized. Similarly,
when a user goes upstairs with hands occupied, she can shake
her head to turn up/down audio’s volume of earphones, and
turn on noise reduction mode. In a summary, the user performs
composite activities in these examples with head gestures and
body movements happening simultaneously. Consequently, we
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Fig. 1. The application scenarios of composite activities recognition with an
earable device. Doing exercises while staying still with hands occupied (left)
and going upstairs while carrying goods (right).

believe that it is meaningful to recognize both parts of activities
(i.e., head gestures and body movements) due to the following
reasons. On one hand, we can see from the examples that both
head gestures and body movements have significant semantic
information which can be used for human-device interaction.
On the other hand, the commonalities and differences between
different tasks are beneficial for boosting the recognition and
generalization performance.

Considering the diversity of composite activities, we only fo-
cus on recognizing 60 kinds of head-body activities in this work
including 12 head gestures and 5 body movements with a single
earphone. There are two considerations. For one thing, a human
being’s head has a large degree of freedom and is very flexible to
perform different gestures gently without causing any apparent
discomfort. This makes head gestures appropriate for designing
HCT interfaces. For another thing, compared with other body
parts, head gestures happen together with body movements more
naturally especially when a user is walking or jogging.

However, the solution to recognizing composite activities
with a single sensor is not so straightforward due to two key
obstacles. The first is the tight coupling of different tasks.
Different actions will interfere with each other, which makes it
difficult to recognize them. To be specific, sporadic head gestures
produce notable measurements which are interference to body
movements. The second obstacle is the indistinct measurements
of body movements. Although an earable sensor is easy to
capture head gestures, it is insensitive for body movements due
to the stability of human’s heads during activities. An intuitive
ideais to treat each task independently and design separate learn-
ing networks to recognize different actions. But this approach
ignores the correlation between head gestures and body move-
ments which can be utilized for boosting performance. Inspired
by multi-task learning, we have designed a composite activities
recognition network for head gestures and body movements.
Its key idea is to first extract general representation shared by
coupled tasks with a shared bottom block, and then decouple
them to further purify fine-grained task-specific features. As a
result, it not only avoids over-fitting to a specific task, but also
facilitates decision-making of each task.

Traditionally, we need to collect data from all activity cat-
egories for recognition network training in order to recognize
human activity. Composite activity contains a larger number
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of categories, which will bring a greater data collection bur-
den. Therefore, in addition to implementing traditional activity
recognition, we specially consider a more challenging scenario,
that is, how to implement comparable composite activity recog-
nition with insufficient data. An innovative idea is to develop
a series of data augmentation strategies to expand the dataset
based on the characteristics of composite activity. Augmentation
strategies are applied in the insufficient data scenario, including
data synthesis, random transformation, and generative adver-
sarial network. Through these data augmentation strategies, we
not only greatly reduce the data collection burden caused by
recognizing composite activity, but also realizing comparable
composite activity recognition performance even with insuffi-
cient data.

Based on the above, we have built the first, as far as we know,
composite head-body activities recognition system called CHAR
with a single earable IMU sensor. CHAR respectively recog-
nizes 60 kinds of activities with high accuracies of 89.7% for
composite activity under training with sufficient self-collected
dataset. Not only that, with a small amount of labeled data, the
recognition accuracy of composite activity is 85.1%, sacrificing
only 4.6%.

In a summary, the contributions of this work can be summa-
rized as follows:

® We consider a novel HAR problem in which composite
head-body activities are recognized. Instead of decompos-
ing a composite activity into individual tasks, we take full
advantage of the correlations between different tasks and
design a multi-task learning network to accomplish both
goals simultaneously. Compared with traditional methods,
our approach outperforms with higher accuracies.

® We design and implement an earphone-based real-time
prototype system with low-cost hardware and a self-
developed mobile application. Extensive experiments have
shown that our system can recognize 60 composite ac-
tivities with an high accuracy up to 89.7% even in user-
independent case.

e We further consider the insufficient data scenario and de-
sign a series of data augmentation strategies to achieve
comparable composite head-body activity recognition per-
formance. Experimental results indicate that our system
still achieve 85.1% accuracy under training with insuffi-
cient data.

The remaining of this paper is organized as follows. Section II
discusses the related work. Section III gives introduction to
the system design. In Sections IV and V, we mainly describe
the details of system implementation, experimental settings,
and performance evaluation. At last, Section VII concludes the

paper.

II. RELATED WORK

A. Human Activity Recognition

Vision systems [17], [18] use cameras for recognition, but
they are considered invasive. Ambient sensors [2], [3], [19]
require to be installed at fixed locations with extra expense. In
addition to these, wearable sensors, which are usually built in
mobile devices, have attracted the attention of researchers. Some
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researchers take advantage of microphone [5], [6], biological
signal sensor [20], [21] for HAR. The works which utilize IMU
to recognize sporadic [7], [8], [9], [10] or periodic [11], [15],
[22], [23] human acitivities are most related to ours. When it
comes to sporadic activities, HulaMove [7] uses IMU of mobile
phone for waist interaction. HeadGesture [8] proposes a hands-
free input approach leveraging head gestures. GlassGesture [9]
provides efficient gesture recognition and robust authentica-
tion with Google Glass. As for periodic movements, previous
works [11],[24], [25], [26] use smartphone to recognize periodic
movements and contribute their datasets. Other works propose
some powerful networks such as DCNN [22], DeepSense [23],
DeepConvLSTM [15] based on public datasets to recognize
daily activities. Obviously, these works only concentrate on the
recognition of singular activities. Nevertheless, human activity is
usually a composite of many kinds of actions. As a contrast, our
system makes use of multi-task learning to recognize sporadic
head gestures and periodic body movements at the same time.
In addition, X-CHAR [27] defines a complex activity that must
be composed of multiple simple activities that may evolve over
long periods in different orders and frequencies. Among them,
a simple activity is the basic unit that can be captured within
a short time window and can not be decomposed further. As
a result, a complex activity is essentially the composition of a
sequence of simple activities along time. Similarly, RFWash [28]
recognizes gestures that are performed back-to-back in a con-
tinuous sequence. Different from them, composite activities in
our work refer to multiple different types of activities occurring
simultaneously.

B. Multi-Task Learning

Multi-task learning is a training paradigm which can deal
with multiple tasks jointly. It has been successfully applied in
many areas especially in natural language processing. However,
multi-task learning has not been widely used in HAR. The
works [29], [30], [31] make use of multi-task learning approach
to realize gestures/activities recognition and user authentication
jointly. CogAx [32] uses a contrastive and multi-task learning
framework to correlate with underlying functional and cognitive
health parameters of older adults. As the most relevant work,
AROMA [14] defines complex activities as continuous and
high-level semantic meaning activities which are combination
of simple activities along temporal dimension. AROMA pro-
poses a deep multi-task learning based method to facilitate
complex activities recognition using features extracted from
simple activities. In contrast, we concentrate on composite
activities composed of simultaneous actions of different body
parts. Consequently, we designed a multi-task recognition net-
work which makes full use of shared information and further
exploits task-specific representations of each task to facilitate
decision-making.

C. Earable Applications

Recently, researchers have shown great interest in devel-
oping earable applications. EarBuddy [33] is an on-face in-
teractive system by recognizing sounds of on-face gestures.
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Fig. 2. The design of head gestures.

EarEcho [34] utilizes in-ear speaker and microphone to capture
cannal echo for authentication. eBP [35] proposes a wearable
system for blood pressure monitoring. While prior works have
explored the use of microphone or physiological sensors in
ear-worn devices, not many have explored the use of IMU
on ear-worn devices for complex HAR. [36] investigates head
motion tracking using the eSense [37] platform. MandiPass [38]
leverages IMU to achieve continuous authentication function.
Similarly, our system is built with low-cost and ubiquitous
IMU which can be easily deployed in commercial earphones.
In contrast, instead of concentrating on head or body activi-
ties, our earable device senses head-body composite activities
simultaneously.

