

AcouDigits: Enabling Users to Input Digits in the Air

Yongpan Zou⁺, Qiang Yang⁺, Yetong Han⁺, Dan Wang⁺, Jiannong Cao[‡], Kaishun Wu⁺

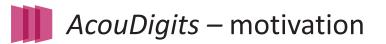
[†]College of Computer Science and Software engineering, Shenzhen University [‡]Department of Computing, Hong Kong Polytechnic University

@Kyoto

PerCom 2019

AcouDigits: Enabling Users to Input Digits in the Air

- 01 Motivation
- 02 Related Work
- 03 System Design
- 04 Evaluation
- 05 Conclusion

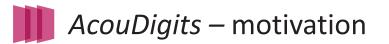


Traditional interaction interface - Keyboard

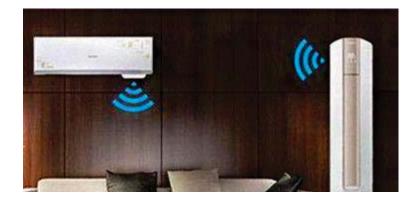
Smartphone

Table computer

PC



For new smart devices? Small screen size / no screen!

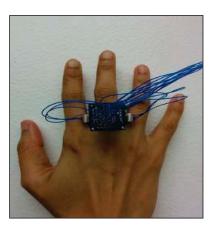


Smart watch

Smart glass

Smart home

AcouDigits - related work



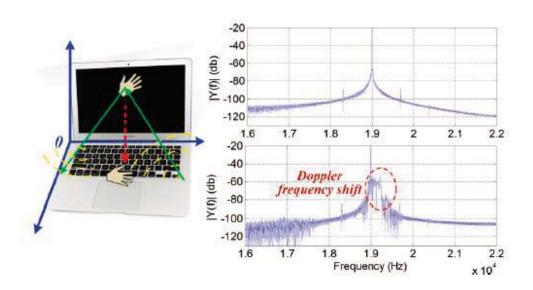
KeyboardRFspeech recognitionIMUSmallUnstable/DevicePrivacy concernWearing device

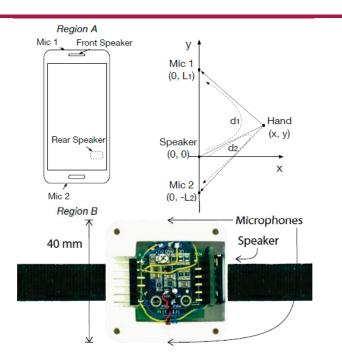
1. L. Sun, S. Sen, D. Koutsonikolas, and K.-H. Kim, "Widraw: Enabling hands-free drawing in the air on commodity wifi devices," in Proceedings of ACM MobiSys, 2015. 2. J. Wang, D. Vasisht, and D. Katabi, "RF-IDraw: virtual touch screen in the air using rf signals," in Proceedings of ACM SIGCOMM, 2014.

3. S. Nirjon, J. Gummeson, D. Gelb, and K.-H. Kim, "Typingring: A wearable ring platform for text input," in Proceedings of ACM MobiSys, 2015.

4. C. Amma, M. Georgi, and T. Schultz, "Airwriting: Hands-free mobile text input by spotting and continuous recognition of 3d-space handwriting with inertial sensors," in Proceedings of IEEE ISWC, 2012.

AcouDigits - related work





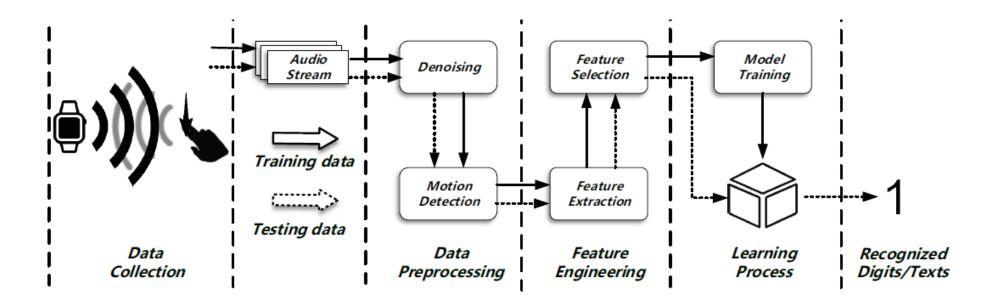
Hand gesture recognition

Coarse-grained HAND gesture

Acoustic finger tracking

Two microphones are required

- 1. S. Gupta, D. Morris, S. Patel, and D. Tan, "Soundwave: using the Doppler effect to sense gestures," in Proceedings of ACM CHI, 2012.
- 2. W. Wang, A. X. Liu, and K. Sun, "Device-free gesture tracking using acoustic signals," in Proceedings of ACM Mobicom, 2016.
- 3. W. Mao, J. He, and L. Qiu, "CAT: high-precision acoustic motion tracking," in Proceedings of ACM Mobicom, 2016.



