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Abstract—The increasing popularity of earable devices stimu-
lates great academic interest to design novel head gesture-based
interaction technologies. But existing works simply consider it as
a singular activity recognition problem. This is not in line with
practice since users may have different body movements such as
walking and jogging along with head gestures. It is also beneficial
to recognize body movements during human-device interaction
since it provides useful context information. As a result, it is
significant to recognize such composite activities in which actions
of different body parts happen simultaneously. In this paper, we
propose a system called CHAR to recognize composite head-body
activities with a single IMU sensor. The key idea of our solution
is to make use of the inter-correlation of different activities
and design a multi-task learning network to extract shared and
specific representations. We implement a real-time prototype and
conduct extensive experiments to evaluate it. The results show
that CHAR can recognize 60 kinds of composite activities (12
head gestures and 5 body movements) with high accuracies of
97.0% and 89.7% in user- dependent and independent cases,
respectively.

Index Terms—Composite activity recognition; Earable device;
Multi-task learning

I. INTRODUCTION

Human activity recognition (HAR) has become a hotspot in
academia due to its great significance for various intelligent
services in our daily life such as healthcare, personalized
recommendation, and human-computer interaction (HCI). Re-
searchers have proposed a variety of HAR methods with differ-
ent sensing modalities including radio frequency (RF) signals
[1]–[3], acoustic sensors [4]–[6], and inertial measurement unit
(IMU) [7]–[10]. These works have considered a wide range
of daily activities including walking [11], sleeping [12], eating
[13], and etc.. In spite of good recognition performance, these
works share a common shortcoming, that is, only considering
singular activities and outputting a single activity type.

Singular activities usually involve a single body part such
as a hand or head, or treat all the body parts as a whole. In
singular activities recognition, researchers do not care about
what actions are performed of different body parts. As a result,
existing works usually assume that the whole body is static
while a user is performing activities/gestures with her head
or hand. But this is inconsistent with the characteristics of
human activities, most of which consist of different actions of
multiple body parts. For example, when people are walking,
they may wave hands or nod heads to interact with others. In
this process, walking and waving hands (or nodding heads)
are independent activities of which both have meaningful and

Fig. 1. The application scenarios of composite activities recognition with an
earable device. Doing exercises while staying still with hands occupied (left)
and going upstairs while carrying goods (right).

distinguishable semantic information. For another example,
when people go upstairs, they may also pick up phone calls
at the same time. Although such composite activities can be
monitored with multiple sensors attached on different body
parts as done in previous works [14]–[16], this is obviously
not realistic and appealing in real-world scenarios as people
may not be willing to wear multiple devices with them.
Considering this, we pay attention to a more complex and
practical HAR problem, that is, how to recognize composite
activities with a single wearable sensor. Formally, we define
composite activities as simultaneous actions of different body
parts in this paper.

Composite activities have significant and practical value for
human-computer interaction in real world. A typical example
is shown in Fig. 1. When a user is doing exercises, she can
utilize head gestures to interact with smart earphones such as
turning up volume or picking up phone calls. At the same time,
the smart earphones can recommend exercises-related musics
or programs if doing exercises is recognized. Similarly, when
a user goes upstairs with hands occupied, she can shake her
head to turn up/down audio’s volume of earphones, and turn
on noise reduction mode. In a summary, the user performs
composite activities in these examples with head gestures and
body movements happening simultaneously. Consequently,
we believe that it is meaningful to recognize both parts of
activities (i.e., head gestures and body movements) due to
the following reasons. On one hand, we can see from the
examples that both head gestures and body movements have
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significant semantic information which can be used for human-
device interaction. On the other hand, the commonalities and
differences between different tasks are beneficial for boosting
the recognition and generalization performance.

Considering the diversity of composite activities, we only
focus on recognizing 60 kinds of head-body activities in this
work including 12 head gestures and 5 body movements with a
single earphone. There are two considerations. For one thing, a
human being’s head has a large degree of freedom and is very
flexible to perform different gestures gently without causing
any apparent discomfort. This makes head gestures appropriate
for designing HCI interfaces. For another thing, compared with
other body parts, head gestures happen together with body
movements more naturally especially when a user is walking
or jogging.