III. SYSTEM DESIGN
A. Composite Activities Taxonomy

In this paper, a composite head-body activity means the time
aligned compound of a head gesture and a body movement.
We refer to some HAR benchmark datasets of body movements
recognition such as HHAR [24], UCI [25], MotionSense [26]
and Shoaib [11], which have been commonly used in many
works. Then we select 5 most common movements which are
practical in various real-world scenarios and suitable for our
single earable device interaction. To be specific, we consider
going downstairs and upstairs, staying still, life-walking, jogging
which are denoted by B; ~ Bs. As for the head part, we design
atotal number of 12 gestures as shown in Fig. 2 including raising
head up and back for once and twice (H7, Hg), nodding once
and twice (H2, H7), shaking head to the left for once and twice
(Hs, Hyp), shaking head to the left first and then to the right
(H11), shaking head to the right for once and twice (Hy4, Hy),
shaking head to the right first and then to the left (/{12), leaning
head to the left and right shoulders (Hs, Hg). The criteria of
designing these head gestures is referred to previous works such
as HeadGesture [8] and GlassGesture [9] since they are natural
for users to perform. As a result, there are a total number of 60
composite head-body activities.
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Fig. 3. The system overview of CHAR.

B. Overview

Fig. 3 shows the overview of training and testing pipelines
of our system. When a user performs head gestures accompany
with body movements, the earable device such as a smart ear-
phone with an IMU sensor senses the rotational and translational
movements, and transmits the data to a mobile terminal through
Bluetooth. After that, signal instances corresponding to each
composite activity are extracted precisely with an adaptive seg-
mentation method. In the training stage, the extracted signal seg-
ments are used for building a self-designed multi-task learning
network which is trained on a remote server. In the application
stage, the trained network is deployed on a mobile device such
as a smartphone, takes in signals of a composite activity, and
outputs labels of a head gesture and a body movement simulta-
neously. According to different head-body composite activities,
the system will accomplish HCI by controlling multimedia
applications such as picking up phone calls, adjusting volume,
and etc.. In the following, we shall give details of each key part
of our system design.

C. Activity Segmentation

Activity segmentation refers to detecting the starting point
(SP) and ending point (EP) of an activity. In our head-body
activity recognition task, since body movement is periodic and
persistent, we only need to acquire head gesture segment, which
contains the composite head-body activity. Other previous works
set a fixed energy threshold for activity segmentation which
can not apply to different practical scenarios. In our work, we
propose an adaptive segmentation method which dynamically
adjusts the threshold according to different scenarios. As aresult,
user’s head gestures with different body movements will be
accurately segmented. The activity segmentation algorithm is
shown in Algorithm 1. The following section gives details of
this method.

1) Signal Processing: In order to segment activity from data
stream, we use 3 sliding windows We,q, Weon: and Wygpt to
frame the signal with 1.0 seconds stride. Since W, 4 needs to
cover entire activity for EP detection, the size of W,,,4 is set to
4.0 seconds, which is slightly larger than the duration of all head
gestures. We,,,; captures the context information of the activity
which follows W,,,4 in time dimension and the size of W+
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Algorithm 1: Activity Segmentation Algorithm.

Input: 3-axis signal Gyro = {G,, Gy, G.}; Window
length for EP and SP detection Lcyna, Lstart;
Framing stride S; Threshold for EP detection
0; Scaling coefficient for SP detection k
Output: SP; EP
1 Wignat = Frame(Gyro, (Leng + Lstart), S);
2 Wend = Wsignal(Lstart o5 :);
3 Weont = Waignal(c Lstart, 3 2);
4 fori=1 to FrameNum(W,,4) do
for j = 1 to ChannelNum(We,,4) do

‘ Ecn(i, j) = EnergY(Wend(ia Js 1)
end
ch(?) = FindMaxIndex(E.x (7, :));
Eend(i) = Energy(Wend(ia Ch(’b), :));
10 FE4 = Diff(Eenq);
1 EP = FindFirstindexLess(FE4(i), 0);
12 if E'P is not None then

o ®w N s !

13 Econt = Energy(Wcont(ia Ch(’L), :));
14 Wstart = Frame(Wend(iv Ch(Z), :)r Lstart/ S)/
15 for j = 1 to FrameNum(Wg;4,+) do
16 ‘ Estart (.]) = Energy(Wstart(J, 1))
17 end
18 S P = FindFirstindexGreater(Fstq,t,
kx Econt);
19 end
20 end

21 return SP, EP

is empirically set to 0.5 seconds. When the EP of an activity
is detected, Wsqr¢ further frames the current W,, 4 with the
same size of W ,,,;. After framing data stream, we calculate the
average energy E by the formula as follows:

T

1
E=2) (x) ()

t

where x is the signal and ¢ is the timestamp of z.

2) Channel Selection: In our system, we get 6 channels
signal of the IMU. Since gyroscope varies significantly and its
noise is relatively low, we select the signal of it as the original
signal for activity segmentation. Different head gestures have
different variations in the 3-axis of gyroscope. We need to get
the best segmentation channel in real time. Therefore, We select
the axis with the largest average energy as the best segmentation
channel ch as follows:

ch = argmax F; 2)
1

where ¢ is channel index and F; is the energy of each channel.
3) EP and SP Detection: Fig. 4 shows an example of the
activity segmentation process. We utilize F.,q4 to denote the
energy curve calculated by (2) for EP detection as shown in
Fig. 4(a). When a user performs a head gesture, it first steps
into We,,4 and then steps out. Since the size of W4 is set to
be slightly larger than the duration of all head gestures, when
a entire gesture enters W, 4, it will not leave immediately but
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Fig. 4. An example of the activity segmentation process.

remain in the window for a period of time. When a entire head
gesture slides in We,, 4, no matter what kind of body movements
is, the sensor has the same background noise and the variation of
E.,q is very small. Hence, E.,,4 will first increase, then remain
stable, and finally decrease as shown in Fig. 4(a). Once E.,q4
remains stable, the right boundary of W4 is the EP of a head
gesture as shown in the figure. The EP is detected when the
variation of E.,,4 is less than # which is empirically set to 4.

Similarly, we utilize W, for SP detection as shown in
Fig. 4(b). Since W4 contains an entire activity, the SP will be
included in it. When E,,.; is greater than a threshold E,;, the
SP of an activity is detected. E}j, is defined by kFE ., and act
as a dynamic threshold, where k is a scaling factor and set to
10. By this means, Fy;, changes dynamically according to the
background noise since W,,,; captures the real-time context
information. When a user has different body movements, the
dynamic threshold Ejy;, varies accordingly. After EP and SP
detection, we calculate the midpoint of SP and EP, and extract a
signal segment lasting for 3.0 seconds as shown in Fig. 4(c) in
order to acquire fixed-length inputs for the network.

D. Data Augmentation

Conventionally, we need to collect a mass of data of 60 head-
body activities for composite activity recognition, which brings
challenges of data collection. First of all, compositing 12 head
gestures and 5 body movements will generate up to 12 x 5 =
60 kinds of head-body activities. Moreover, it required a large
amount of data to train the network because body movements
generate less notable sensor measurements on earable device. To
overcome these challenges, we propose some strategies to enable
the system to achieve satisfactory composite activity recognition
with insufficient data. In the following, we shall give details
about these strategies.

