

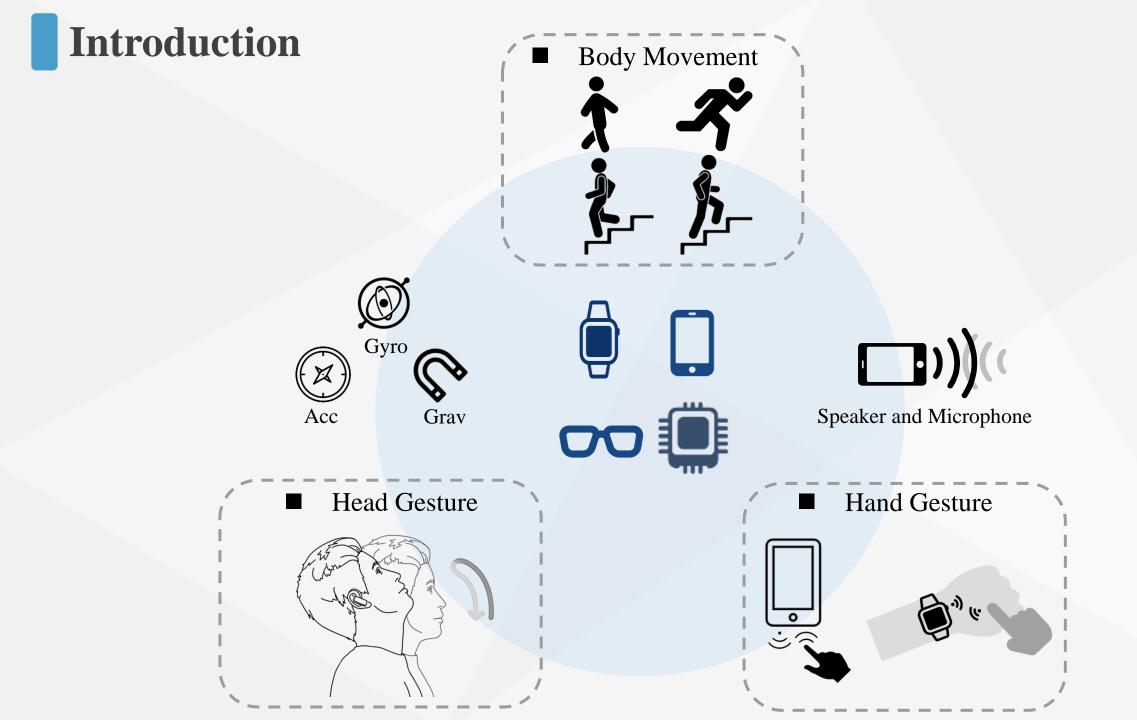
EarMotion

CHAR:

Composite Head-body Activities Recognition with A Single Earable Device

Peizhao Zhu, Yongpan Zou, Wenyuan Li, Kaishun Wu

College of Computer Science and Software engineering Shenzhen University



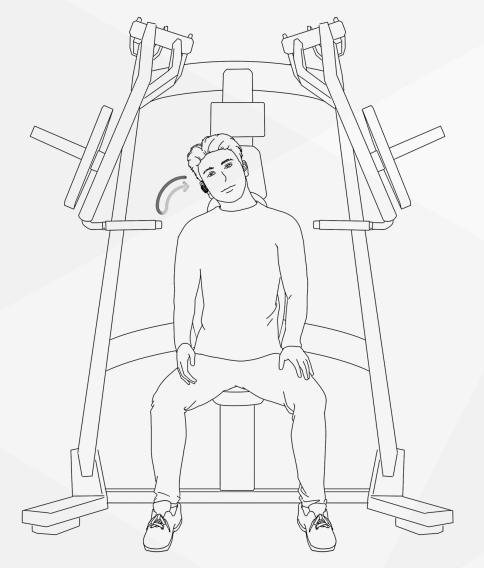


Fig 1. Doing exercises while staying still with hands occupied.

Fig 2. Going upstairs while carrying goods.

Motivation

- □ Composite head-body activities have significant and practical value, since they have significant semantic information for human-computer interaction in real world.
- □ The commonalities and differences between different tasks are beneficial for boosting the recognition and generalization performance.