However, the solution to recognizing composite activities
with a single sensor is not so straightforward due to two key
obstacles. The first is the tight coupling of different tasks.
Different actions will interfere with each other, which makes
it difficult to recognize them. To be specific, sporadic head
gestures produce notable measurements which are interference
to body movements. The second obstacle is the indistinct
measurements of body movements. Although an earable sensor
is easy to capture head gestures, it is insensitive for body
movements due to the stability of human’s heads during
activities. An intuitive idea is to treat each task independently
and design separate learning networks to recognize different
actions. But this approach ignores the correlation between
head gestures and body movements which can be utilized
for boosting performance. Inspired by multi-task learning, we
have designed a composite activities recognition network for
head gestures and body movements. Its key idea is to first
extract general representation shared by coupled tasks with
a shared bottom block, and then decouple them to further
purify fine-grained task-specific features. As a result, it not
only avoids over-fitting to a specific task, but also facilitates
decision-making of each task.

Based on the above, we have built the first, as far as
we know, composite head-body activities recognition system
called CHAR with a single earable IMU sensor that recognizes
60 kinds of activities with high accuracies of 97.7% and 92.0%
for head gestures and body movements, respectively.

In a summary, the contributions of this work can be sum-
marized as follows:

• We consider a novel HAR problem in which composite
head-body activities are recognized. Instead of decompos-
ing a composite activity into individual tasks, we take full
advantage of the correlations between different tasks and
design a multi-task learning network to accomplish both
goals simultaneously. Compared with traditional meth-
ods, our approach outperforms with higher accuracies.

• We design and implement an earphone-based real-time
prototype system with low-cost hardware and a self-
developed mobile application. Extensive experiments
have shown that our system can recognize 60 composite

activities with an high accuracy up to 89.7% even in user-
independent case.

The remaining of this paper is organized as follows. Sec. II
discusses the related work. Sec. III gives introduction to the
system design. In Sec. IV and Sec. V, we mainly describe the
details of system implementation, experimental settings, and
performance evaluation. At last, Sec. VI concludes the paper.

II. RELATED WORK

A. Human Activity Recognition

Vision systems [17], [18] use cameras for recognition, but
they are considered invasive. Ambient sensors [2], [3], [19]
require to be installed at fixed locations with extra expense.
In addition to these, wearable sensors, which are usually built
in mobile devices, have attracted the attention of researchers.
Some researchers take advantage of microphone [5], [6],
biological signal sensor [20], [21] for HAR. The works which
utilize IMU to recognize sporadic [7]–[10] or periodic [11],
[15], [22], [23] human acitivities are most related to ours.
When it comes to sporadic activities, HulaMove [7] uses
IMU of mobile phone for waist interaction. HeadGesture [8]
proposes a hands-free input approach leveraging head gestures.
GlassGesture [9] provides efficient gesture recognition and
robust authentication with Google Glass. As for periodic
movements, previous works [11], [24]–[26] use smartphone
to recognize periodic movements and contribute their datasets.
Other works propose some powerful networks such as DCNN
[22], DeepSense [23], DeepConvLSTM [15] based on public
datasets to recognize daily activities. Obviously, these works
only concentrate on the recognition of singular activities.
Nevertheless, human activity is usually a composite of many
kinds of actions. As a contrast, our system makes use of multi-
task learning to recognize sporadic head gestures and periodic
body movements at the same time.

B. Multi-task Learning

Multi-task learning is a training paradigm which can deal
with multiple tasks jointly. It has been successfully applied in
many areas especially in natural language processing. How-
ever, multi-task learning has not been widely used in HAR.
The works [27]–[29] make use of multi-task learning approach
to realize gestures/activities recognition and user authentica-
tion jointly. CogAx [30] uses a contrastive and multi-task
learning framework to correlate with underlying functional
and cognitive health parameters of older adults. As the most
relevant work, AROMA [14] defines complex activities as
continuous and high-level semantic meaning activities which
are combination of simple activities along temporal dimension.
AROMA proposes a deep multi-task learning based method
to facilitate complex activities recognition using features ex-
tracted from simple activities. In contrast, we concentrate
on composite activities composed of simultaneous actions
of different body parts. Consequently, we designed a multi-
task recognition network which makes full use of shared
information and further exploits task-specific representations
of each task to facilitate decision-making.
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Fig. 2. The design of head gestures.

C. Earable Applications

Recently, researchers have shown great interest in devel-
oping earable applications. EarBuddy [31] is an on-face in-
teractive system by recognizing sounds of on-face gestures.
EarEcho [32] utilizes in-ear speaker and microphone to capture
cannal echo for authentication. eBP [33] proposes a wearable
system for blood pressure monitoring. While prior works have
explored the use of microphone or physiological sensors in ear-
worn devices, not many have explored the use of IMU on ear-
worn devices for complex HAR. [34] investigates head motion
tracking using the eSense [35] platform. MandiPass [36]
leverages IMU to achieve continuous authentication function.
Similarly, our system is built with low-cost and ubiquitous
IMU which can be easily deployed in commercial earphones.
In contrast, instead of concentrating on head or body activi-
ties, our earable device senses head-body composite activities
simultaneously.