1) Data Synthesis: As shown in Fig. 5, we synthesize data
in two methods: splicing two head gestures and compositing
head-body activity. With these methods, we can synthesize data
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Splicing

Compositing

Fig.5. Datasynthesis examples. Each instance contains accelerometer (upper)
and gyroscope (lower) measurements.

for 60 composite head-body activities using only data from 6
singular head gestures and 5 singular body movements.

Head Gesture Splicing: Among the 12 designed head ges-
tures, we respectively define the irreducible head gestures
H, ~ Hg as atomic head gestures and the pairwise spliced
head gestures H; ~ H1s as combined head gestures. Obviously,
combined head gestures can be spliced by atomic head gestures.
Specifically, atomic head gestures are spliced head-to-tail along
the time dimension to synthesize combined head gestures. Fig. 5
on the left shows an example of splicing. While the body is B3
(staying still), Hy; (shaking the head to the left and then to the
right) can be synthesized by splicing H3 (shaking the head to
the left for once) and H, (shaking the head to the right for once).
In this way, we can synthesize all combined head gestures from
the collected atomic head gestures, which relieves the burden of
collecting data for some types of head gestures (H7 ~ Hi5).

Head-body Activity Compositing: Asusual, we should collect
data for all kinds of composite activities in order to recognize
them, which creates a data collection burden. However, we
propose composite singular head gestures and singular body
movements to synthesize head-body activities. To be specific,
the data of singular body movements is high-pass filtered and
then be added to data of singular head gestures in time alignment.
Fig. 5 on the right shows an example of compositing. B3 and
Hj indicate that the body and head are staying still, respectively.
Head-body activity HgBs (raising head up and back for twice
with jogging) can be synthesized by compositing singular head
gesture Hg B3 (raising head up and back for twice) and singular
body movement Hy B5 (jogging). In this way, we can synthesize
all composite head-body activities from the collected data of
singular head gestures and singular body movements. It relieves
the burden compared to directly collecting data of composite
activities.

2) Random Transformation: When IMU is used to charac-
terize user activity, the differences in data are reflected in noise
of the environment, intensity of activity and execution time of
activity. First of all, the same activity shows diversity under
different environmental noises. Taking the body movement of
walking as an example, there is a difference between the sensor
measurement when the user walks on flat ground and on rough
ground. In order to increase the diversity of training data under
environmental noise, we adds random noise to the training data
to simulate different noise levels of activity. In addition, the
same activity shows diversity among different users or different
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physical states. Whether it is head gesture or body movement,
when different users or the same user in different physical states
complete the same activity, the execution intensity and execution
time of the activity will be different. In order to increase the
diversity of training data in the execution process, we randomly
stretches and compresses the execution intensity and execution
time of the training data to simulate different activity intensity
and time variance.

To be specific, we use several ramdom transformation tech-
niques to augment composite head-body activity instances.
Fig. 6 show that three time series data augmentation tech-
niques [39] are used to enlarge the data size: 1) jittering, to
simulate different noise level, with the noise intensity j ~
N(0,0.05%); 2) scaling, to simulate different activity strength,
with the scaling factor s ~ N (1,0.32); 3) time-warping, to
simulate activity temporal variance, with warping random-
ness w ~ N (1,0.3%). Fig. 6 shows a example using these
three augmentation techniques. Compared with the original
instance, the augmented instances show diversity based on the
underlying pattern. The augmented results well simulate noise
level, activity strength and temporal variance of the composite
activity.

3) Generative Adversarial Network: Since body movements
cause less notable sensor measurements, it requires more train-
ing data to recognize them. When users wear earable device,
they will always continue to perform body movements such
as walking, going up and down stairs, which generates a large
amount of unlabeled body movement data. It is obviously more
difficult to obtain labeled body movement data than unlabeled
data. The training of recognition networks relies more on labeled
data, which brings the burden of data collection. Fortunately,
previous work provides a large number of data sets for IMU to
recognize body movements. In order to reduce the burden of data
collection, we set our sights on public datasets, hoping to obtain
the large amount of data needed to supplement body movement
recognition. However, the pattern of the same body movement
varies greatly depending on the angle or position of the IMU
sensor. In other words, recognition networks trained using public
datasets do not perform well on our earable device. Therefore,
public datasets cannot be used directly to train recognition
networks.

In order to solve the above problems, we use public dataset
and CHAR’s easily accessible unlabeled data to train a generative
adversarial network to achieve style transfer. Style represents
the sensor placement angle and position, and style transfer
eliminates the measurement value differences caused by differ-
ent styles. Specifically, our goal is to learn mapping functions
G:X —Yand F : Y — X between public dataset domain X
and our dataset domain Y. To achieve this goal, we train a style
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upstairs (Bz) and the bottom is jogging (Bs5).

transfer generative adversarial network CycleGAN [40] with
unlabeled data from these two domains. After that, mapping
function G transfer X to X', which has similar pattern to Y and
serves as a supplement to our body movement dataset. Since
the original CycleGAN is used for image style transfer, we
modify its backbone for time-series. To be specific, we adopt
a 16-unit 1-layer Bi-LSTM before a fully-connected layer as
the generator, and 3 fully connected layers as the discriminator.
Fig. 7 shows some transfer examples. As we can see, the mapping
function G well transfer public dataset domain X to X', which
closely matches the pattern of our dataset domain Y.

E. Network Design

1) Multi-Task Learning: To deal with a multi-task problem,
the most intuitive idea is to split it into several independent
single-task subproblems that are solved separately, and then
combine the results together. However, this method has defi-
ciency for two reasons. For one thing, there is shared information
between head gestures and body movements. Making good use
of the shared information is beneficial for extracting features of
each task. For another thing, head gestures and body movements
recognition are not entirely independent of each other. Taking
full advantage of the correlations between them by joint training
facilitates the decision making of each task. As a result, we turn
our attention to multi-task learning.

Multi-task learning is a training paradigm where learning
model is trained with data from multiple tasks simultaneously.
Inspired by the insight of multi-task learning, we design a
composite activities recognition network (CARN) for sporadic
head gestures and periodic body movements recognition. In
evaluation section, we compare the performance of some clas-
sical single-task networks for HAR and our multi-task network.
The experimental results show the superiority of our network,
which indicates that multi-task learning plays an important role
in composite activities recognition. Fig. 8 shows the architecture
of CARN, which consists of shared bottom block and specific
top blocks.

2) Design of Shared Bottom Block: The bottom layers are
shared across tasks to extract task-shared representation which
facilitates both head gestures and body movements recognition.
This kind of shared structure substantially reduces the risk of
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Fig. 8.  The architecture of our composite-activity recognition network.

overfitting. For example, the contribution of head gesture task to
the aggregated gradient in the back-propagation process can be
regarded as noise for the body movement task. In other words,
one task can be used as a noise source to avoid overfitting of
the other one. In a nutshell, the shared bottom block improves
generalization performance by learning head gesture and body
movement recognition tasks in parallel using shared representa-
tion.

Inspired by LRCN [41], we treat the 3.0 seconds length
segment as frame-by-frame data. To be specific, we use a
0.5 seconds length sliding window to frame the segments with
0.1 seconds stride and then feed all frames to the network. To
begin with, the signals of each sensors have different signal-
noise patterns and representation capability. Therefore, we need
to extract intra-modality representation across time and chan-
nels of each sensor separately. Meanwhile, we pay attention to
the correlation between different modalities. Thus, we further
extract cross-modality representation across different sensors.
These two operations avoid mutual interference between the two
modalities. For implementation details, we utilize two different
ID-CNN to extract the spatial features of accelerometer and
gyroscope seperately. Max pooling and batch normalization are
applied on each output of 1D-CNN. After that, we concatenate
the intra-modality features along channel dimension and feed
them to a ID-CNN for multi-modality fusion and cross-modality
features extraction. In this way, we extract intra-modality and
cross-modality spatial features as shared representation for spe-
cific tops.