Contribution

- □ We consider a novel HAR problem in which composite head-body activities are recognized.
- □ We propose an adaptive segmentation method which dynamically adjusts according to different scenarios.
- □ We design a multi-task learning network to recognize head gestures and body movements simultaneously.
- **□** Extensive experiments have shown that CHAR can recognize 60 composite activities with high accuracy.

 H_1

 H_5

 H_9

X 2

 H_2

 H_6

 H_{10}

X 2

 H_3

 H_7

 H_{11}

X 2

 H_8

 H_{12}

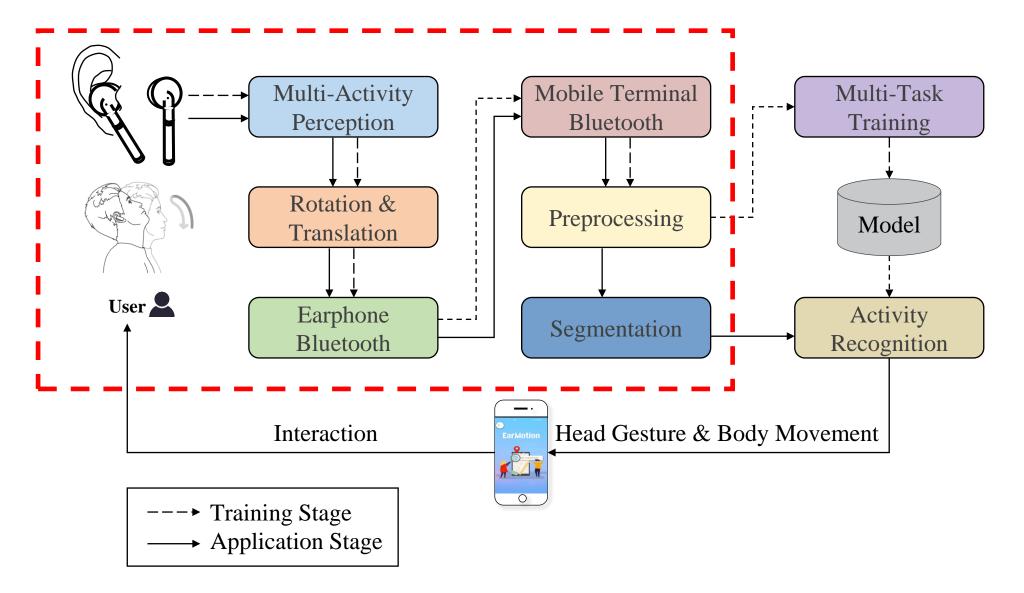
 $\begin{array}{cccc}
\mathbf{I}_{B_1} & \mathbf{I}_{B_2} \\
\mathbf{I}_{B_1} & \mathbf{I}_{B_2} \\
\mathbf{I}_{B_2} & \mathbf{I}_{B_2} & \mathbf{I}_{B_2} \\
\mathbf{I}_{B_2} & \mathbf{I}_{B_2} & \mathbf{I}_{B_2} \\
\mathbf{I}_{B_2} & \mathbf{I}_{B_2} & \mathbf{I}_{B$

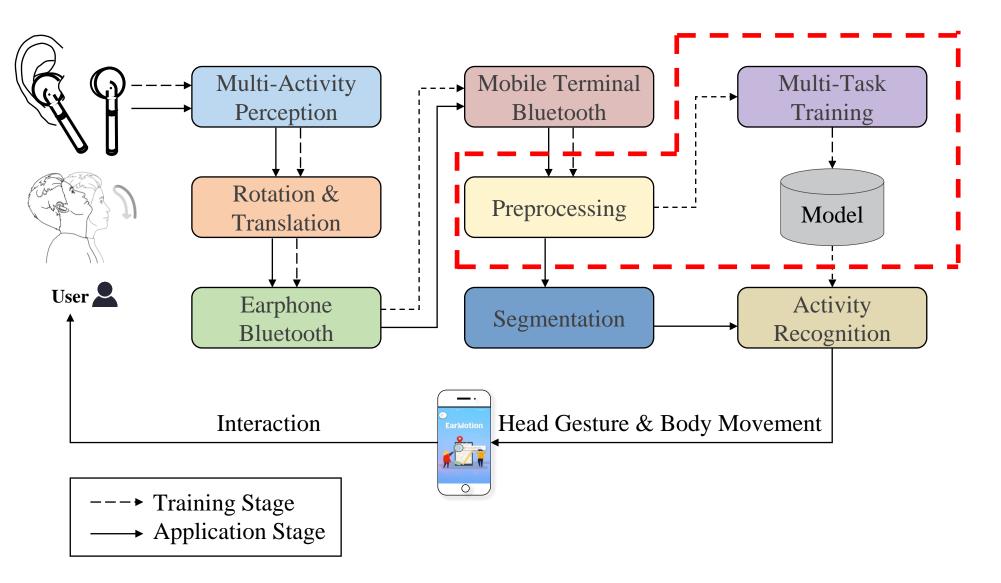
Fig 4. The design of body movements:

- Going downstairs
- Going upstairs
- Staying still
- Life-walking
- Jogging

Fig 3. The design of head gestures.

Mobile Terminal Multi-Activity Multi-Task (.) Training Perception Bluetooth Rotation & Preprocessing Model **Translation** User Activity Earphone Segmentation Recognition Bluetooth Head Gesture & Body Movement Interaction 0 → Training Stage → Application Stage





Mobile Terminal Multi-Activity Multi-Task Training Perception Bluetooth Rotation & Preprocessing July . Model **Translation** User Activity Earphone Segmentation Recognition Bluetooth Head Gesture & Body Movement Interaction 0 -• Training Stage → Application Stage

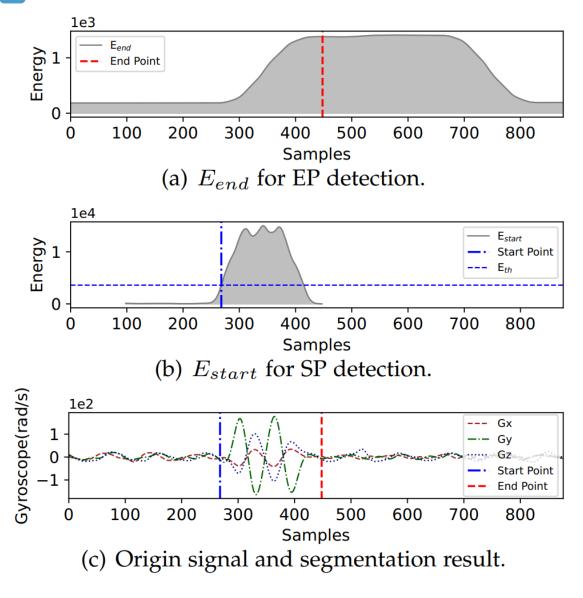


Fig 6. Example of activity segmentation.

Algorithm 1: Activity segmentation algorithm **Input:** 3-axis signal $Gyro = \{G_x, G_y, G_z\}$; Window length for EP and SP detection L_{end} , L_{start} ; Framing stride S; Threshold for EP detection θ ; Scaling coefficient for SP detection k **Output:** SP; EP1 W_{signal} = Frame(Gyro, ($L_{end} + L_{start}$), S); **2** $W_{end} = W_{signal}(L_{start} :, :, :);$ 3 $W_{cont} = W_{signal}(: L_{start}, :, :);$ **4 for** i = 1 to FrameNum(W_{end}) **do** for j = 1 to ChannelNum(W_{end}) do 5 $E_{ch}(i, j) = \text{Energy}(W_{end}(i, j, :))$ 6 end 7 $ch(i) = \text{FindMaxIndex}(E_{ch}(i, :));$ 8 $E_{end}(i) = \text{Energy}(W_{end}(i, ch(i), :));$ 9 $E_d = \text{Diff}(E_{end});$ 10 $EP = \text{FindFirstIndexLess}(E_d(i), \theta);$ 11 if EP is not None then 12 $E_{cont} = \text{Energy}(W_{cont}(i, ch(i), :));$ 13 $W_{start} = \text{Frame}(W_{end}(i, ch(i), :), L_{start}, S);$ 14 for j = 1 to FrameNum(W_{start}) do 15 $E_{start}(j) = \text{Energy}(W_{start}(j, :));$ 16 end 17 $SP = \text{FindFirstIndexGreater}(E_{start}, k \times E_{cont});$ 18 end 19 20 end 21 return SP, EP

