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- AcouDigits — motivation

Traditional interaction interface - Keyboard

Smartphone Table computer PC



- AcouDigits — motivation

For new smart devices? Small screen size / no screen!

Smart watch Smart glass Smart home



- AcouDigits - related work

Keyboard RF speech recognition IMU

Small Unstable/Device Privacy concern Wearing device

1. L. Sun, S. Sen, D. Koutsonikolas, and K.-H. Kim, “Widraw: Enabling hands-free drawing in the air on commodity wifi devices,” in Proceedings of ACM MobiSys, 2015.

2. J. Wang, D. Vasisht, and D. Katabi, “RF-IDraw: virtual touch screen in the air using rf signals,” in Proceedings of ACM SIGCOMM, 2014.

3. S. Nirjon, J. Gummeson, D. Gelb, and K.-H. Kim, “Typingring: A wearable ring platform for text input,” in Proceedings of ACM MobiSys, 2015.

4. C. Amma, M. Georgi, and T. Schultz, “Airwriting: Hands-free mobile text input by spotting and continuous recognition of 3d-space handwriting with inertial sensors,”
in Proceedings of IEEE ISWC, 2012.



. AcouDigits - related work
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Acoustic finger tracking

Two microphones are required

1. S. Gupta, D. Morris, S. Patel, and D. Tan, “Soundwave: using the Doppler effect to sense gestures,” in Proceedings of ACM CHI, 2012.
2. W. Wang, A. X. Liu, and K. Sun, “Device-free gesture tracking using acoustic signals,” in Proceedings of ACM Mobicom, 2016.
3. W. Mao, J. He, and L. Qiu, “CAT: high-precision acoustic motion tracking,” in Proceedings of ACM Mobicom, 2016.



. AcouDigits - workflow
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- AcouDigits - Data preprocessing

Denoising
- Bandpass filter: [18850; 19150]
— Direct path: Bandstop filter
Event Detection
— Continuous 4 frequency bins
exceed a threshold: Active
- Segment: Continuous 4 frequency
bins less than a threshold: End

Doppler Effect
v, & V5 f,» the frequency of emitted signals
Af=fo-|1 -2 | v, the speed of sound
Us T Uy v/, the velocity of finger motion
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- AcouDigits - Data preprocessing
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Fig. 3. Illustrations of spectrograms and writing activity detection.



- AcouDigits — feature engineering

Feature vector: Mean value and variance of AC, SC, SF

Feature Feature Description
domain
Root mean square | The energy in an acoustic
Time (RMS) frame - -
domain Zero crossing rate | The point where acoustic
(ZCR) samples change signs
ATR The average value of top
k RMSs
Above a-mean The ratio of high-energy
ratio (AMR) frames in a window
AC Auto-correlation
coefficients
Spectral entropy | The flatness indicator of
Frequency (SE) acoustic spectrum shape
domain Spectral flux (SF) | The stability reflector of
acoustic events
Spectral rolloff Indicator of a frame’s
(SR) spectral energy distribu-
tion
Spectral centroid | The balance point of the
(SC) spectral energy distribu-
tion

Feature selection (Wrapper method)
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10-fold cross validation




- AcouDigits — Model training

® SVM ® KNN
- RBF kernel — K=5
— C (penalty coefficient): 210
— T (kernel function coefficient): 210
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- AcouDigits — Model training