3) Design of Specific Top Blocks: The specific top layers are
explicitly utilized to excavate specific and fine-grained repre-
sentation of each task. Since specific tasks aim to recognize
diverse kind of activities, we separately adopt two different
feature extractors to acquire task-specific representations. The
reason is that different tasks favor different spatial and temporal
information. Specifically, head gestures and body movements
recognition tasks prefer to rotation and translation spatial infor-
mation separately. Besides, it is obvious that head gestures and
body movements are sporadic and periodic signals, respectively.

Body Movement Block

Consequently, these two recognition tasks also require different
temporal information.

The specific tops consist of head gesture block and body
movement block. To extract specific and deeper representations,
we employ two separate 1D-CNN to extract the spatial features
of rotation and translation for different tasks. Max pooling is
applied to reduce the dimensionality along time. Afterwards,
we flatten the outputs and empirically adopt a 256-unit 1-layer
Bi-GRU and a 128-unit 1-layer Bi-GRU to profile the temporal
relationships for head gestures and body movements, respec-
tively. It is worth mentioning that the time steps of Bi-GRU
corresponds to the input frames. Finally, we feed the last time
step of Bi-GRU into the fully-connected layers of specific task
blocks to get Y3, and Y;. We separately define cross-entropy
loss Ly, and Ly for head gesture and body movement task. At
multi-task learning, we use L = Lj, + AL; for joint training,
where X is empirically set to 2.

IV. IMPLEMENTATION AND EXPERIMENTS

In this section, we describe the implementation of CHAR
and give experiment details about how data are collected and
generated for corresponding evaluation.

A. Hardware and Software

As commercial earphones have no access to sensor’s data,
we build a prototype with low-cost hardware including a JY901
IMU, an ESP32 as the microcontroller, a 3.7 V lithium battery as
the power supply, and a 3D printed plastic enclosure shaped like
an earphone as shown in Fig. 9. The JY901 module consists of an
accelerometer, a gyroscope, and a magnetometer with sampling
rate set to be 100 Hz during experiments. The ESP32 controls
IMU data collection and transmission to a mobile device (e.g., a
smartphone) via Bluetooth. We have also developed an Android
application on a mobile device which is responsible for receiving
data, segmenting activities, and running the recognition model,
following the pipeline as introduced Section III. Specifically,
after training the network on a server with an Intel(R) Xeon(R)
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Fig. 10. Instance partition example. The instance only show accelerometer
measurements for brevity.

Platinum 8260 CPU and NVIDIA GeForce RTX 2080Ti GPU,
we deploy it along with the activity segmentation algorithm (see
Section I1I-C) on a HUAWEI Mate 40 Pro through Chaquopy
project. The smartphone has a HI-Silicon Kirin 9000 CPU, 8 GB
RAM, and 256 GB ROM. Based on the output of the recognition
model, developers can design different HCI applications.

B. Data Collection

To evaluate CHAR, we recruit 15 participants denoted by
P, ~ Pj5 aged from 18 to 25 years old. Before experiments,
we instruct them to use our system and tell them necessary
details. We then request each of them to perform every composite
head-body activity for 5 times, and finally get a total number of
4500 (i.e., 15 x 12 x 5 x 5) raw instances, since there are 12
head gestures and 5 body movements as aforementioned. For
each raw instance, we annotate the SP and EP for a composite
activity.

After that, we further partition the raw instances. To be
specific, we calculate the midpoint (MP) of SP and EP for each
raw instance and use a 3.0 seconds non-overlapping window
to obtain corresponding datasets. Fig. 10 shows a partition
example. It is obvious that the window contains a whole com-
posite head-body activity when the midpoint divides the window
evenly, so we obtain self-collected head-body activity dataset
D"*_ Since sporadic head gesture performs during periodic body
movement, the non-overlapping windows at two ends contain
singular body movement. The data from these windows make up
self-collected singular body movement dataset D°. In addition,
when the body movement is Bs (staying still), composite activity
essentially degenerates into singular head gesture. Therefore, we
extract singular head gesture dataset D" from D"®. It is worth
mentioning that we only retain 6 atomic head gestures, which
can synthesize 6 combined head gestures.

In addition to the self-collected dataset, we also used a public
dataset RealWorld [42]. It covers acceleration and gyroscope
data of the activities climbing stairs down and up, jumping,
lying, standing, sitting, running/jogging, and walking of fifteen
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subjects. For each activity, it recorded simultaneously the body
positions chest, forearm, head, shin, thigh, upper arm, and waist.
We crop RealWorld to preserve 5 body movements consistent
with CHAR. Similarly, we get public singular body movement
dataset Dz using a 3.0 seconds non-overlapping sliding window.

In a word, we acquire datasets as following: 1) D": self-
collected dataset with 60 composite head-body activities; 2) D"
self-collected dataset with 6 singular atomic head gestures; 3)
D?: self-collected dataset with 5 singular body movements; 4)
DZ: public dataset with 5 singular body movements.

C. Data Generation

In this part, we generate composite head-body activity data
using strategies and datasets mentioned in Sections III-D
and I'V-B, respectively. Fig. 11 shows the pipeline of data gen-
eration. First of all, we train CycleGAN to learn the mapping
function G from unlabeled Dg to unlabeled D® and then transfer
DZ to bg as a supplement. Specifically, we use the sensor data
of P; ~ P5 on head position of RealWorld dataset as Dg. The
reason for selecting P; ~ Ps is that they wear the sensors at
similar angles on their heads. Since Dg has label, ﬁg retains
the original label with the pattern being transfered, which can
complement DZ. After that, we randomly select 14 x 6 x M Sh
instances of D’ and 14 x 5 x M? instances of DY, since there
are 14 training users, 6 atomic head gestures and 5 body move-
ments. The values of M and M? are set relatively small in
the corresponding evaluation to simulate the insufficient data
scenario. Next, we apply splicing synthesis to extend D" to
all 12 head gestures, and apply compositing synthesis to obtain
generation datasets ﬁgb and ng, ie, DM+ Df, — ng and
Dh 4+ Db — D}g’b. Finally, we utilize random transformation

techniques on ng. The generation dataset ﬁgb and ng are
used to pre-train and fine-tune CARN, respectively.

V. EVALUATION

In this section, we comprehensively evaluate CHAR under two
setup, including training with self-collected data and training
with generation data. In the following, we shall demonstrate the
performance of each evaluation.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 09,2025 at 16:52:31 UTC from IEEE Xplore. Restrictions apply.



6540

10

True label

0.0

B B B B, B
Predicted label

(a) Head gestures.

(b) Body movements.

Fig.12.  Confusion matrices of head gestures and body movements recognition
in user-independent scenarios.

A. Training With Sufficient Data

1) Evaluation Setup: Similar to other works on HAR, we
build a self-collected composite activity dataset D"* containing
all 60 head-body activities. Then we train CHAR with these
sufficient data and evaluate its performance. Each instance in
the dataset contains both a head gesture and a body movement.
In the following evaluation, we train and test CHAR using D",
Besides, we consider user- dependent and independent cases.
In the former case, we train and test the system with 15-fold
cross-validation method. While in the latter one, we train and
test it with the ‘leave-one-user-out’ strategy. In both cases, the
results are averaged over five testing rounds.