III. SYSTEM DESIGN

A. Composite Activities Taxonomy

In this paper, a composite head-body activity means the time
aligned compound of a head gesture and a body movement. We
refer to some HAR benchmark datasets of body movements
recognition such as HHAR [24], UCI [25], MotionSense [26]
and Shoaib [11], which have been commonly used in many
works. Then we select 5 most common movements which are
practical in various real-world scenarios and suitable for our
single earable device interaction. To be specific, we consider
going downstairs and upstairs, staying still, life-walking, jog-
ging which are denoted by B1 ∼ B5. As for the head part,
we design a total number of 12 gestures as shown in Fig. 2
including raising head up and back for once and twice (H1,
H8), nodding once and twice (H2, H7), shaking head to the
left for once and twice (H3, H10), shaking head to the left first
and then to the right (H11), shaking head to the right for once
and twice (H4, H9), shaking head to the right first and then to
the left (H12), leaning head to the left and right shoulders (H5,

Fig. 3. The system overview of CHAR.

H6). The criteria of designing these head gestures is referred
to previous works such as HeadGesture [8] and GlassGesture
[9] since they are natural for users to perform. As a result,
there are a total number of 60 composite head-body activities.

B. Overview

Fig. 3 shows the overview of training and testing pipelines
of our system. When a user performs head gestures accompany
with body movements, the earable device such as a smart
earphone with an IMU sensor senses the rotational and transla-
tional movements, and transmits the data to a mobile terminal
through Bluetooth. After that, signal instances corresponding
to each composite activity are extracted precisely with an adap-
tive segmentation method. In the training stage, the extracted
signal segments are used for building a self-designed multi-
task learning network which is trained on a remote server.
In the application stage, the trained network is deployed on
a mobile device such as a smartphone, takes in signals of a
composite activity, and outputs labels of a head gesture and a
body movement simultaneously. According to different head-
body composite activities, the system will accomplish HCI by
controlling multimedia applications such as picking up phone
calls, adjusting volume, and etc.. In the following, we shall
give details of each key part of our system design.

C. Activity Segmentation

Activity segmentation refers to detecting the starting point
(SP) and ending point (EP) of an activity. In our head-
body activity recognition task, since body movement is pe-
riodic and persistent, we only need to acquire head gesture
segment, which contains the composite head-body activity.
Other previous works set a fixed energy threshold for activ-
ity segmentation which can not apply to different practical
scenarios. In our work, we propose an adaptive segmentation
method which dynamically adjusts the threshold according
to different scenarios. As a result, user’s head gestures with
different body movements will be accurately segmented. The
activity segmentation algorithm is shown in Algorithm 1. The
following section gives details of this method.
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Algorithm 1: Activity segmentation algorithm
Input: 3-axis signal Gyro = {Gx, Gy, Gz}; Window

length for EP and SP detection Lend, Lstart;
Framing stride S; Threshold for EP detection
θ; Scaling coefficient for SP detection k

Output: SP ; EP
1 Wsignal = Frame(Gyro, (Lend + Lstart), S);
2 Wend = Wsignal(Lstart :, :, :);
3 Wcont = Wsignal(: Lstart, :, :);
4 for i = 1 to FrameNum(Wend) do
5 for j = 1 to ChannelNum(Wend) do
6 Ech(i, j) = Energy(Wend(i, j, :))
7 end
8 ch(i) = FindMaxIndex(Ech(i, :));
9 Eend(i) = Energy(Wend(i, ch(i), :));

10 Ed = Diff(Eend);
11 EP = FindFirstIndexLess(Ed(i), θ);
12 if EP is not None then
13 Econt = Energy(Wcont(i, ch(i), :));
14 Wstart = Frame(Wend(i, ch(i), :), Lstart, S);
15 for j = 1 to FrameNum(Wstart) do
16 Estart(j) = Energy(Wstart(j, :));
17 end
18 SP = FindFirstIndexGreater(Estart, k×Econt);
19 end
20 end
21 return SP , EP