ANN

PARAMETER SETTINGS OF ANN MODEL

Parameters Value
Number of layers (L) 2
Number of nodes (V) 10

Training function (f) Levenberg-Marquardt algorithm
o . $1 = Troezm — 1
Activation function (¢) ljﬁ 2
92 = yrew
PERFORMANCE OF DIFFERENT TRAINING FUNCTIONS
Training functions trainlm trainbr trainbfg trainrp trainscg | traincgb | ftraincgf | traincgp | trainoss | traingdx | traingdm | traingd
Training accuracy 04.80% |] 98.60% | 77.10% | 86.90% 83.60% 81.50% 82.20% 84.00% 81.40% 78.60% 16.90% 6.90%
Testing accuracy 02.80% |] 90.00% | 77.00% | 87.70% 81.00% 80.70% 82.30% 83.30% 81.00% 75.70% 20.00% 5.30%
Time(s) 19 266 3 1 1 1 1 1 1 1 2 2
PERFORMANCE OF DIFFERENT ACTIVE FUNCTIONS
Active fuctions | compet | elliotsig | hardlim | hardlims | logsig netinv poslin | purelin | radbas | radbasn | satlin satlins | softmax| | tansig tribas
Testing accuracy | 9.80% | 90.40% | 9.00% 10.30% | 88.30% | 20.00% | 84.30% | 90.60% | 86.30% | 89.00% | 73.30% | 88.70% | 90.30%] | 92.70% | p35.00%




- AcouDigits — experiment

Setup

BMSamsung Galaxy S5
BEmitting: 19 KHz
BMSampling: 44.1KHz
B Distance:2-16cm

10 digits X 6 participants X 200 repetitions = 12,000

10 digits X 6 participants X 8 dis intervals X 50 repetitions = 24,000

8 distance intervals: 2-4-6-8-10-12-14-16cm



- AcouDigits — evaluation
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Fig. 8. The overall performance of AcouDigits Fig. 9. The confusion matrix of AcouDigits Fig. 10. The performance of AcouDigits for differ-
for KNN, SVM and KNN models. while averaging the performance of SVM and ent distances between the finger and device.

ANN models.
Recognition Performance
e The overall recognition accuracy of SVM and ANN models are 89.5% and 91.7%, and are higher
than that of KNN by 6.3% and 8.5%, respectively.

Safe Distance
* Within 8 cm, the performance remains acceptable with an accuracy no less than 91.5%.



- AcouDigits — evaluation
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Fig. 11. The performance of AcouDigits for Fig. 14. The performance of AcouDigits for different participants in the
different numbers of training samples. experiments.

Training Overhead

« When the number of training samples exceeds 40, the recognition accuracy increases much
more slowly and remains nearly constant.

User Diversities

* The recognition accuracy varies from (84.2%, 88.0%) to (94.8%, 95.2%) with (0.14%, 0.06%)
variance among different participants due to different writing habits.



- AcouDigits — evaluation

S 08|
Cross-person performance g 06|
® Training AcouDigits with one participant’s data % 0.4+
and testing it with another one’s data. 3
® Randomly selected 5 pairs g 0.2 |
: < [ ISVM
® The average accuracies for SVM and ANN are B ANN
75.4% and 78.0%, respectively. 0 ] 5 3 4 5

User pairs

Fig. 12. The average accuracies of the selected five
training-testing pairs.



- AcouDigits — evaluation
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A Direct Extension to English Letters
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® 6 (participants)x26 (letters)x100 (repetitions) =1560

® use ANN as the learning model g .'- EE

® The average accuracy in recognizing 26 letters is 87.4‘}% I.- 102

® Several letters have very similar writing patterns { - |
— 0

ABCDEFGHI JKLMNOPQRSTUVWXYZ

Fig. 13. The performance of AcouDigits in recog-
nizing uppercase English letters.



- AcouDigits — Conclusion

B We propose a novel interface that enables users writing digits and
alphabets in the air without wearing any additional devices.

B By careful model selection and parameters tuning, AcouDigits can
achieve up to 91.7% recognition accuracy for digits.

B We extend AcouDigits to recognize 26 English letters, and can
achieve an accuracy up to 87.4%.



- AcouDigits — Further work

Deep learning-based [ongoing extension]

We transform acoustic signals to spectrograms, and using CNN to recognize digits
and letters, which can achieve 94.9% accuracy.

Writing anywhere [ongoing extension]

With the data produced by Data Augmentation at different location of devices,
more robust AcouDigits can be trained, and user can writing digits at any location
around the deuvice.

Training-free text input [new work under review]

By decomposing English letters to basic strokes and modeling their intrinsic
characteristics, we can input text without any user-training overload.
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