2) Overall Performance: Activity Segmentation: We manu-
ally segment signal sequences by marking SPs and EPs of activi-
ties as ground truths, and compare them with the results obtained
by our proposed segmentation method (i.e., Algorithm 1). We
utilize missed detection rate (MDR) and false detection rate
(FDR) as the metrics for evaluation. Formally, MDR is defined
as the percentage of missing activities that are not detected by
the algorithm. FDR is defined as the percentage of mistakenly
detected activities outside the ground truth. Experiments show
that the MDR and FDR with Algorithm 1 are 1.8% and 1.2%,
respectively. This means that more than 97.0% of head gestures
can be detected correctly. In addition, the differences between
segmentation results and the ground truth will also affect the
final recognition performance of CHAR. We will evaluate this
point in Cascade Performance.

Activity Recognition: In the user- dependent and independent
cases, CHAR recognizes composite activities with high accu-
racies of 97.0% and 89.7%, respectively. Since users prefer
to use a system immediately without retraining, we set the
user-independent condition as our baseline case in the following
evaluation. Fig. 12 shows the confusion matrices that CHAR
recognizes head gestures and body movements in the baseline
case. As we can see, the recognition accuracies of head gestures
and body movements reach 97.7% and 92.0%, respectively.
This indicates that CHAR can recognize composite head-body
activities with high accuracy. This is mainly due to our designed
network which decouples their relationship. In addition, we can
also see that walking (B;) and going upstairs (B2) are easier
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TABLE I
THE RECOGNITION ACCURACIES WITH DIFFERENT DATASETS

Training / Testing ~ Head gesture  Body movement —Composite activity

Dy / Dy, 97.7% 92.0% 89.7%
Dy, / Do 93.7% 91.9% 86.3%
Dy, / Dg 94.9% 89.8% 85.4%

to be confused, which is mainly originated from user diversity.
There is user diversity of some activities in HAR, which leads to
poor performance in user-independent recognition. We carefully
check these data of walking and going upstairs. It was found
that these two movements are relatively similar across different
users. First, walking and going upstairs produce periodic signals
with similar periods, which are longer than going downstairs and
jogging. Then, walking on rough ground tends to produce z-axis
acceleration signal analogous to that of going upstairs, which
leads to confusion between these two movements. Nevertheless,
accuracies of CHAR on body movements recognition is still up to
98.0% and 92.0% in user- dependent and independent situations,
which is sufficient for practical needs.

Cascade Performance: According to Fig. 3, segmentation is
followed by the recognition network. Hence, its result has impact
on the network’s classification performance. To evaluate this, we
consider two segmentation methods, namely, by Algorithm 1
and by human (i.e., ground truth). Correspondingly, we denote
data obtained from D"’ by these two method as D, and Dy,
respectively. Then we train and test the network with differ-
ent combinations of D, and Dj as shown in Table I and
get corresponding results. We can see that using D, as the
testing set causes accuracy drops of 4.0% and 0.1% for head
gestures and body movements recognition, respectively. This
indicates that our segmentation algorithm has some impact on
head gestures, but has little on body movements. This is because
some instances of the combined head gestures (such as Hr,
Hy, Hyy) are disjointed, so that the algorithm segments part of
these gestures. Partial segmentation leads to recognition error
because head gesture is sporadic. Differently, body movement
is periodic, and slight segmentation differences have little affect
on recognition. Besides, we explore the possibility of directly
annotating instances using Algorithm 1 without human effort,
by training and testing the model with D,. It can be seen that
CHAR can recognize head gestures and body movements with
accuracies of 94.9% and 89.8%, respectively. Compared with
the Dy, /D, case, the accuracies decrease by 2.8% and 2.2%,
respectively. It validates that with the proposed segmentation
method, CHAR can still reliably detect the SP and EP of an
activity instance, and achieve very close performance to that
of ground-truth segmentation. Hence, our proposed system can
perform well in practical application scenarios and reduce the
burden of annotating data.

3) Embedding Visualization: To better dissect the internal
mechanism of multi-task learning, we show the embeddings of
CARN in two-dimension space with t-SNE algorithm.

Shared Bottom Embedding: Fig. 13 shows the shared feature
representations extracted by the shared bottom block. Note
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Fig. 13. Embedding visualization with t-SNE algorithm for features extracted
by Shared Bottom Block of CARN. The figure corresponds to the same features
and has been colored in terms of different types of activities.

L
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Fig. 14. Embedding visualization with t-SNE algorithm for features further
extracted by Head Gesture Block (a) and Body Movement Block (b) of CARN,
respectively.

that feature representations shown in Fig. 13(a) and Fig. 13b
are totally the same but are colored in terms of head gestures
and body movements, respectively. Fig. 13(a) shows that head
gestures are grouped at a coarse-grained level except for the
circled data points. This means that the shared bottom block
can extract distinct features for most instances. Samples mixed
together in the circled zone represent jogging movements as
shown in Fig. 13(b). This is because gentle body movements
such as being still, walking, going upstairs and downstairs have
relatively slight effect on the measurements of head gestures. But
when users are jogging, the IMU measurements of head gestures
tend to be overwhelmed by it. Accordingly, from Fig. 13(b), we
can find that only the jogging instances are well grouped and
other body movements are easily mixed together after shared
bottom block. The reason is that head gestures seriously deform
periodic signals generated by body movements. What is more,
periodic signals generated by body movements require a model
to extract temporal features, while the shared bottom block
only uses CNNs to extract shared spatial features. In order to
better group body movements, we use GRUSs to extract specific
time-domain information following the shared body bottom.
Specific Task Embedding: Fig. 14 shows the feature repre-
sentations of head gestures and body movements extracted by
corresponding blocks. We can observe from Fig. 14(a) that
all head gestures (including in jogging movement) are well
grouped. Moreover, compared to the results shown in Fig. 13(a),
the distances between different categories is obviously larger. It
means that the head gesture block extracts unique features for
better recognition on the basis of shared feature block. Similarly,
it can be seen from Fig. 14(b) that, except for a few data points
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TABLE I
ACCURACY OF BENCHMARKS AND OUR NETWORK

Network Head Body Compc_)site
gesture  movement activity
DCNN 91.2% 81.0% 73.4%
DeepSense 92.4% 76.5% 69.8%
DeepConvLSTM  88.1% 84.9% 74.4%
CARN 97.7% 92.0% 89.7%

in the circled zone, the body movements can be well grouped.
It indicates that even though the shared bottom block cannot
directly group some of the body movements, the relevant part
of the network has the ability to extract unique periodic features
corresponding to body movements.

4) Comparison With Benchmarks: In this section, we com-
pare our proposed network CARN with several classical
networks for HAR as benchmarks including DCNN [22],
DeepSense [23], and DeepConvLSTM [15]. DCNN [22] designs
a convolutional neural network to learn features from raw IMU
input signals which outperforms traditional machine learning
methods such as support vector machine and deep belief net-
work. DeepSense [23] integrates CNNs and RNNs to combine
different sensing modalities of mobile sensors and extract tem-
poral features for HAR. DeepConvL.STM [15] proposes a deep
activity recognition framework composed of convolutional and
LSTM recurrent layers, which is suitable for the recognition
of static/periodic activities and sporadic activities. As these
networks deal with single-task HAR, we train them for head
gestures and body movements recognition tasks separately. In
contrast, CARN is trained for both tasks simultaneously. Also,
in order to make our dataset suitable for those networks, we
slightly modify their input and output layers.