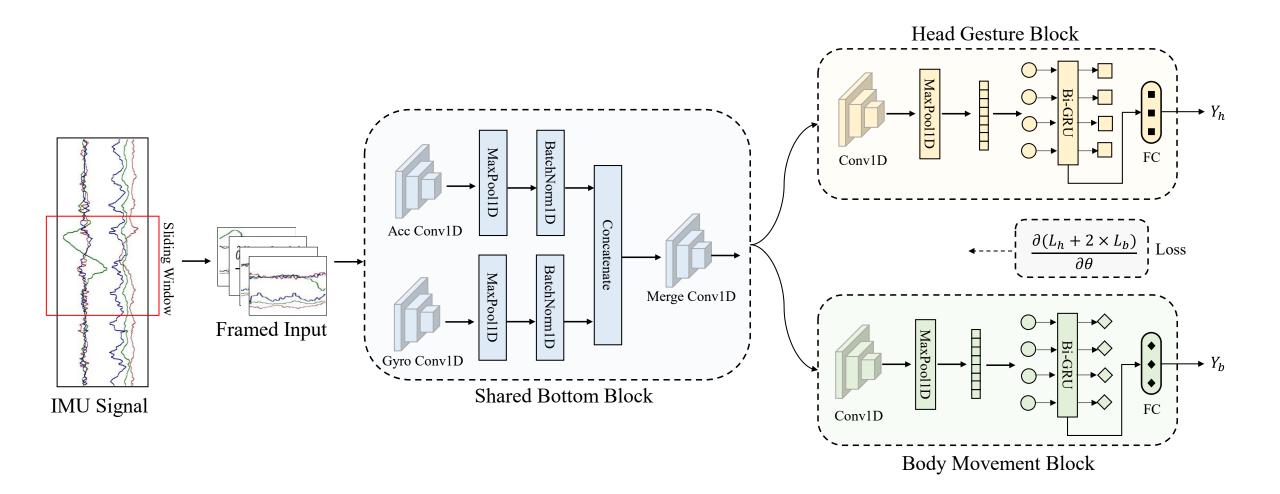


Fig 7. The architecture of our composite-activity recognition network (CARN).

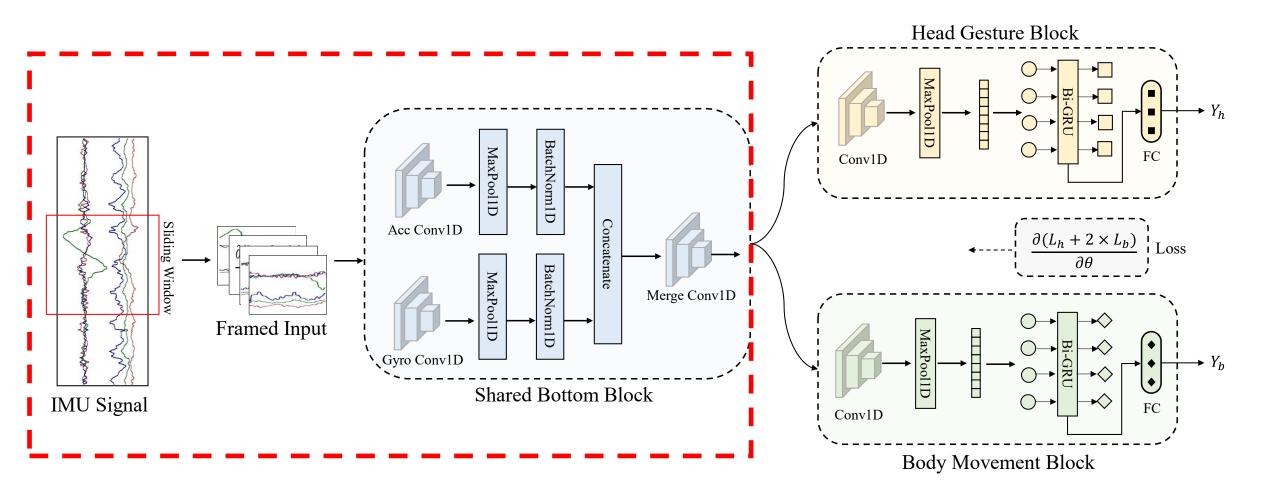


Fig 7. The architecture of our composite-activity recognition network (CARN).

