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1.1: User Authentication

Small form-factor wearables are increasingly
POPULAR among people

Data privacy issue should be seriously treated for
these smart devices
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1.2: Existing methods

Fingerprint Face recognition Breath-printing

NSiES,

Voice-printing Gait recognition Gesture recognition Brain wave




1.3: Their limitations

1 ) Hardware concern: sensor size, energy consumption (Face/Iris/Finger)

72 | Social acceptance: feeling embarrassing in public (Voice)

3 | Stability: affected by user’s physiologic states (Breathing/Voice/gait)

4 ) Security: not robust enough to different kinds of attacks (Voice)




1.4: Our proposal

Sounds of tooth click as a biometric for smart devices
authentication

Hardware : pervasive microphone, no additional sensor
Social acceptance: more imperceptible and unobtrusive to others
Stability: not easily affected by body states

Security: robust against replay and observation attacks
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2.1: Clinic observation

\ |Crown torque

Shape, Size, Orientation and Mass of teeth are different among
different people*

*Thomas R Katona and George | Eckert. 2017. The mechanics of dental occlusion and disclusion. Clinical
Biomechanics 50 (2017), 84-91.



2.2: Feasibility study

Hardware Environment
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« Settings: meeting room (N,: 30~40 dB, N,: 40~50 dB, N;: 50~60 dB, N,: 60~70 dB), lab room (40~50 dB)

« Sessions: S; (1~2 days, 20 samples), S, (3~4 days, 20 samples), S; (2~3 weeks, 20 samples), S, (1~2 month, 20
samples), Sz (3~4 months, 10 samples), S, (5~6 months, 10 samples)

» Data: 100 (number of instances)x5 (number of settings) x50 (number of participants) X2 (number of devices)



2.3: Study results
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3.1: System architecture
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Challenge 1: how to detect tooth click events adaptively in different environments?

Challenge 2: how to design authentication model to accurately authenticate users?




3.2: Event detection
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3.3: Feature extraction
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3.3: Model training

Model adaptation
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thresholding

P: max reconstruction error
MSE: reconstruction error

MSE<= P, sample of valid user

MSE>P, sample of invalid user
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3.3: Model evolution

Model adaptation
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3.3: Model adaptation
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4.1: Accuracy
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4.2: Robustness
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4.3: User variance
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4.4: Comparison
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4.5: User experience

100 volunteers, 50 are newly recruited, online questionnaire
10

éating(BiLock) = 7.6 Rating(Face) = 6.8 Rating(Voice) = 63
Willing(BiLock) = 6.4 Willing(Face) = 5.6 Willing(Voice) = 4.3
- Nonparametric Wilcoxon signed-rank test for rating:
- Z(BiLock,Voice) = —2.27 p(BiLock,Voice) = 0.012

Il Overall rating ; — _ . _
B Willingness in public \Z(BiLock, Face) 1.79  p(BiLock, Face) = 0.037 J
Voice Face BiLock
Methods

» "It is rather embarrassing to speak out words in public when using voiceprinting method. In contrast, BiLock is
more imperceptible and easy to use. But I prefer to use BiLock without placing the device so near to my mouth if
possible.”

* "l use voice-prints frequently but BiLock is also cool. I think BiLock may be more robust when I caught a cold.
Sometimes my phone does not recognize my voice when I got sick.”



Conclusion

We propose a novel biometric authentication scheme with good ubiquity, high robustness and
security based on human tooth clicks

We design methods to extract tooth click events adaptively in different environments, and
effective authentication model with self-adaptation

The experimental results show that in the normal noise environment of 50~60 dB, th
authentication recognition model achieves FRR less than 5.0%, FAR less than 0.95%.
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