1) Signal Processing: In order to segment activity from
data stream, we use 3 sliding windows Wend, Wcont and
Wstart to frame the signal with 1.0 seconds stride. Since Wend

needs to cover entire activity for EP detection, the size of Wend

is set to 4.0 seconds, which is slightly larger than the duration
of all head gestures. Wcont captures the context information
of the activity which follows Wend in time dimension and
the size of Wcont is empirically set to 0.5 seconds. When the
EP of an activity is detected, Wstart further frames the current
Wend with the same size of Wcont. After framing data stream,
we calculate the average energy E by the formula as follows:

E =
1

T

T∑
t

(xt)
2 (1)

where x is the signal and t is the timestamp of x.
2) Channel Selection: In our system, we get 6 channels

signal of the IMU. Since gyroscope varies significantly and its
noise is relatively low, we select the signal of it as the original
signal for activity segmentation. Different head gestures have
different variations in the 3-axis of gyroscope. We need to
get the best segmentation channel in real time. Therefore, We
select the axis with the largest average energy as the best
segmentation channel ch as follows:

ch = argmax
i

Ei (2)

where i is channel index and Ei is the energy of each channel.
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(c) Origin signal and segmentation result.

Fig. 4. Example of activity segmentation.

3) EP and SP Detection: Fig. 4 shows an example of
activity segmentation. We utilize Eend for EP detection as
shown in Fig. 4(a). When the user performs an head gesture,
Eend will increase first and then remain stable. Because the
context has the same background noise no matter what kind
of scenario the head gesture is in. The EP of the activity is
detected when the variation of Eend is less than θ, which
is set to 4. We utilize Wstart for SP detection as shown
in Fig. 4(b). Since Wend contain the entire activity, the SP
will be included in it. When Estart > Eth, the SP of the
activity is detected. Context information Eth = kEcont is
utilized as dynamic threshold, where k is a scaling coefficient,
which is empirically set to 10. Different from previous works,
Eth changes dynamically according to the background noise.
When the user stays still and goes downstairs, the dynamic
threshold becomes lower and higher, respectively. After EP
and SP detection, we will get the segmentation result in origin
signal, as shown in Fig. 4(c). Finally, we calculate the midpoint
of SP and EP, and then segment 3.0 seconds length data in
order to acquire fix length input data for the network.

D. Network Design

1) Multi-task Learning: To deal with multi-task problems,
the most intuitive idea is to split the problem into several
independent single-task subproblems that are solved separately
and then recombined. However, this method has deficiency
for two reasons. For one thing, there is shared information
between head gestures and body movements. Making good
use of shared information is beneficial to extract features
for each task. For another thing, head gestures and body
movements recognition are not completely separate of each
other. Taking full advantage of the correlations between them
by joint training facilitates the decision-making of each task.
As a result, we turn our attention to multi-task learning.

Multi-task learning is a training paradigm where learning
model is trained with data from multiple tasks simultaneously.
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Fig. 5. The architecture of our composite-activity recognition network.

Inspired by the insight of multi-task learning, we design a
composite activities recognition network (CARN) for sporadic
head gestures and periodic body movements recognition. In
evaluation section, we compare the performance of some
classical single-task networks for HAR and our multi-task
network. The experimental results show the superiority of
our network, which indicates that multi-task learning plays
an important role in composite activities recognition. Fig. 5
shows the architecture of CARN, which consists of shared
bottom block and specific top blocks.

2) Design of Shared Bottom Block: The bottom layers
are shared across tasks to extract task-shared representation
which facilitates both head gestures and body movements
recognition. This kind of shared structure substantially reduces
the risk of overfitting. For example, in backpropagation, the
contribution of head gesture task to the aggregated gradient
can be regarded as noise for body movement task. In other
words, one task can be used as a noise source to avoid overfit-
ting of another. Shared bottom block improves generalization
performance by learning head gesture and body movement
recognition tasks in parallel while using shared representation.

Inspired by LRCN [37], we treat the 3.0 seconds length
segment as frame-by-frame data. To be specific, we use a 0.5
seconds length sliding window to frame the segments with
0.1 seconds stride and then feed all frames to the network.
To begin with, the signals of each sensors have different
signal-noise patterns and representation capability. Therefore,
we need to extract intra-modality representation across time
and channels of each sensor separately. Meanwhile, we pay
attention to the correlation between different modalities. Thus,
we further extract cross-modality representation across differ-
ent sensors. These two operations avoid mutual interference
between the two modalities. For implementation details, we
utilize two different 1D-CNN to extract the spatial features
of accelerometer and gyroscope seperately. Max Pooling and
BatchNorm are applied on the each results of 1D-CNN. After
that, we concatenate the intra-modality features along channel
dimension and feed them to a 1D-CNN for multi-modality

fusion and cross-modality features extraction. In this way, we
extract intra-modality and cross-modality spatial features as
shared representation for specific tops.