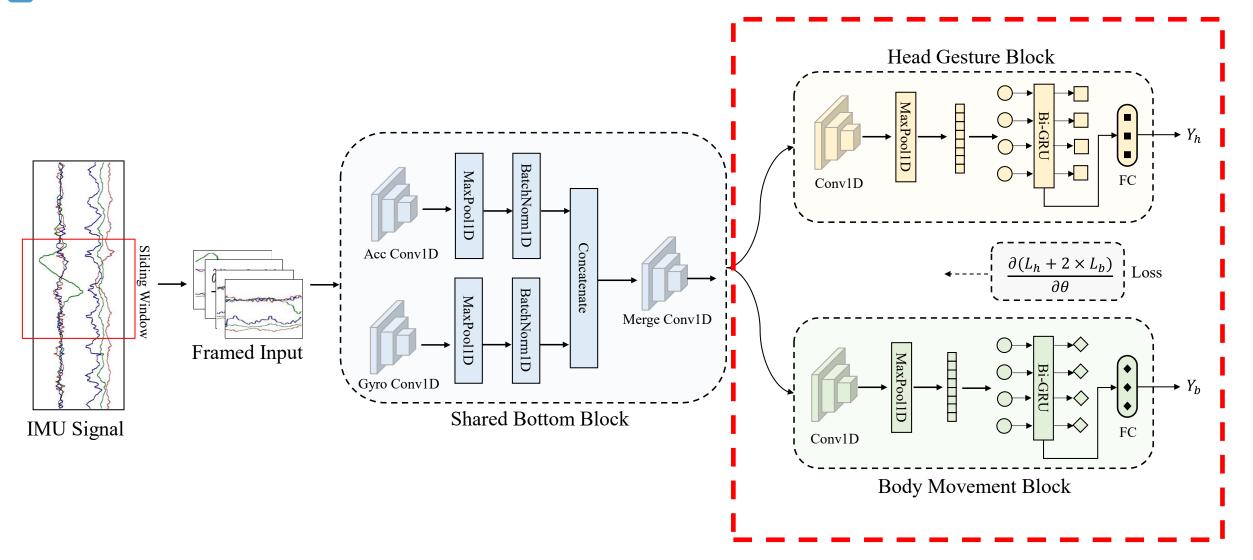


Fig 7. The architecture of our composite-activity recognition network (CARN).

Implementation

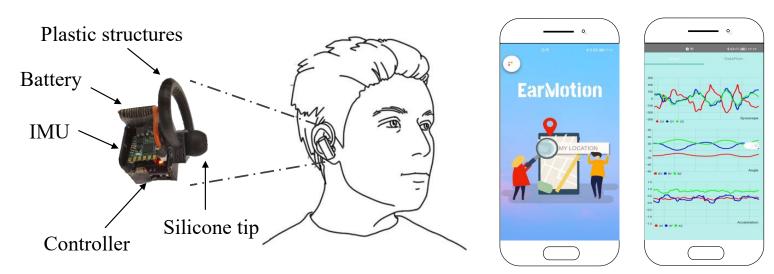


Fig 8. The hardware and mobile application of CHAR.

- Hardware
- JY901 IMU
- ESP32 as the microcontroller
- 3.7 V lithium battery
- 3D printed plastic enclosure
- HUAWEI Mate40 Pro

Dataset

- 15 participants
- 12 head gestures
- 5 body movements
- 5 repetitions
- $15 \times 12 \times 5 \times 5 = 4500$ instances

■ Server

- Intel(R) Xeon(R) Platinum 8260 CPU
- NVIDIA GeForce RTX 2080Ti GPU

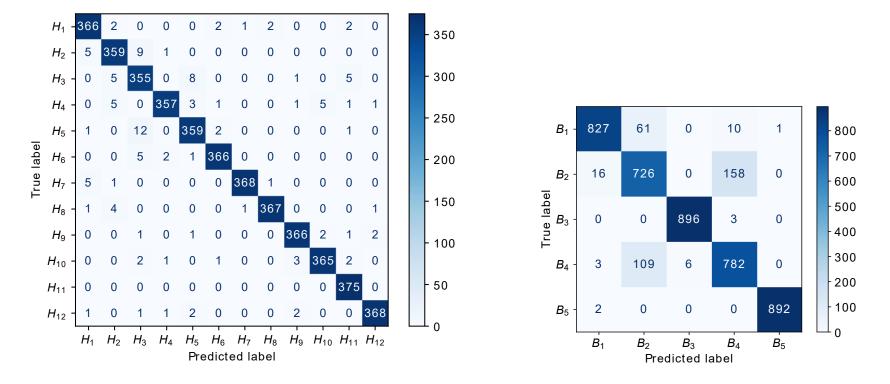


Fig 9. Confusion matrices of head gestures and body movements recognition in user-independent cases.