19 KHz

AcouDigits - Data preprocessing

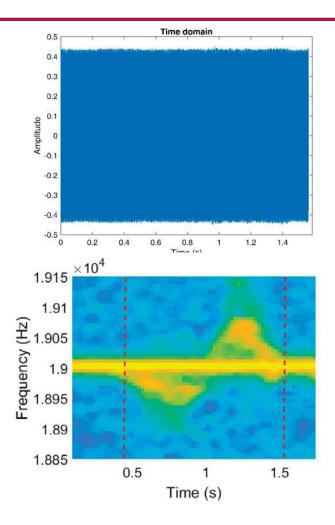
• Denoising

- Bandpass filter: [18850; 19150]
- Direct path: Bandstop filter
- Event Detection
 - Continuous 4 frequency bins exceed a threshold: *Active*
 - Segment: Continuous 4 frequency bins less than a threshold: *End*

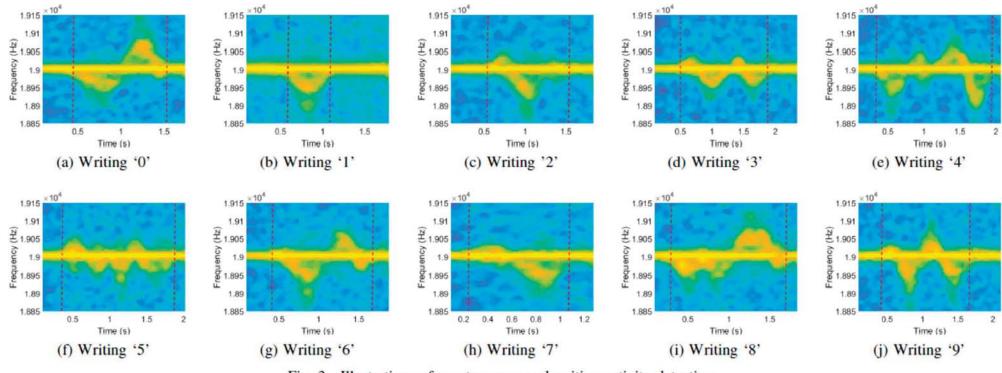
Doppler Effect

 $\Delta f = f_0 \cdot |1 - \frac{v_s \pm v_f}{v_s \mp v_f}|$

 f_0 , the frequency of emitted signals v_s , the speed of sound v_f , the velocity of finger motion



AcouDigits - Data preprocessing

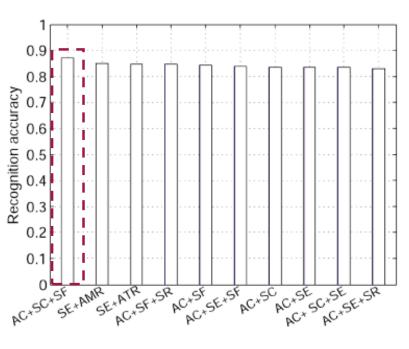


AcouDigits – feature engineering

Feature vector: Mean value and variance of AC, SC, SF

Feature	Feature	Description						
domain								
	Root mean square	The energy in an acoustic						
Time	(RMS)	frame						
domain	Zero crossing rate	The point where acoustic						
uomam	(ZCR)	samples change signs						
	ATR	The average value of top						
		k RMSs						
	Above α -mean	The ratio of high-energy						
	ratio (AMR)	frames in a window						
	AC	Auto-correlation						
		coefficients						
	Spectral entropy	The flatness indicator of						
Frequency	(SE)	acoustic spectrum shape						
domain	Spectral flux (SF)	The stability reflector of						
		acoustic events						
	Spectral rolloff	Indicator of a frame's						
	(SR)	spectral energy distribu-						
		tion						
	Spectral centroid	The balance point of the						
	(SC)	spectral energy distribu-						
		tion						