3) Design of Specific Top Blocks: The specific top layers
are explicitly utilized to excavate specific and fine-grained
representation of each task. Since specific tasks aim to rec-
ognize diverse kind of activities, we separately adopt two
different feature extractors to acquire task-specific representa-
tions. The reason is that different tasks favor different spatial
and temporal information. Specifically, head gestures and body
movements recognition tasks prefer to rotation and translation
spatial information separately. Besides, it is obvious that
head gestures and body movements are sporadic and periodic
signals, respectively. Consequently, these two recognition tasks
also require different temporal information.

The specific tops consist of head gesture block and body
movement block. To extract specific and deeper representa-
tions, we employ two separate 1D-CNN to extract the spatial
features of rotation and translation for different tasks. Max
Pooling is applied to reduce the dimensionality along time.
Afterwards, we flatten the outputs and empirically adopt a
256-unit 1-layer Bi-GRU and a 128-unit 1-layer Bi-GRU to
profile the temporal relationships for head gestures and body
movements, respectively. It is worth mentioning that the time
steps of Bi-GRU corresponds to the input frames. Finally, we
feed the last time step of Bi-GRU into the fully-connected
layers of specific task blocks to get Yh and Yb. We separately
define cross-entropy loss Lh and Lb for head gesture and body
movement task. At multi-task learning, we use L = Lh+λLb

for joint training, where λ is empirically set to 2.

IV. IMPLEMENTATION AND EXPERIMENTS

In this section, we describe the implementation of CHAR
and give details about how data are collected for evaluation.

A. Implementation

As commercial earphones have no access to sensor’s data,
we build a prototype with low-cost hardware including a
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Fig. 6. The hardware and mobile application of CHAR.

JY901 IMU, an ESP32 as the microcontroller, a 3.7 V lithium
battery as the power supply, and a 3D printed plastic enclosure
shaped like an earphone as shown in Fig. 6. The JY901 module
consists of an accelerometer, a gyroscope, and a magnetometer
with sampling rate set to be 100 Hz during experiments. The
ESP32 controls IMU data collection and transmission to a
mobile device (e.g., a smartphone) via Bluetooth.

We have also developed an Android application on the
mobile device to receive and process data, and run activi-
ties recognition model, following the pipeline as introduced
Sec. III. Specifically, after training the network on a server
with an Intel(R) Xeon(R) Platinum 8260 CPU and NVIDIA
GeForce RTX 2080Ti GPU, we deploy it on a HUAWEI
Mate40 Pro with a HI-Silicon Kirin 9000 CPU, 8GB RAM,
and 256GB ROM. Based on the output of the recognition
model, developers can design different HCI applications.

B. Experiments

To evaluate CHAR, we recruit 15 participants denoted by
P1 ∼ P15 aged from 18 to 25 years old. Before experiments,
we instruct them to use our system and tell them necessary
details. We then request each of them to perform every
composite head-body activity for 5 times, and finally get a
total number of 4500 (i.e., 15 × 12 × 5 × 5) raw instances,
since there are 12 head gestures and 5 body movements as
aforementioned. After data collection, we annotate the SP and
EP of each raw instance as ground truth in evaluation. As the
duration between SPs and EPs are different among instances,
we calculate the midpoint of SP and EP, and use a fixed length
window of 3.0 second to segment the raw instances.

In the following evaluation, we consider user- dependent
and independent cases. In the former cases, we train and
test the system with 15-fold cross-validation method, while
in the latter ones, we train and test it with ‘leave-one-user-
out’ strategy. In both kinds of cases, the results are averaged
over different testing rounds. Note that segments produced by
raw instances do not overlap. Thus there is no information
leakage between training and testing datasets.

V. EVALUATION

A. Overall Performance

1) Activity Segmentation: We manually segment signal
sequences by marking SPs and EPs of activities as ground
truths, and compare them with the results obtained by our
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Fig. 7. Confusion matrices of head gestures and body movements recognition
in user-independent cases.

proposed segmentation method (i.e., Algorithm 1). We utilize
missed detection rate (MDR) and false detection rate (FDR)
as the metrics for evaluation. Formally, MDR is defined as
the percentage of missing activities that are not detected by
the algorithm. FDR is defined as the percentage of mistakenly
detected activities outside the ground truth. Experiments show
that the MDR and FDR with Algorithm 1 are 1.8% and
1.2%, respectively. This means that more than 97.0% of head
gestures can be detected correctly. In addition, the differences
between segmentation results and the ground truth will also
affect the final recognition performance of CHAR. We will
evaluate this point in Sec. V-A3.