Table II gives comparative results of CARN and other bench-
marks in both recognition tasks. From our previous analysis,
it can be known that sporadic head gestures can be well rec-
ognized by only using CNNs to extract spatial features. Since
head gestures are accompanied by periodic body movements,
using RNNs to extract temporal features will interfere with
head gestures recognition instead. Therefore, the head gestures
recognition accuracy of DCNN reach 91.2% with CNNs only.
On the contrary, DeepConvLSTM using RNNs has the worst
performance on the head gestures recognition task, but its
accuracy of body movements recognition reaches 84.9%. In
addition, it can be seen that CARN outperforms benchmarks
in both head gestures and body movements recognition tasks.
Accuracies of head gestures and body movements recognition
tasks are 5.3% higher than DeepSense and 7.1% higher than
DeepConvLSTM, respectively. This is because irrelevant task
will interfere the target task, which results in poor recogni-
tion performance. However, our designed multi-task learning
framework fully learns the commonalities of two tasks and then
decouples them to learn the differences. It reduces the risk of
overfitting and improves generalization ability of recognition
model.
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5) Impact of Composite Activity Types: Without specifica-
tion, we train the network with all types of head-body composite
activities (i.e., 60 types of composite activities). A natural ques-
tion is whether the network can be trained with a part of com-
posite activities, but can still recognize the whole set accurately.
The intuitive rationale is that unseen composite activities are also
composed of the same basic head gestures and body movements
which appear in the training activities. To quantify the impact of
the number of composite activities, we randomly select a certain
number of composite activities types in the training set, and test
CHAR’s performance on the whole set. We vary the number
of composite activities types in the training set from 12 to 60,
and obtain the results as shown in Fig. 15. It can be seen that
as the number of composite activities increases, the recognition
accuracy first increases and then remains stable. The recognition
performance of the system tends to be stable when more than 36
composite activities are used for model training. Experiments
demonstrate that the network can be trained using data from
some composite activities and applied to all, thereby reducing
the burden of data collection.

6) Impact of Data Length: As mentioned in Section III-C,
after detecting the EP and SP of an activity, we extract a
fixed-length data segment and feed it into the network. The data
length is a critical parameter for recognizing activities accu-
rately. Intuitively, it should be large enough to cover an activity
as much as possible. To determine its proper value, we first obtain
a statistical histogram of head gestures’ durations as shown in
Fig. 16. It can be seen that more than 90% of the head gestures
last less than 3.0 seconds, which indicates a proper range of data
length. Although a longer segment contains more information of
activities, it also brings about heavier computational overhead
and more energy consumption. To achieve good trade-off, we
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test CHAR’s performance with different data lengths from 1.0 s
to 4.0 seconds. As shown in Fig. 17, the recognition accuracies
rise with the data length. But the improvement is very limited
after the data length exceeds 3.0 seconds. In addition, only about
50% of the head gestures duration are less than 2.0 seconds
from Fig. 16. However, setting the data length to 2.0 seconds
can also achieve 96.1% and 88.7% recognition accuracies for
head gestures and body movements, respectively. As a result, for
mobile devices with limited resources, we suggest appropriately
reducing the data length to ease computing overhead and energy
consumption.

7) Impact of Data Size: We also evaluate the impact of
training dataset size by randomly sampling a whole dataset at
different percentages. Since the evaluation is conducted with
‘leave-one-user-out’ strategy, a whole dataset contains 4200
instances in total. Fig. 18 shows the results. With the percentage
increasing, the accuracies of recognizing head gestures, body
movements, and composite activities initially increase fast and
then remain relatively stable, after the percentage exceeds 0.8.
It means that with 80% of the dataset, CHAR’s performance is
close to the optimal. Moreover, compared with body movements,
head gestures can be recognized more accurately with less
training data. This is because IMU measurements caused by
head gestures are more obvious than those body movements.
As a result, even a small amount of data enables the model
to learn feature patterns of head gestures. In contrast, body
movements cause less notable sensor measurements which are
easier to be interfered. Hence, it requires more training data to
recognize body movements (and thus composite activities) with
high accuracy.

8) Impact of Sensory Signal: We use two kinds of sensory
signals in our system, i.e., accelerometer and gyroscope signals.
It is obvious that these two signals are significant in capturing
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composite activities. However, accelerometer and gyroscope
make different contribution to head gestures and body move-
ments recognition. Therefore, we evaluate the recognition ac-
curacies with different sensory signals as shown in Fig. 19.
Accelerometer and gyroscope separately concentrate on captur-
ing movement and rotation. Therefore, a single accelerometer
and a single gyroscope recognize body movements and head
gestures with satisfactory performance, respectively. In other
words, these two sensory signals complement each other for
recognizing composite head-body activities. Since our recogni-
tion network is designed with a multi-modal fusion module,
using these two sensory signals simultaneously achieve the
best recognition performance both in head gestures and body
movements.

9) Impact of Sampling Rate: Intuitively, a higher sampling
rate results in more precise measurement of activities. But it
also brings about heavier computational overhead and larger
energy consumption. To evaluate the impact of sampling rate,
we downsample the collected data from 100 Hz to 50 Hz and
25 Hz, and test the recognition accuracies of CHAR in each
case. Fig. 20 shows the results. We can see that the accuracies
of recognizing head gestures remain nearly the same with dif-
ferent sampling rates. The underlying reason is that gyroscope
measurements are sensitive to head gestures which are in low
frequency range. As for body movements, with the sampling rate
decreasing, the recognition accuracies drops more obviously.
This is because the frequency of body movements is relatively
large and information loss will happen due to downsampling.
Specially, when the sampling rate is 50 Hz and 100 Hz, the
corresponding recognition accuracies of body movements are
88.2% and 92.0% respectively. Therefore, for mobile devices
with limited resources, we suggest appropriately reducing the
sampling rate of hardware to ease computing overhead and
energy consumption.
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B. Training With Insufficient Data

1) Evaluation Setup: In the following evaluation, we study
whether CHAR shows comparable composite activity recog-
nition performance even training with insufficient data. Since
recognizing composite activity requires a large amount of data,
we consider data augmentation strategies. To be specific, we
generate dataset ﬁgb and D" through the pipeline mentioned
in Section I'V-C using a small amount of data. After that, we
pre-train and fine-tune CARN with ﬁgb and ng, respectively.
Finally, we test CHAR with genuine self-collected dataset D"
and only consider the more challenging user-independent cases
for simplicity. Without special instruction, the following evalu-
ation is based on this pipeline.

2) Overall Performance: To study the insufficient data sce-
nario, we set M = 1 and M? = 2, which means using a small
amount of labeled data to generate data and train the network.
Fig. 21 shows the confusion matrices that CHAR recognizes
head gestures and body movements in user-independent case. As
we can see, the recognition accuracies of head gesture and body
movement reach 94.0% and 90.8%, respectively. It demonstrates
that CHAR recognize composite activities with high accuracy
training with generation data. In this case, we only need to
provide 14 x 6 x 1 labeled instances of D?, 14 x 5 x 2labeled
instances of D? and the rest unlabeled instances of D%. With
a small amount of labeled singular activity data and easily
accessible unlabeled body movement data, CHAR can recognize
60 kinds of composite head-body activities with accuracy of
85.1%. In addition, we compare the recognition accuracies of
different types of activities under training with self-collected
data and generation data as shown in Fig. 23. Training with
generation data, i.e., with a small amount of labeled data, the
recognition accuracy of composite activity is only sacrificed by
4.6%. Among them, the accuracies of head gesture and body
movement decrease by 3.7% and 1.2%, respectively. Therefore,
CHAR can achieve satisfactory composite head-body activity
recognition even with insufficient data.

3) Effectiveness of Data Augmentation: To achieve compa-
rable composite activity recognition with insufficient data, we
propose some strategies to generate sufficient training data. In
this part, we evaluate the effectiveness of data augmentation
strategies, including data synthesis random transformation and
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generative adversarial network. In the first place, we train CARN
using only data synthesis strategy with different M and M?.
From Fig. 22, it can be seen that composite head-body activity
recognition accuracy comes to 85.5% when the singular activity
data is sufficient. In other words, the performance of CHAR
training with synthesis data is only sacrificed by 4.2% compared
to that with self-collected composite activity dataset D*. Above
results demonstrate that the data synthesis strategy can effec-
tively generate data resembles genuine composite activity. Since
composite activity data is synthesized from singular activity
data, it reduces the demand for the data size to a certain extent.

