EchoWrite: An Acoustic-based Finger Input System Without Training

Yongpan Zou1, Qiang Yang1, Rukhsana Ruby1, Yetong Han1, Mo Li2, Kaishun Wu1

1Shenzhen University, China
2Nanyang Technological University, Singapore

July 9, 2019 @ Dallas, Texas, USA
EchoWrite: An Acoustic-based Finger Input System Without Training

Outline

01 Motivation
02 Related Work
03 System Design
04 Evaluation
05 Conclusion
Motivation

PC Era 2000 Mobile Era 2020 IoT Era

1980
Motivation

Traditional interaction interface - **Keyboard**

- Smartphone
- Table computer
- PC
Motivation

For new smart devices? Small screen size / no screen!

Smart watch Smart glass Smart home
Hand gesture recognition

Coarse-grained HAND gesture

Acoustic finger tracking

Two microphones are required

7. Y. Zou, Q. Yang, Y. Han, D. Wang, J. Cao, and K. Wu, “Acoudigits: Enabling users to input digits in the air,” in IEEE PerCom, 2019
Related work

<table>
<thead>
<tr>
<th></th>
<th>Device</th>
<th>Device-free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>[3] [4]</td>
<td>[7]</td>
</tr>
<tr>
<td>Training-free</td>
<td>[1] [2]</td>
<td>Coarse-gained</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Two mics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One mics</td>
</tr>
</tbody>
</table>

EchoWrite
Principle: Doppler Effect

Frequency of a sound wave changes as a listener moves toward or away from the source
Six basic strokes of English letters*

horizontal vertical left-falling right-falling Left-arc Right-arc

*“Using Mobile Phones to Write in Air”, Sandip Agrawal, et.al, ACM MobiSys, 2011
System Design - framework

Data collection

Preprocessing

Stroke recognition

Text recognition
1. How to recognize *finger* gestures in a *training-free* way?

2. How to input *continuously* under ambient *interference*?

3. How to *input text efficiently* based on *finger gestures*?
C1. How to recognize finger gestures in a training-free way?

Noise elimination
• Random noise: median filter
• Direct path: spectrum subtraction

STFT
C1. How to recognize finger gestures in a training-free way?

Stroke profile extraction
- Normalization + Binarization
- Image processing: *Area open, flood fill*
- Profile extraction: Mean Value-based Contour Extraction (MVCE) algorithm

Stroke profile
C1. How to recognize finger gestures in a training-free way?

Strokes Recognition

- Template matching
- Dynamic time wrapping (DTW)
C2. How to input continuously under ambient interference?

Successive Strokes Segmentation:

- Traditional methods: based on speed (i.e. Doppler frequency)
- **Key observation:** In the end of stroke writing, the speed remains but acceleration decreases notably.
- Acceleration can be utilized to discriminate strokes and other movement (arm, body, and other objects)
C2. How to input continuously under ambient interference?

Successive Strokes Segmentation
- Acceleration: first-order difference
- Green box: moving objects
- Green circle: Uninterrupted writing

\[
f_t = \frac{1 \pm \frac{v_f}{v_s}}{1 \mp \frac{v_f}{v_s}} f_0 = \pm \frac{2f_0 v_f}{v_s + v_f} + f_0 \approx \pm \frac{2f_0 v_f}{v_s} + f_0
\]

\[
f'_t = \frac{2f_0}{v_s} v'_f - \frac{2f_0}{v_s} a
\]
C3. How to input text efficiently based on finger gestures?

Referring to T9 Keyboard

- Each stroke represents several letters (started by this stroke when writing).
- Users can customize their own writing habits.
C3. How to input text efficiently based on finger gestures?

Example: Input ’TO’

I, T, Z, J

C, G, O, Q

IC
IG
IO
IQ
TC
TO
TQ
...

NAÏVE!
C3. How to input text efficiently based on finger gestures?

Bayesian-based Linguistic Model
• Tolerating possible errors (recognition or writing)
• Auto-associating the next possible word.

Pre-coding

Corpus (COCA)

Dictionary
{word, frequency, length, strokeSequence}

Stroke sequence (I)

arg max
 P(W | I)

W: word
I: Input

2-gram data

Word association
Evaluation - setup

<table>
<thead>
<tr>
<th>Meeting room</th>
<th>Lab area</th>
<th>Entertainment zone</th>
</tr>
</thead>
</table>

3(sessions) × 6(participants) × 6(strokes) × 30(repetitions) = **3240 strokes**

6(participants) × 10(words) × 20(repetitions) = **1200 words**

Huawei watch 2 vs Huawei mate 9
Evaluation – stroke recognition

Different devices
• Smartwatch: 94.4%, Smartphone: 94.7%

Different environment
• 94.4%, 94.9% and 93.2% in meeting room, lab area and entertainment zone.

Different participants
• 95.6%, 93.5%, 93.1%, 93.0%, 94.8% and 95%, respectively.
• The standard deviation is about 1.1%.
Evaluation – word recognition

Different words
- Average top k accuracies over different words are 73.2%, 85.4%, 94.9%, 95.1% and 95.7%.
- Providing three candidates, the inferring accuracy is up to 94.9%.

Linguistic model
- The average accuracies are 84.5% and 88.9%, for cases with and without Linguistic model.
Evaluation – input speed

WPM: Words Per Min LPM: Letters Per Min

Speed of text-entry

- The average texts-entry speeds over all participants with *EchoWrite* and smartwatch keyboard are 7.5 WPM and 5.5 WPM, respectively.
Evaluation - User experience

User experience assessment
- Performance, Frustration and temporal demand are the top 3 factors that affect users’ assessment on a text-input system.
- the overall score of participants shows, smartwatch soft keyboard has higher workload than EchoWrite.

NASA-TLX workload factors:
- mental demand (MD)
- physical demand (PD)
- temporal demand (TD)
- performance(Pe)
- effort (Ef)
- frustration (Fr)
EchoWrite – conclusion

We design and implement EchoWrite which can recognize fine-grained finger-writing strokes without training.

With high-frequency signals and careful-designed processing pipeline, EchoWrite is robust to ambient noise and moving interference.

EchoWrite enables users to perform text-entry in the air with the speed of 7.5 WPM with the commodity microphone and speaker.
THANKS

Qiang Yang
yangqiang2016@email.szu.edu.cn
https://sites.google.com/view/yang-qiang/

Shenzhen University