2) Activity Recognition: In the user- dependent and inde-
pendent cases, CHAR recognizes composite activities with
high accuracies of 97.0% and 89.7%, respectively. Since users
prefer to use a system immediately without retraining, we
set the user-independent condition as our baseline case in the
following evaluation. Fig. 7 shows the confusion matrices that
CHAR recognizes head gestures and body movements in the
baseline case. As we can see, the recognition accuracies of
head gestures and body movements reach 97.7% and 92.0%,
respectively. This indicates that CHAR can recognize compos-
ite head-body activities with high accuracy. This is mainly due
to our designed network which decouples their relationship. In
addition, we can also see that walking (B1) and going upstairs
(B2) are easier to be confused, which is mainly originated
from user diversity. There is user diversity of some activities
in HAR, which leads to poor performance in user-independent
recognition. We carefully check these data of walking and
going upstairs. It was found that these two movements are
relatively similar across different users. Firstly, walking and
going upstairs produce periodic signals with similar periods,
which are longer than going downstairs and jogging. Then,
walking on rough ground tends to produce z-axis acceleration
signal analogous to that of going upstairs, which leads to
confusion between these two movements. Nevertheless, ac-
curacies of CHAR on body movements recognition is still
up to 98.0% and 92.0% in user- dependent and independent
situations, which is sufficient for practical needs.
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TABLE I
ACCURACY USING DIFFERENT KINDS OF DATA SEGMENT.

Training / Testing Head gesture Body movement

Dh / Dh 97.7% 92.0%
Dh / Da 93.7% 91.9%
Da / Da 94.9% 89.8%

3) Cascade Performance: According to Fig. 3, segmenta-
tion is followed by the recognition network. Hence, its result
has impact on the network’s classification performance. To
evaluate this, we consider two segmentation methods, namely,
by Algorithm 1 and by human (i.e., ground truth). Corre-
spondingly, we denote data obtained by them as Da and Dh,
respectively. Then we train and test the network with different
combinations of Da and Dh as shown in Table I and get
corresponding results. We can see that using Da as the testing
set causes accuracy drops of 4.0% and 0.1% for head gestures
and body movements recognition, respectively. This indicates
that our segmentation algorithm has some impact on head
gestures, but has little on body movements. This is because
some instances of the combined head gestures (such as H7,
H9, H11) are disjointed, so that the algorithm segments part of
these gestures. Partial segmentation leads to recognition error
because head gesture is sporadic. Differently, body movement
is periodic, and slight segmentation differences have little
affect on recognition.

Besides, we explore the possibility of directly annotating
instances using Algorithm 1 without human effort, by training
and testing the model with Da. It can be seen that CHAR
can recognize head gestures and body movements with ac-
curacies of 94.9% and 89.8%, respectively. Compared with
the Dh/Dh case, the accuracies decrease by 2.8% and 2.2%,
respectively. It validates that with the proposed segmentation
method, CHAR can still reliably detect the SP and EP of an
activity instance, and achieve very close performance to that
of ground-truth segmentation. Hence, our proposed system can
perform well in practical application scenarios and reduce the
burden of annotating data.

B. Embedding Visualization

To better dissect the internal mechanism of multi-task
learning, we show the embeddings of CARN in two-dimension
space with t-SNE algorithm.

1) Shared Bottom Embedding: Fig. 8 shows the shared fea-
ture representations extracted by the shared bottom block. Note
that feature representations shown in Fig. 8(a) and Fig. 8(b)
are totally the same but are colored in terms of head gestures
and body movements, respectively. Fig. 8(a) shows that head
gestures are grouped at a coarse-grained level except for the
circled data points. This means that the shared bottom block
can extract distinct features for most instances. Samples mixed
together in the circled zone represent jogging movements as
shown in Fig. 8(b). This is because gentle body movements

(a) Colored by head gestures. (b) Colored by body movements.

Fig. 8. Embedding visualization with t-SNE algorithm for features extracted
by Shared Bottom Block of CARN. The figure corresponds to the same
features and has been colored in terms of different types of activities.

(a) Head gesture embedding. (b) Body movement embedding.