To further reduce the burden of data acquisition, based on data
synthesis strategy with M" =1 and M? = 2, we apply data
augmentation strategy and evaluate its effectiveness. Specifi-
cally, we train CARN under different augmentation methods:
without augmentation, only random transformation(R.T.), only
GAN-based augmentation, and both augmentations. We can
see from Fig. 24 that the accuracies of recognizing composite
activity in the above four cases are 64.2%, 77.9%, 76.5%,
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and 85.1%, respectively. In other word, random transformation
and GAN-base augmentation separately bring accuracy gain of
13.7% and 12.3% in composite activity recognition. Moreover,
the accuracy gain is further increased up to 20.9% when apply
two augmentation strategies simultaneously. These results verify
that the data augmentation strategy obtains high-quality data
for the training of CARN, thereby improving the recognition
accuracy. In a word, the proposed data augmentation strategies
enable CHAR to achieve better performance with insufficient
data.

In order to demonstrate the effectiveness of CycleGAN, we
utilize t-SNE technique [43] to reduce the dimensionality of the
public dataset (Source: X)), the generated dataset (Generation:
X"), and the self-collected dataset (Target: Y'). The result is
shown in Fig. 26. Intuitively, we can see that compared with X,
the embeddings of X’ are much closer to those of Y, which
proves the effectiveness of our data generation method. To
further quantify the effectiveness, we also calculate the Jensen-
Shannon divergence [44], a metric used to measure the similarity
between two probability distributions, between these two pairs
of data distributions, namely, X and Y, X’ and Y. The similarity
between two distributions is greater when the JS divergence is
closer to zero. The JS divergence of X and Y, X" and Y is 0.79
and 0.21, respectively. Since X’ and Y are similar but not exactly
the same, CycleGAN has good generalization capability.

4) Impact of Data Size: As aforementioned, we ran-
domly select 14 x 6 x M instances of D" and 14 x 5 x M?
instances of DY to generate data for network training. To study
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the insufficient data scenario, we evaluate the impact of M ;‘ and
M? on CHAR’s performance. In fact, since head gestures can
be recognized more accurately with less training data compared
with body movements, we can set M Sh to remain constant at 1
and set M? from 1 to 4. Fig. 25 shows the recognition accuracies
with different M f. As we can see, the recognition accuracies rise
with M? in accordance with expectation. But the improvement
is very limited when M? exceeds 2. In other word, setting M?
to 2 is a trade-off proposal, which balances the requirements
between data size and performance. In addition, when M f =1,
the recognition accuracies of head gesture and body movement
can also reach 92.0% and 88.3%, respectively. It means that
CHAR can also meet the needs of HAR performance even with
insufficient data.

5) Impact of Sensor Location on Public Dataset: In
Section IV-C, by training CycleGAN, the mapping function G
can transfer the patterns from Dg to ﬁg , which is a supplement to
D?. Since we recognize activities with a single earable device,
it is appropriate to choose Dg which has closest pattern with
DZ. Therefore, we select the sensor data at head position in
the RealWord dataset as Dg. In practice, it will achieve similar
supplementary effect in spite of the large patterns difference
between our earable device and sensors in other locations. To
evaluate the impact of sensor location on public dataset D%, we
seperately select the sensory data of head, waist, chest and thigh
as Dg. Fig. 27 shows the recognition acuuracies of CHAR using
data from different sensor locations for data augmentation. It
can be seen that augmentation works best with data where the
sensor is located on the head. This is because the sensor of head
in RealWord has the closest pattern to our earable device. At the
same time, the accuracy gains obtained by other three different
locations are slightly lower than that of the head, but they can also
achieve a good augmentation effect. The above results prove that
our data augmentation method is applicable to different sensor
locations, which is a good property for taking advantage of those
datasets where the sensor locations do not match ours.

C. System-Running Performance

In this section, we evaluate CHAR’s real-time running perfor-
mance including response time, CPU and memory occupation,
and energy consumption. As the response time is closely related
with a smartphone’s hardware specifications, we conduct exper-
iments on four kinds of smartphones, namely, HUAWEI Mate 40
Pro, Redmi K30S, SAMSUNG Galaxy S8, and Vivo X20, which
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Fig. 28. CPU and memory occupation.

are with various specifications and released in different years.
To be specific, we measure CHAR’s real-time performance by
continuously running the testing pipeline with data fed into the
system for one hour. During this process, we turn off all the other
applications and set the screen brightness to the medium level.
After that, we calculate the average result for each smartphone
as shown in Table III.

1) Response Time: We insert a piece of codes in the Android
application to measure the response time of CHAR which is
defined as the duration of outputting the result after perform-
ing an activity. From the perspective of data processing, the
response time mainly consists of activity segmentation time and
network inference time. We can see from Table I1I that CHAR on
HUAWEI Mate 40 Pro finishes segmenting and recognizing an
activity within 28.0 ms and 47.7 ms respectively which induces
a response time of about 75.7 ms. As for other smartphones,
we can observe that although the response time is longer due
to lower CPU capacity, it is still less than 200 ms even on the
most out-of-date device. These results verify that the response
time of CHAR can meet the demand of most human-computer
interaction applications on present commercial smartphones.

2) CPU and Memory Occupation: At the same time, we
utilize Android Debug Brige to acquire CPU and memory occu-
pation during the above testing. Table I1I shows the average CPU
and memory occupation of each testing repetition. We can see
that the average CPU cost on different smartphones is very close,
with an average percentage of about 66.2%. However, memory
cost varies among different smartphones, that is, a smartphone
with larger memory capacity will allocate more memory re-
source to CHAR. The CPU and memory cost on HUAWEI Mate
40 Pro are about 66.6% and 230.4 MB, respectively. In order
to show more details of CHAR running at different stages, we
further conduct experiment on this smartphone. Fig. 28 shows
the CPU and memory occupation at different stages including
initialization, inference, and being idle. We can observe that the
memory occupation of is only about 2.4% in average and slightly
increases during initialization stage where the recognition model
is loaded. The CPU occupation increases rapidly during the
inference stage, and decreases to a low level of about 10%
when CHAR becomes idle. This because the recognition model
is implemented with CPU without using GPU. In the future,
we can make full use of the GPU capacity of smartphones and
reduce the burden of CPU.

3) Energy Consumption: We measure the energy consump-
tion through Android BatteryManager. Fig. 29 shows how the
battery level of HUAWEI Mate 40 Pro varies with running time
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TABLE III
THE REAL-TIME RUNNING PERFORMANCE OF CHAR ON DIFFERENT SMARTPHONES

Metric Battery =~ Segment time  Infer time CPU cost Memory Energy
Release CPU model .
W (mAh) (ms) (ms) (%) (MB) (mAh/trial)
HUAWEI Mate 40 Pro 2020 Kirin 9000 4400 28.0 47.7 66.6 230.4 0.124
Redmi K30S 2020 Snapdragon 865 5000 33.3 78.8 66.7 132.8 0.082
SAMSUNG Galaxy S8 2017 Snapdragon 835 3000 58.2 140.9 66.4 136.4 0.112
Vivo X20 2017 Snapdragon 660 3245 57.0 131.9 64.9 62.8 0.325
100
1 ‘ 2 ‘ 3 ‘ 4 5 Mean Score
;\;; 90+ Q1: I think this system is easy to use. 3.90
& o | 7 | 4 | 14
2 80 ; , ,
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Fig. 29. Energy consumption.

when CHAR is turned on (yellow line) and off (green line). As we
can see, when CHAR is running continuously, the average energy
consumption per minute can be estimated by w
equalling 23.47 mAh/min. Note that this energy consumption
includes the part of lighting the screen which can be calculated
by w equalling 5.13 mAh/min. Consequently,
CHAR consumes 18.34 mAh per minute which is relatively
low. Actually, in real-world usage cases, activities are performed
once in a while instead of continuously. Therefore, we further
calculate the average energy cost of each testing repetition (i.e.,
energy per trial) which equals 0.124 mAh per trial. Similarly,
we measure energy consumption of CHAR on other three smart-
phones as shown in Table III. It can be seen that Vivo X20 has the
largest energy consumption since it is used most frequently and
has the most severe battery degradation. Other three smartphones
consume an average of 0.106 mAh per trail, which is relatively
low for present commercial smartphones.