- $\square Activity Segmentation: MDR = 2.8\%, FDR = 1.2\%$
- □ Activity Recognition: 97.7% for head gestures, 92.0% for body movements

Training / Testing	Head gesture	Body movement
D_h / D_h	97.7%	92.0%
D_h / D_a	93.7%	91.9%
D_a / D_a	94.9%	89.8 %

Tab 2. Accuracy of benchmarks and our network.

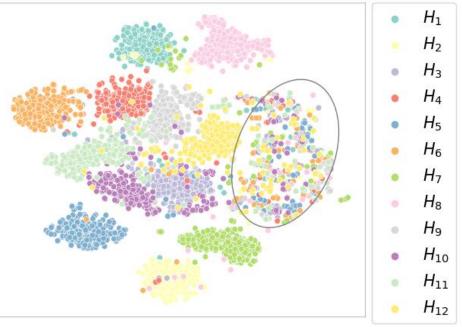
Network	Head gesture	Body movement	Composite activity
DCNN	91.2%	81.0%	73.4%
DeepSense	92.4%	76.5%	69.8%
DeepConvLSTM	88.1%	84.9%	74.4%
CARN	97.7%	92.0%	89.7%

Cascade Performance

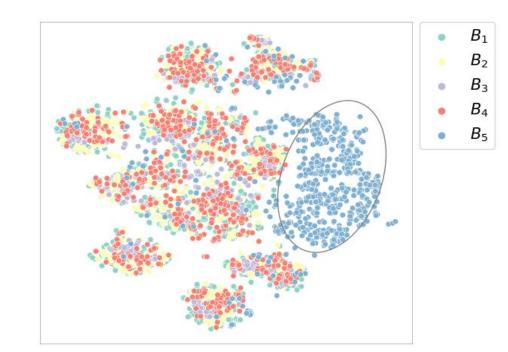
- 94.6% for head gestures
- 89.8% for body movements

D Comparison

• CARN outperforms existing classical networks.



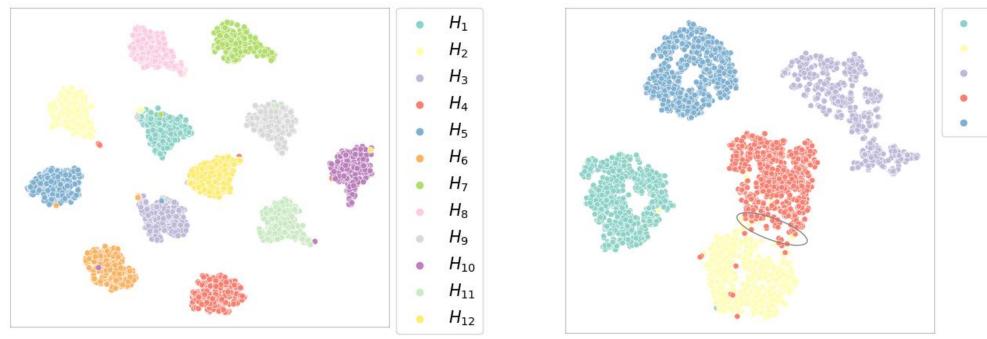
(a) Colored by head gestures.



(b) Colored by body movements.

Fig 10. Embedding visualization with t-SNE algorithm for features extracted by Shared Bottom Block of CARN. The figure corresponds to the same features and has been colored in terms of different types of activities.

□ The shared bottom block of the network distinguishes activities to a certain extent, but cannot achieve fine-grained composite activity recognition



(a) Head gesture embedding.

(b) Body movement embedding.

Fig 11. Embedding visualization with t-SNE algorithm for features further extracted by Head Gesture Block (a) and Body Movement Block (b) of CARN, respectively.