Fig. 9. Embedding visualization with t-SNE algorithm for features further
extracted by Head Gesture Block (a) and Body Movement Block (b) of CARN,
respectively.

such as being still, walking, going upstairs and downstairs have
relatively slight effect on the measurements of head gestures.
But when users are jogging, the IMU measurements of head
gestures tend to be overwhelmed by it.

Accordingly, from Fig. 8(b), we can find that only the
jogging instances are well grouped and other body movements
are easily mixed together after shared bottom block. The
reason is that head gestures seriously deform periodic signals
generated by body movements. What is more, periodic signals
generated by body movements require a model to extract
temporal features, while the shared bottom block only uses
CNNs to extract shared spatial features. In order to better
group body movements, we use GRUs to extract specific time-
domain information following the shared body bottom.

2) Specific Task Embedding: Fig. 9 shows the feature rep-
resentations of head gestures and body movements extracted
by corresponding blocks. We can observe from Fig. 9(a) that
all head gestures (including in jogging movement) are well
grouped. Moreover, compared to the results shown in Fig. 8(a),
the distances between different categories is obviously larger.
It means that the head gesture block extracts unique features
for better recognition on the basis of shared feature block.
Similarly, it can be seen from Fig. 9(b) that, except for a few
data points in the circled zone, the body movements can be
well grouped. It indicates that even though the shared bottom
block cannot directly group some of the body movements, the
relevant part of the network has the ability to extract unique
periodic features corresponding to body movements.
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TABLE II
ACCURACY OF BENCHMARKS AND OUR NETWORK.

Network Head
gesture

Body
movement

Composite
activity

DCNN 91.2% 81.0% 73.4%
DeepSense 92.4% 76.5% 69.8%

DeepConvLSTM 88.1% 84.9% 74.4%
CARN 97.7% 92.0% 89.7%

C. Comparison with Benchmarks

In this section, we compare our proposed network CARN
with several classical networks for HAR as benchmarks in-
cluding DCNN [22], DeepSense [23], and DeepConvLSTM
[15]. DCNN [22] designs a convolutional neural network to
learn features from raw IMU input signals which outperforms
traditional machine learning methods such as support vector
machine and deep belief network. DeepSense [23] integrates
CNNs and RNNs to combine different sensing modalities
of mobile sensors and extract temporal features for HAR.
DeepConvLSTM [15] proposes a deep activity recognition
framework composed of convolutional and LSTM recurrent
layers, which is suitable for the recognition of static/periodic
activities and sporadic activities. As these networks deal with
single-task HAR, we train them for head gestures and body
movements recognition tasks separately. In contrast, CARN is
trained for both tasks simultaneously. Also, in order to make
our dataset suitable for those networks, we slightly modify
their input and output layers.

Table II gives comparative results of CARN and other
benchmarks in both recognition tasks. From our previous
analysis, it can be known that sporadic head gestures can be
well recognized by only using CNNs to extract spatial features.
Since head gestures are accompanied by periodic body move-
ments, using RNNs to extract temporal features will interfere
with head gestures recognition instead. Therefore, the head
gestures recognition accuracy of DCNN reach 91.2% with
CNNs only. On the contrary, DeepConvLSTM using RNNs
has the worst performance on the head gestures recognition
task, but its accuracy of body movements recognition reaches
84.9%. In addition, it can be seen that CARN outperforms
benchmarks in both head gestures and body movements recog-
nition tasks. Accuracies of head gestures and body movements
recognition tasks are 5.3% higher than DeepSense and 7.1%
higher than DeepConvLSTM, respectively. This is because
irrelevant task will interfere the target task, which results in
poor recognition performance. However, our designed multi-
task learning framework fully learns the commonalities of
two tasks and then decouples them to learn the differences.
It reduces the risk of overfitting and improves generalization
ability of recognition model.

D. Impact of Composite Activity Types

Without specification, we train the network with all types
of head-body composite activities (i.e., 60 types of composite

activities). A natural question is whether the network can
be trained with a part of composite activities, but can still
recognize the whole set accurately. The intuitive rationale is
that unseen composite activities are also composed of the same
basic head gestures and body movements which appear in the
training activities. To quantify the impact of the number of
composite activities, we randomly select a certain number
of composite activities types in the training set, and test
CHAR’s performance on the whole set. We vary the number
of composite activities types in the training set from 12 to
60, and obtain the results as shown in Fig. 10. It can be
seen that as the number of composite activities increases, the
recognition accuracy first increases and then remains stable.
The recognition performance of the system tends to be stable
when more than 36 composite activities are used for model
training. Experiments demonstrate that the network can be
trained using data from some composite activities and applied
to all, thereby reducing the burden of data collection.