Feature selection (Wrapper method)

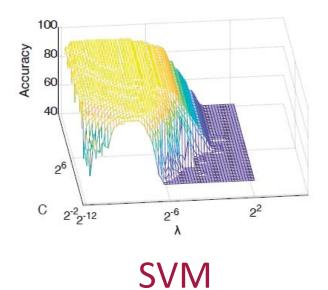


10-fold cross validation

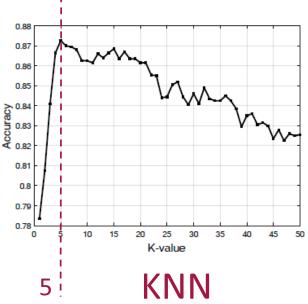
AcouDigits – Model training

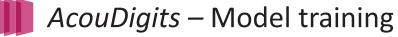
• SVM

- **RBF** kernel _
- C (penalty coefficient): 2¹⁰
- Γ (kernel function coefficient): 2⁻¹⁰



KNN – K=5





PARAMETER SETTINGS OF ANN MODEL

ParametersValueNumber of layers (L)2Number of nodes (N)10Training function (f)Levenberg-Marquardt algorithmActivation function (ϕ) $\phi_1 = \frac{2}{1+e^{-2n}} - 1$ $\phi_2 = \frac{e^n}{\sum e^n}$

PERFORMANCE OF DIFFERENT TRAINING FUNCTIONS

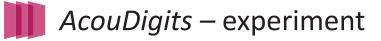
Training functions	trainlm	trainbr	trainbfg	trainrp	trainscg	traincgb	traincgf	traincgp	trainoss	traingdx	traingdm	traingd
Training accuracy	94.80%	98.60%	77.10%	86.90%	83.60%	81.50%	82.20%	84.00%	81.40%	78.60%	16.90%	6.90%
Testing accuracy	92.80%	90.00%	77.00%	87.70%	81.00%	80.70%	82.30%	83.30%	81.00%	75.70%	20.00%	5.30%
Time(s)	19	266	3	1	1	1	1	1	1	1	2	2
	· · · · · · ·											

PERFORMANCE OF DIFFERENT ACTIVE FUNCTIONS

Active fuctions	compet	elliotsig	hardlim	hardlims	logsig	netinv	poslin	purelin	radbas	radbasn	satlin	satlins	softmax	tansig	tribas
Testing accuracy	9.80%	90.40%	9.00%	10.30%	88.30%	20.00%	84.30%	90.60%	86.30%	89.00%	73.30%	88.70%	90.30%	92.70%	65.00%

ANN

Г

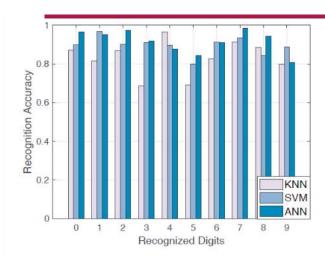


Setup

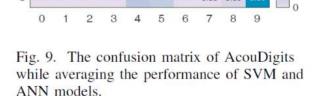
Samsung Galaxy S5
Emitting: 19 KHz
Sampling: 44.1KHz
Distance:2-16cm

10 digits X 6 participants X 200 repetitions = 12,000 10 digits X 6 participants X 8 dis intervals X 50 repetitions = 24,000

8 distance intervals: 2-4-6-8-10-12-14-16cm



AcouDigits – evaluation



1 0.00 0.96 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00

3 0.00 0.00 0.06 0.91 0.00 0.03 0.00 0.00 0.00 0.00

4 0.00 0.00 0.02 0.02 0.89 0.03 0.00 0.00 0.02 0.02

5 0.06 0.00 0.00 0.12 0.00 0.82 0.00 0.00 0.00 0.00

6 0.03 0.00 0.00 0.00 0.02 0.91 0.00 0.04 0.00

7 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.96 0.00 0.00

8 0.02 0.00 0.00 0.00 0.05 0.04 0.00 0.00 0.89 0.00

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

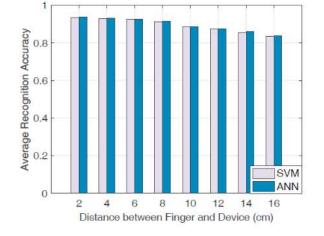


Fig. 10. The performance of AcouDigits for different distances between the finger and device.

for KNN, SVM and KNN models.