D. User Study

In order to fully understand CHAR’s practical usefulness,
we conduct a user-study experiment in the wild to evaluate
users’ opinions towards CHAR. We recruit a total number of 39
volunteers (20 males and 19 females) with ages ranging from
19 to 50 to participate in the experiment. Before delivering the
hardware and mobile application to them, we make a detailed
introduction of how to use CHAR in daily life to them. We
request each volunteer to try this system for one week and
then answer the questions shown in Fig. 30 with rating scores
from 1 to 5, indicating ‘strongly disagree’, ‘disagree’, ‘average’,
‘agree’, and ‘strongly agree’, respectively. The overall results are
shown in Fig. 30. Note that the value in each cell represents the
number of volunteers who choose the corresponding option. We
can see that 71.2% of volunteers think CHAR is easy to use,
and 66.7% of them are willing to use it frequently. The reason
is two-fold. On the one hand, CHAR can achieve composite

o | o | o [ 13

Q4: 1 think the delay in response is very important, and it is
best to complete the identification within 0.3 seconds.

Fig. 30.  Overall experience of using the system.

behaviour recognition through a single ear-worn device, and
users can use it in daily life without wearing additional devices.
On the other hand, CHAR’s interaction process is very natural.
Users only need to make simple head gestures to interact in
different motion states. In addition, all the volunteers believe
that the recognition accuracy of CHAR should exceed 80%, and
82.1% of volunteers believe that the response time of CHAR
should be less than 0.3 s. According to the aforementioned
evaluation results, CHAR’s recognition accuracy is up to 85.1%,
and its inference time on an outdated mobile phone is 0.19 s, both
of which can meet the need of most users.

We also investigate users’ willingness to perform different
composite activities for HCI purpose with rating scores from 1 to
5 indicating ‘very unwilling’, ‘unwilling’, ‘average’, ‘willing’,
and ‘very willing’. The average rating scores of different com-
posite activities are shown in Fig. 31. We can see that volunteers’
favourite head gestures include H,, Hs, Hg, Hs, Hy, and H.
This is because these gestures are simple and fast, making them
more convenient for daily use. Overall, users’ willingness to
perform head gestures during running decreases, and they prefer
to use Ho, H;, and Hg. The underlying reason is that these
gestures are simple and will not change the line of sight during
running. In a nutshell, users’ willingness to use head gestures
highly depends on the difficulty of executing them and their
current body movement.

VI. DISCUSSION AND FUTURE WORK
A. Comparison With Alternative Approaches

There are some other alternatives to solve the problem of re-
ducing data-collection burden such as self-supervised learning,
transfer learning, and semi-supervised learning.
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Self-supervised learning makes use of a large amount of
unlabelled data to pre-train a network on auxiliary tasks, and
then fine-tune it on the target task with few labelled data. LIMU-
BERT [45] is a typical example of adopting self-supervised
learning for human activity recognition. It takes masked IMU
data as input to train a feature extractor in the self-supervision
stage, and fine-tune a simple classifier with downstream tasks
in the supervision phase. The difficulty of this approach lies in
designing appropriate self-supervised tasks. As for the network
shown in Fig. 8, if we keep the fully connected layers of specific
top blocks, it is difficult to design appropriate self-supervised
tasks for them individually. However, if we remove these layers,
a small amount of labelled data in the supervision stage are
not adequate for fine-tuning the two specific top layers. Conse-
quently, self-supervised learning is not very appropriate for our
task.

Transfer learning is a machine learning technique where a
model developed for a particular task is reused as the starting
point for a model on a second task. It leverages pre-existing
knowledge from one domain (i.e., source domain) to improve
learning efficiency and performance in another domain (i.e., tar-
get domain). As the body movement dataset is easily accessible,
we can synthesize a composite activity dataset with little but
sufficient head gesture data to train a network. However, this
process does not take full advantage of the large amount of body
movement unlabelled data that exists in the target domain, which
can promote the training of the target task. Therefore, transfer
learning is not an optimal choice for our problem.

Semi-supervised learning usually first uses a small amount of
labelled data to train a network, and generates pseudo labels for
the unlabelled data to retrain the network iteratively. In this work,
with a small amount of labelled data (M = 1and M? = 2)used
for training, the recognition accuracy of composite activities
is only 64.2% as shown Fig. 22. As a result, the confidence
of pseudo labels generated by this network is relatively low.
The predication errors of unlabelled samples will be propa-
gated to subsequent training, resulting in limited performance
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improvement. Therefore, semi-supervised learning is not appro-
priate for the task in this work.

Based on the analysis, we choose to augment the body move-
ment dataset with style transferring method, which not only
adapts to the characteristics of the data, but also introduces
information from public dataset to achieve better training result.
Nevertheless, it is possible to incorporate other data augmenta-
tion techniques and the above learning methods in our network
to make the most of available data and further improve the
recognition accuracy. We leave this as part of our future work.

B. Limitation and Future Work

User behaviour in the wild is very complex with more diverse
categories involving different body parts. Due to the use of
a single IMU sensor in an earable device, CHAR is limited
to recognizing whole-body movements and head gestures, but
unable to handle upper-limb activities such as hand and finger
gestures. This is because the measurement of an IMU sensor is
highly dependent on its location. Upper-limb activities induce
minute variations of the measurements of an IMU sensor worn
in an ear. In order to further enhance the capability of CHAR,
a possible solution is to integrating multiple types of sensors
or modalities on different body parts. For example, by fusing
sensors in a wrist-worn device, it is possible to expand CHAR’s
activity recognition scope to include hand and even finger ges-
tures. What is more, it is beneficial for improving the accuracy
and robustness with multiple sensors.

Another limitation of CHAR is the relatively heavy CPU
burden when running the network on commercial smartphones
as shown in Table III. This is because when we implement CHAR
on the above devices, we only make use of the smartphones’ CPU
as computing units. In future optimization, the deep learning
network can be implemented with GPU for acceleration. In
addition, in the present version, the signal processing, activity
segmentation, and recognition network are implemented with
Python codes and run on Android platforms with Java through
Chaquopy project. The running efficiency of both two pro-
gramming codes are not high. In the future, we can rewrite
the whole project with more efficient programming languages
such as C and C++. With these engineering optimization tricks,
we believe that CHAR shall have better real-time running
performance.

VII. CONCLUSION

Composite activities are rather common and significant for
human beings, but has not been carefully investigated yet. In
this paper, we put forward a composite activity recognition
system called CHAR that can recognize a variety of head-body
activities based on a single IMU measurement output by an
earphone device. The high-level idea of our solution is to take
full advantage of the inter correlation between head gestures
and body movements, and design a multi-task learning network
to extract shared and task-specific feature representations. We
have implemented a real-time prototype and conduct extensive
experiments to evaluate its performance. The results show that
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CHAR can recognize 60 head-body composite activities with a
high accuracy even in sufficient data and insufficient data cases
at the same time. We envision that our approach can be also
utilized for other composite activities recognition.
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