E. Impact of Data Length

As mentioned in Sec. III-C, after detecting the EP and SP
of an activity, we extract a fixed-length data segment and feed
it into the network. The data length is a critical parameter for
recognizing activities accurately. Intuitively, it should be large
enough to cover an activity as much as possible. To determine
its proper value, we first obtain a statistical histogram of head
gestures’ durations as shown in Fig. 11. It can be seen that
more than 90% of the head gestures last less than 3.0 seconds,
which indicates a proper range of data length. Although a
longer segment contains more information of activities, it also
brings about heavier computational overhead and more energy
consumption. To achieve good trade-off, we test CHAR’s
performance with different data lengths from 1.0 second to 4.0
seconds. As shown in Fig. 12, the recognition accuracies rise
with the data length. But the improvement is very limited after
the data length exceeds 3.0 seconds. In addition, only about
50% of the head gestures duration are less than 2.0 seconds
from Fig. 11. However, setting the data length to 2.0 seconds
can also achieve 96.1% and 88.7% recognition accuracies
for head gestures and body movements, respectively. As a
result, for mobile devices with limited resources, we suggest
appropriately reducing the data length to ease computing
overhead and energy consumption.

F. Impact of Data Size

We also evaluate the impact of training dataset size by
randomly sampling a whole dataset at different percentages.
Since the evaluation is conducted with ‘leave-one-user-out’
strategy, a whole dataset contains 4200 samples in total.
Fig. 13 shows the results. With the percentage increasing,
the accuracies of recognizing head gestures, body movements,
and composite activities initially increase fast and then remain
relatively stable, after the percentage exceeds 0.8. It means
that with 80% of the dataset, CHAR’s performance is close
to the optimal. Moreover, compared with body movements,
head gestures can be recognized more accurately with less
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Fig. 10. Recognition accuracies with different
number of training activity types.
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Fig. 11. Statistical histogram of head gestures
performing time.
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Fig. 12. Recognition accuracies with different data
lengths.
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Fig. 13. Recognition accuracies with different
training dataset sizes.
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training data. This is because IMU measurements caused by
head gestures are more obvious than those body movements.
As a result, even a small amount of data enables the model
to learn feature patterns of head gestures. In contrast, body
movements cause less notable sensor measurements which are
easier to be interfered. Hence, it requires more training data
to recognize body movements (and thus composite activities)
with high accuracy.

G. System-running Performance
In this section, we evaluate CHAR’s real-time performance

including CPU and memory occupation, response time, and
energy consumption. Specifically, we utilize Android Debug
Brige to acquire CPU and memory occupation when CHAR
runs at different stages including initialization, inference, and
being idle. We can observe from Fig. 14 that the memory
occupation is only about 2.4% in average and slightly increases
during initialization stage where the recognition model is
loaded. The CPU occupation is at a low level of about 10%
when CHAR is idle, but varies rapidly during the inference
stage. In addition, we insert a piece of codes in the Android
application to measure the response time of CHAR which is
the duration of outputting the result after performing an activ-
ity. The experimental results show that CHAR can recognize
gestures within 52 ms in average on a mobile device.

We also measure the energy consumption through Android
BatteryManager by continuously running the testing pipeline
with data fed into the application for three hours. During
this process, we turn off all the other applications and set
the screen brightness to the medium level. Fig. 15 shows
how the battery level varies with running time when CHAR
is turned on (yellow line) and off (green line), respectively.

As we can see, when CHAR is running, the average energy
consumption per minute can be estimated by 4400×(100%−63%)

180
which equals 9.07 mAh. Note that this energy consumption
includes the part of lighting the screen which can be calculated
by 4400×(100%−80%)

180 equalling 4.89 mAh. Consequently, our
system consumes 4.18 mAh per minute which is relatively low
especially considering the much lower interference frequency
in real-world usage cases.

VI. CONCLUSION

Composite activities are rather common and significant for
human beings, but has not been carefully investigated yet. In
this paper, we put forward a composite activity recognition
system called CHAR that can recognize a variety of head-
body activities based on a single IMU measurement output
by an earphone device. The high-level idea of our solution
is to take full advantage of the inter correlation between
head gestures and body movements, and design a multi-task
learning network to extract shared and task-specific feature
representations. We have implemented a real-time prototype
and conduct extensive experiments to evaluate its performance.
The results show that CHAR can recognize 60 head-body
composite activities with a high accuracy even in the user-
independent case. We envision that our approach can be also
utilized for other composite activities recognition.
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