□ The task-specific top blocks of the network have the ability to further extract unique features and achieve better composite activity recognition

B₁ B₂

 B_3

 B_4

 B_5

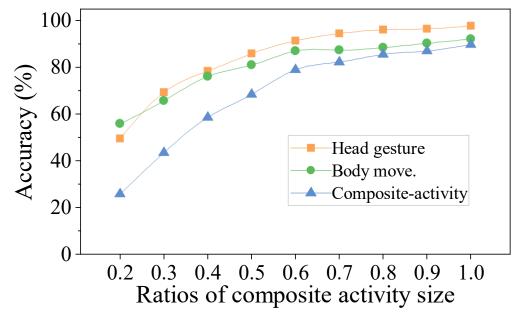
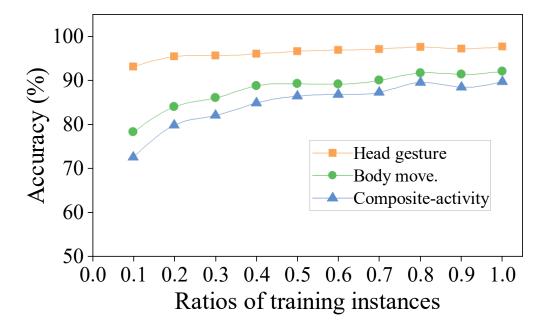
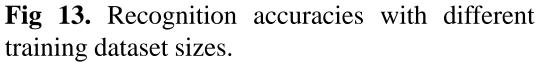


Fig 12. Recognition accuracies with different number of training activity types.

Network can be trained using data from some composite activities and applied to all





- □ With the percentage increasing, the accuracies initially increase and then remain stable
- □ It requires more training data to recognize body movements

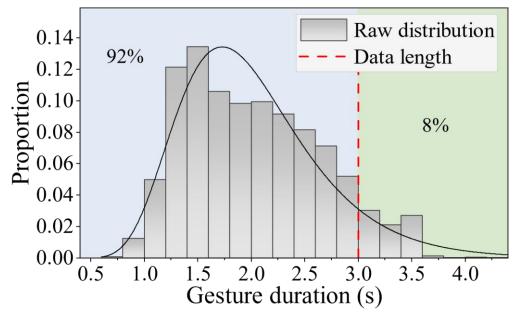


Fig 14. Statistical histogram of head gestures performing time.

- More than 90% of the head gestures last less than 3.0 seconds.
- □ Indicates a proper range of data length.

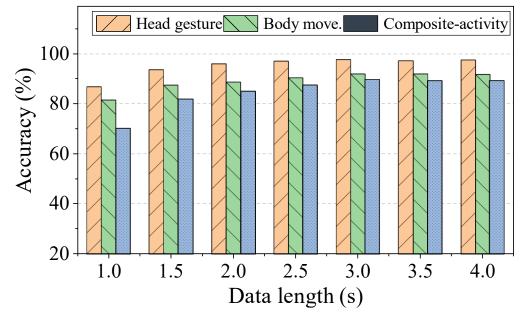


Fig 15. Recognition accuracies with different data lengths.

Reduce the data length appropriately for mobile device with limited resources.

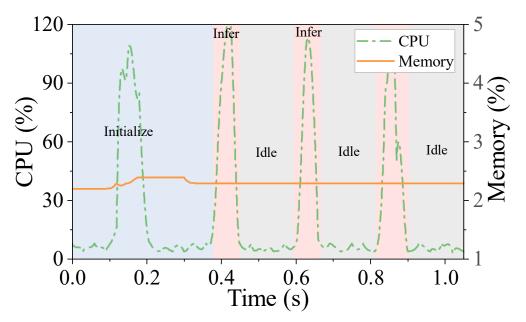
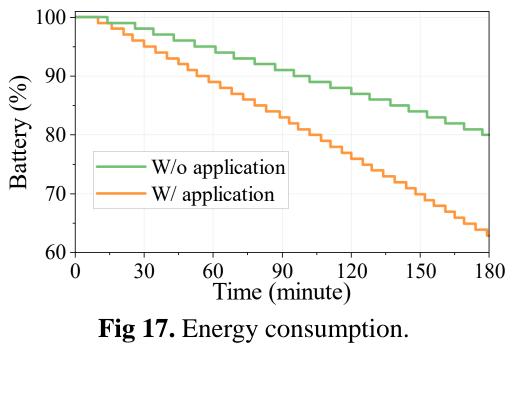


Fig 16. CPU and memory occupation.

- \Box CPU: 10% when idle
- □ Memory: 2.4%



Energy: 4.18 mAh/minute

D Response Time: 52 ms

□ Consider a novel HAR problem and design a multi-task learning network to recognize head-body activities.

□ Implement an earphone-based real-time prototype system with low-cost hardware and a self-developed mobile application.

□ Demonstrate CHAR can recognize 60 head-body composite activities with a high accuracy even in the user-independent case.

Thanks Q&A