Fig. 8. The overall performance of AcouDigits

*Recognition Performance*The overall recognition accuracy of SVM and ANN models are 89.5% and 91.7%, and are higher than that of KNN by 6.3% and 8.5%, respectively.

Safe Distance

• Within 8 cm, the performance remains acceptable with an accuracy no less than 91.5%.

AcouDigits – evaluation

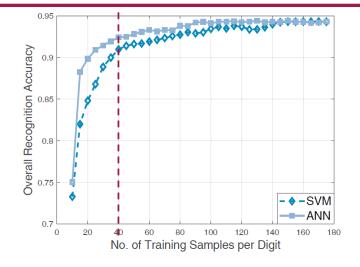


Fig. 11. The performance of AcouDigits for different numbers of training samples.

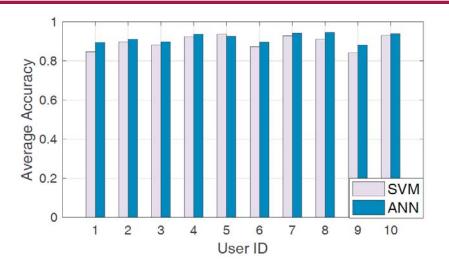


Fig. 14. The performance of AcouDigits for different participants in the experiments.

Training Overhead

• When the number of training samples exceeds **40**, the recognition accuracy increases much more slowly and remains nearly constant.

User Diversities

• The recognition accuracy varies from (84.2%, 88.0%) to (94.8%, 95.2%) with (0.14%, 0.06%) variance among different participants due to different writing habits.

Cross-person performance

- Training AcouDigits with one participant's data and testing it with another one's data.
- Randomly selected 5 pairs
- The average accuracies for SVM and ANN are 75.4% and 78.0%, respectively.

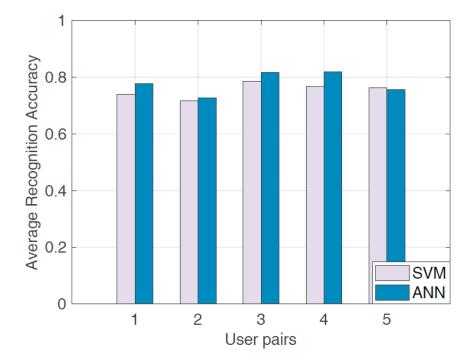


Fig. 12. The average accuracies of the selected five training-testing pairs.

A Direct Extension to English Letters

- 6 (participants)×26 (letters)×100 (repetitions) =1560
- use ANN as the learning model
- The average accuracy in recognizing **26** letters is **87.4**%
- Several letters have very similar writing patterns

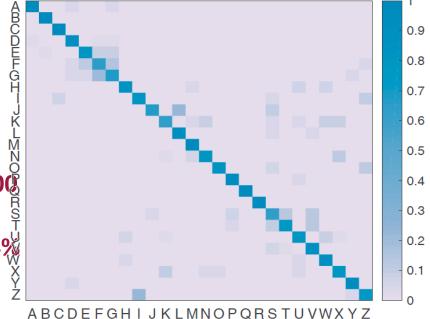
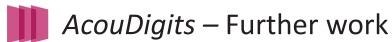


Fig. 13. The performance of AcouDigits in recognizing uppercase English letters.

- We propose a novel interface that enables users writing digits and alphabets in the air without wearing any additional devices.
- By careful model selection and parameters tuning, AcouDigits can achieve up to 91.7% recognition accuracy for digits.
- We extend AcouDigits to recognize 26 English letters, and can achieve an accuracy up to 87.4%.



Deep learning-based [ongoing extension]

We transform acoustic signals to spectrograms, and using CNN to recognize digits and letters, which can achieve 94.9% accuracy.

Writing anywhere [ongoing extension]

With the data produced by Data Augmentation at different location of devices, more robust AcouDigits can be trained, and user can writing digits at any location around the device.

Training-free text input [*new work under review*]

By decomposing English letters to basic strokes and modeling their intrinsic characteristics, we can input text without any user-training overload.

THANKS



https://yongpanzou.github.io/

<u>yongpan@szu.edu.cn</u>

College of Computer Science and Software Engineering Shenzhen University